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ABSTRACT HIV-1 capsid protein (CA) plays critical roles in both early and late
stages of the viral replication cycle. Mutagenesis and structural experiments have re-
vealed that capsid core stability significantly affects uncoating and initiation of re-
verse transcription in host cells. This has led to efforts in developing antivirals tar-
geting CA and its assembly, although none of the currently identified compounds
are used in the clinic for treatment of HIV infection. A specific interaction that is pri-
marily present in pentameric interfaces in the HIV-1 capsid core was identified and is
reported to be important for CA assembly. This is shown by multidisciplinary charac-
terization of CA site-directed mutants using biochemical analysis of virus-like particle
formation, transmission electron microscopy of in vitro assembly, crystallographic
studies, and molecular dynamic simulations. The data are consistent with a model
where a hydrogen bond between CA residues E28 and K30= from neighboring
N-terminal domains (CANTDs) is important for CA pentamer interactions during core
assembly. This pentamer-preferred interaction forms part of an N-terminal domain
interface (NDI) pocket that is amenable to antiviral targeting.

IMPORTANCE Precise assembly and disassembly of the HIV-1 capsid core are key to
the success of viral replication. The forces that govern capsid core formation and
dissociation involve intricate interactions between pentamers and hexamers formed
by HIV-1 CA. We identified one particular interaction between E28 of one CA and
K30= of the adjacent CA that appears more frequently in pentamers than in hexam-
ers and that is important for capsid assembly. Targeting the corresponding site
could lead to the development of antivirals which disrupt this interaction and affect
capsid assembly.

KEYWORDS X-ray crystallography, capsid, capsid assembly, computer modeling,
human immunodeficiency virus

The HIV-1 capsid protein (CA) plays crucial roles in both early and late stages of the
viral replication cycle (1). CA consists of 231 amino acids that fold into two distinct

domains, the N-terminal domain (CANTD) and the C-terminal domain (CACTD), con-
nected by a short linker. Multiple copies of CA monomers assemble around the viral
genome to form the characteristic cone-shaped structure of the mature HIV-1 capsid
core (2) (Fig. 1). The core is composed of �200 hexamers and precisely 12 pentamers.
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As with other icosahedral and fullerene structures, the 12 pentamers are required to
form a closed core structure (3, 4).

During the early stages of HIV-1 replication, after viral and host cell membrane
fusion, the capsid core is released into the cytoplasm, where it protects the viral RNA
genome and protein components from degradation. Reverse transcription occurs in the
core and is tightly coupled to the poorly understood process of capsid core disassem-
bly, or uncoating (5–10). These events lead to the importation of the double-stranded
viral DNA into the host cell nucleus, where it is integrated into the host DNA.

Several models of uncoating have been proposed (1), each supported by different
experimental data. These models mainly differ in the timing of uncoating, which occurs
immediately after entry (11, 12) or �30 mins postfusion (10) or during nuclear traffick-
ing (13–16) or when the capsid core reaches the nuclear envelope (17). The uncoating
process is highly complex; it affects reverse transcription (5, 13, 18–21) and nuclear
import and integration of viral DNA (5, 16) and involves interactions between viral
partners (matrix, reverse transcriptase, integrase, Vpr [11, 12]) and host partners (cy-
clophilin A [CypA]) (16), microtubules (22), dynein (23), kinesin (24), cleavage and
polyadenylation specificity factor 6 (CPSF6) (25, 26), transportin 3 (TNPO3) (27), and
nuclear pore proteins NUP358 and NUP153 (15), all regulated in a spatiotemporal
fashion.

Uncoating not only occurs due to specific interactions with various partners but is
also influenced by CA structure and flexibility and requires appropriate stability of the
core itself (18). Intermolecular CANTD/CANTD interactions are essential for the formation
and stabilization of the hexameric (28) and pentameric (29) CANTD rings observed in
assembled cores. CANTD/CACTD interactions are not observed within each monomer but
instead occur between neighboring monomers within a hexamer or pentamer (28, 29).
As CANTD/CANTD and CANTD/CACTD interactions differ between neighboring monomers
in the hexamer or pentamer (29–31), we will use the terms “hexameric interface” and
“pentameric interface” to refer to them.

In contrast, CACTD/CACTD interactions occur between monomers of neighboring
hexamers (or pentamers). Mobility at these CACTD/CACTD interfaces, which connect
hundreds of hexamers and 12 pentamers, accommodates the curvature of the capsid
core (28, 30). Additionally, nuclear magnetic resonance (NMR) and mutagenesis studies
have described the linker connecting the CANTD and CACTD as highly flexible (32) and
essential for proper assembly and stability of the core (33–35). Results of coarse-grained
model simulations suggest that linker flexibility explains the polymorphism of CA
assemblies (36) by enabling variable CANTD/CACTD orientations.

Recent NMR studies (37) have shown that major variations in different in vitro CA
assembly morphologies (tubes, sheets, and spheres) involve minor variations in the

FIG 1 Structure and assembly of the HIV-1 capsid core. Capsid protein folds to form two domains connected by a flexible linker (A)
and forms hexamers (B) and pentamers (red) in the mature core (C), which encloses the viral RNA and ultimately houses reverse
transcription (D).
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molecular structures of ordered segments, suggesting changes in the intermolecular
CACTD dimerization interface and changes in the intramolecular helix-helix packing in
the CANTD. Additionally, the narrow end of the conical capsid core has been proposed
to be a weak point for disassembly. Indeed, this area has a higher concentration of
pentamers, which have been suggested to be less stable than hexamers due to the
tighter positioning and greater electrostatic repulsion of the arginine 18 residues that
form a tight ring at the center of hexamers and pentamers (29) (Fig. 2A). Mutagenesis
studies have also highlighted the extreme genetic fragility of CA assembly, particularly
that of the CANTD helices, which appear to be more sensitive than CACTD to mutations
impacting the structure and stability of the CA hexamer assembly (19).

The multiple roles of CA in the virus replication cycle and its sensitivity to mutations
have led to increases in efforts devoted to discovering antivirals targeting CA (38). This
has led to the identification of several ligands (39), some of which impact virion
maturation by inhibiting core assembly (CAP, benzodiazepines [BD], and benzimidazole
[BM] compounds [40, 41]) whereas others impact the uncoating process (BI compounds
[42]) and yet others affect both stages, as well as reverse transcription (PF74 [43, 44]).
The effect of ligand binding on viral uncoating has been extensively studied, and it is

FIG 2 N-terminal domain interface (NDI) pocket. (A) The NDI pocket (in green) is located on the inner
surface of the core, symmetrically encircling the 6-fold and 5-fold axes in hexamers and pentamers. (B)
The pocket is formed at the interface between two neighboring CANTDs. H1 and H1= form the sides of the
pocket, and it is capped at one end by two R18 sidechains (in cyan) and by an E28-K30= interaction (in
red) at the other end. (C) Close-up representation of the E28-K30= interaction in this hexamer structure
(PDB ID: 4XFX). The two sidechains are slightly too far apart to form a direct hydrogen bond.
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not yet clear whether the effect is the result of an increase or decrease in the stability
of CA assemblies. However, the binding of compounds to the capsid core may also
prevent interactions with the host protein partners required for proper uncoating, as
observed for BI-2 and PF74, whose shared binding sites overlap those of CPSF6 and
NUP153 (45–47).

Identification of sensitive interactions at CA interfaces may aid the development of
new antivirals targeting the stability of CA assemblies. In this study, we explored sites
in capsid that differ between pentameric and hexameric environments to identify novel
targets for the design of inhibitors that interfere with proper assembly of the HIV-1 core.
The importance of a previously unreported interaction between neighboring CA mono-
mers within pentamers is highlighted, and a novel site for design of new antivirals
targeting core assembly was identified and characterized using biochemical analysis of
virus-like particle (VLP) formation, transmission electron microscopy (TEM) of in vitro
assembly, crystallographic studies, and molecular dynamic (MD) simulations.

RESULTS
Capsid interactions in hexamers versus pentamers. Currently, two atomic models

of the entire capsid core are available in the Protein Data Bank (PDB) archive (PDB
identifiers [ID]: 3J3Q and 3J3Y) (31). Both were built using an integrative combination
of computational techniques (molecular dynamics flexible fitting, molecular modeling,
and all-atom molecular dynamics simulations) and experimental data from cryo-
electron microscopy (cryo-EM), cryo-electron tomography (cryo-ET), X-ray crystallogra-
phy, and NMR spectroscopy. Using these models, we analyzed the statistical prevalence
of molecular interactions at the interface of neighboring CA molecules in pentameric or
hexameric units (see Fig. S1 in the supplemental material). One interaction is signifi-
cantly more frequent at the pentameric interface than at the hexameric interface: a
hydrogen bond (H-bond) between the E28 of helix 1 (H1) in one CANTD and the K30=
in helix 1= (H1=) of the neighboring CANTD. This interaction is present in 86.7% of
pentameric interfaces compared to 24.2% hexamer interfaces (Table 1). The distances
between C� atoms of E28 and K30= in neighboring subunits in these structures are also
smaller in pentamers than in hexamers. A similar trend is seen in 20 subnanometer
cryo-ET structures from intact virions (30), showing closer proximity of E28 to K30= C�

in pentamers than in hexamers (Table 1). This interaction is at the bottom of a pocket
between CA residues from neighboring N-terminal domains (CANTDs) (Fig. 2B and C).
Here, we use the term “NDI pocket” to refer to this N-terminal domain interface pocket.

Consistent with this observation, the interaction is not observed in the X-ray
structure of the native wild-type (WT) CA in hexameric form (PDB ID: 4XFX) (48) or in
any of the hexameric CA X-ray crystal structures available in the PDB, i.e., dehydrated,
mutated, or bound to a ligand or peptide. An interaction between E28 and K30=
mediated by water molecules is observed in the X-ray crystal structure of the cross-
linked hexamer (PDB ID: 3H47) (28) (see Table 5 in reference 48). One structural feature
could explain the absence of this interaction in the X-ray crystal structures: the crystal
lattice is flat and does not fully recapitulate the core’s characteristic curvature. This

TABLE 1 H-bond and experimental C�-C� distances between E28 and K30=a

Method (PDB IDs) No. of dimers
% dimers with
E28�K30= H-bond

C�-C�
distance (Å)

Modeling (3J3Q and 3J3Y)b

Hexamer 2,412 24.20 14.45 (�2.02)
Pentamer 120 86.70 11.91 (�0.98)

Cryo-ET (5MCX ¡ 5MCZ, 5MD0 ¡ 5MD9, and 5MDA ¡ 5MDG)c

Hexamer 104 13.64 (�0.34)
Pentamer 5 10.05 (�0.04)

aH-bonds were identified using a distance threshold of 3.35 Å between E28 carboxyl oxygen and K30= amine nitrogen.
bΔC�-C� (hexamer � pentamer) (Å), 2.54.
cΔC�-C� (hexamer � pentamer) (Å), 3.59.
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curvature is expected to impact the relative orientations of neighboring CANTDs (30)
within pentameric or hexameric assemblies (37) and to be more pronounced in the
presence of pentamers (29, 31).

The only available X-ray crystal structure of a pentamer also does not show a
hydrogen bond at this site. It is cross-linked through engineered cysteines at positions
21 and 22 in the H1 helix (PDB ID: 3P05) (29). The resulting disulfide bond is at the top
of the NDI pocket, between position Cys21 of the H1 in one monomer and Cys22= of
the H1= in the neighboring monomer. This engineered constraint brings E28 and K30=
closer at the end of the helices, requiring a reorientation of their side chains to avoid
steric clashes.

E28, K30, and R18 are highly conserved. Residues E28, K30, and R18 are highly
conserved, with 99.4%, 98.8%, and 99.4% sequence identity across the subtype refer-
ence sequences available in the Los Alamos National Laboratory HIV mutation browser
(http://hivmut.org [49]). Only three isolates, 03GH173_06 (subtype 06_cpx; GenBank
accession number AB286851 [https://www.ncbi.nlm.nih.gov/nuccore/AB286851]), nx2
(subtype 08_BC; GenBank accession number HM067748 [https://www.ncbi.nlm.nih.gov/
nuccore/HM067748]), and A32989 (subtype BF1; GenBank accession number AF308491
[https://www.ncbi.nlm.nih.gov/nuccore/AF308491]) show substitutions at those posi-
tions with K30R, E28D/K30E, and R18K, respectively (see Table S1 in the supplemental
material).

In order to determine whether similar interactions at the E28�K30= site are formed
in other subtypes, 100-ns molecular dynamic (MD) simulations of pentamers of hex-
amers (POH; one pentamer surrounded by five hexamers) were performed for the WT
(HXB2), 03GH173_06, and nx2 isolates. We extracted one POH from the WT core
structure (PDB ID: 3J3Y) and used it as a template to model the POH of the isolates
named above. The characteristic curvature was maintained by constraining the posi-
tions of three atoms in each hexamer (see Materials and Methods and Fig. 3A and B).
The backbone root mean square deviations (RMSDs) computed over the trajectory for
the central pentamer (Fig. 3D) and the surrounding hexamers show that stable con-
formations were reached quickly (after �10 ns) (Fig. S2). However, no equilibrium was
reached for the overall POH complexes (Fig. 3C) even after 100 ns of simulation. These
data indicate that the POH systems continue to evolve over the trajectories at the
intersubunit interface.

Analysis of the H-bond interactions connecting the bottom of helices H1 and H1=
(from position 28 to position 31) reveals that for both the WT isolate (HXB2) and isolate
03GH173_06, H-bonds between positions 28 and 30 (E28�K30= and E28�R30=, respec-
tively) participated in the formation of a closed ring of interactions in the pentamer
(Fig. 3B and E; see also Fig. S3). For isolate nx2, a similar ring formation was never
observed, but a larger set of H-bonds were found to be able to connect helices H1 and
H1=. Interestingly, the latter isolate has 4 substitutions in positions 28 through 31
(Table S1), which add 5 additional charges and drastically decrease the inherent
nonbonded potential energy of these residues compared to the results seen with the
other isolates (�1,836.2 � 26.2 kcal·mol�1 for the WT isolate, �2,611.0 � 30.0 for
isolate03GH173_06, and �3,219.2 � 35.8 for isolate nx2).

Effect of E28 and K30 on particle formation. Previous mutagenesis and cell-based
infectivity studies highlighted the importance of capsid residues E28 and K30 for virus
replication. Rihn et al. showed that substitutions of K30 with shorter, oppositely
charged (K30E) or uncharged (K30N) amino acids resulted in the production of nonin-
fectious particles (19). However, no catastrophic structural changes are apparent in
cryo-EM images of the WT and K30N viruses (personal communication). Similarly, the
two E28A/E29A mutations resulted in the production of noninfectious virus. Studies of
the E28A/E29A viral particle morphology performed using transmission electron mi-
croscopy (TEM) suggested normal levels of particle release. However, core formation
was eliminated (20, 50), highlighting the finding that the reduction or loss of infectivity
was directly linked to the lack of core assembly.
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FIG 3 MD simulation for CA pentamers of hexamers (POH) from three isolates. (A) Dynamics of the pentamers (in green) of hexamers (in white) were
simulated in a periodic dodecahedron box of water molecules. The charge of the system is neutralized with sodium counterions (purple spheres), and the
curvature of the assembly is maintained with positional restraints on 15 C� carbons (red spheres; see Materials and Methods). (B) In the starting structure

(Continued on next page)
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It is possible that E28 and K30 play a role in immature particle formation when CA
is still part of the full-length Gag polyprotein. To test their effect on the formation of the
HIV particle before maturation, E28A, K30A, and E28A/K30A mutations were introduced
into a plasmid construct containing the HIV-1 Gag polyprotein (see Materials and
Methods). Gag polyprotein alone can produce virus-like particles (VLPs) and produce
intracellular Gag-containing complexes that sediment in a sucrose gradient identically
to WT viral constructs (51–53). The three mutants displayed similar amounts of extra-
cellular Gag 24 h posttransfection, indicating similar levels of VLP formation, and these
mutations formed the intracellular Gag-containing complexes found in WT, indicating
no defect in immature Gag particle formation or release (Fig. 4).

Assembly of recombinant mutant CA proteins. WT CA is known to assemble in
vitro into long, hollow tubular structures. These tubes are composed of CA hexamers
and are homogeneous in width with an external diameter of �55 nm but highly
heterogeneous in length (4, 54, 55). It was previously shown that E28A/E29A reduces,
but does not eliminate, CA assembly in vitro (50), producing cylinders similar to the WT
CA at higher protein concentrations (�15 mg/ml) but with severe attenuation of their
production at lower protein concentrations (�5 mg/ml).

Furthermore, R18A and R18A/N21A have been previously shown to impact the
morphology of the in vitro CA assemblies by shifting the observed phenotypes to
spheres, cones, spirals, and short capped cylinders (50). The R18A phenotype is thought
to be the result of an increased frequency of pentameric interface formation in the
assembling capsid lattice. The side chains of R18 create a strong positively charged
pore in the middle of the CANTD rings that has been proposed to recruit nucleotides for
importation into the core (56). The charges are brought closer together in the penta-
meric assembly than in the hexamer assembly, resulting in stronger electrostatic
repulsion, which disfavors pentamers relative to hexamers (29). Further studies revealed
that elimination of charge by replacement of R18 with a large hydrophobic residue (i.e.,
V, I, L, F) favored pentameric interface incorporation and induced assembly of spheres,
presumably due to the stabilizing effect of hydrophobic contacts (29, 50, 57). With
variation of the assembly conditions, those mutants also yielded cylinders, cones, and
very large spheres (up to �2.5 �m in diameter), which collapsed and flattened (57)
upon deposition on the EM grid. Most recently, the pocket composed of the six R18
residues from each CA monomer in a hexamer was shown to be the binding site for
inositol hexaphosphate (IP6), which stabilizes hexamers and promotes DNA synthesis
(58–61).

To assess the proposed role of the E28�K30= H-bond in CA assembly, we tested
recombinant mutant CA proteins, harboring R18A, E28A, and R18A/E28A mutations, for
cylinder formation in vitro (Table 2). WT and mutant CA proteins were assembled in vitro
and analyzed by negative-stain TEM (Fig. 5). Consistent with previous reports, under
experimental conditions WT CA formed hollow cylinders (or tubes) that were homo-
geneous in diameter (�45 to 60 nm) but extremely heterogeneous in length. As
expected, R18A mutant CA assembled efficiently, forming sheets and spheres that were
highly variable in diameter (diameters ranged from 30 to 220 nm, occasionally achiev-
ing �400 nm), i.e., phenotypes that are consistent with the presence of pentameric
assembly in vitro (Fig. 5). Notably, shortening the R18 side chain (R18G and R18A)
should neither affect the overall structure of the CA protein nor impact its ability to
form hexameric assemblies (56), since these are present in the observed morphologies.

The E28A mutant formed tubes, although their assembly was attenuated in com-
parison to the WT CA; it also formed sheets and spheres (diameters �50 to 130 Å)
(Fig. 5). The appearance of sheets and spheres may have been a consequence of

FIG 3 Legend (Continued)
of the WT (HXB2), a ring of H-bonds is formed by E28 and K30=, which connect five H1 helices (in yellow). (C and D) Backbone RMSD relative to starting
structures for HXB2 (black), 03GH173_06 (red), and nx2 (green) for the entire POH (C) and the central pentamer (D). (E) Statistics on the number of hydrogen
bonds formed between the ends of both helices H1 and H1= (positions from 28 to 31) as monitored over the entire simulation. Pie charts identify the
particular H-bonds being formed. Block-averaged statistics are shown in Fig. S3.
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enhancement of pentamer formation or of suppression of hexamer formation or of a
combination of the two. The R18A/E28A double mutant also showed attenuated
assembly of sheets and a small number of spheres (with diameters ranging between 30
and 210 nm). On the basis of these data, we suggest that the R18A mutation is primarily
responsible for the phenotype and that E28A decreases the assembly efficiency.
Residues R18 and E28 outlined the NDI pocket (Fig. 2B), but since they were separated
by �14 Å, the observed differences in assembly were likely not related to the removal
of a direct contact between R18 and E28.

FIG 4 Gag mutations do not affect immature virus formation. (A) Graph of expression of extracellular
Gag as a measure of VLP formation. All data have been normalized to Gag-WT. (B) WT and mutant
Gag-containing complexes separated on a 10 to 60% sucrose gradient. Top of gradient is on left, and
bottom on right. Gray boxes denote distinct intracellular Gag-containing populations described previ-
ously (49–51).
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Crystal structures of CA mutants. To address how the mutations mentioned above
alter the structure of the CA protein, we crystallized and solved the crystal structures of
R18A, E28A, or R18A/E28A capsid mutants. All structures were determined in the
hexameric P6 space group with one molecule per asymmetric unit (see Table S2 and
Materials and Methods). Overall, the mutant structures are very similar to the hexameric
WT CA structure (RMSDs on backbone: 0.38 Å for R18A; 0.30 Å for E28A; 0.35 Å for
R18A/E28A) (Fig. 6A). The side chains of all mutated residues were solvent exposed and
not involved in significant intra- or intermolecular interactions in the CA crystal
structures, thereby minimizing the chance of significant structural perturbations be-
yond the mutation site. This observation is further supported by buried surface area
calculations: mutation of R18A in both single and double mutant structures resulted in
an �10% decrease in the buried surface area at the intrahexamer interface (CANTD/
CANTD and CANTD/CACTD), while E28A has no significant effect. Interestingly, in addition
to the localized changes and alteration of the intrahexamer interface, those mutations
caused remote subtle side chain rearrangements that resulted in a 5% to 10% decrease
of the buried surface area at the 2-fold interhexamer interface and a 30% to 60%
decrease at the 3-fold interhexamer interface, as calculated using PISA software (62).

There was an indirect water-mediated H-bond interaction between E28 and K30= in
the R18A crystal structure (Fig. 6B); a similar interaction was observed in the crystal
structure of the cross-linked hexamer (PDB ID: 3H47), while the E28A, R18A/E28A, and
WT CA structures lacked this interaction. Furthermore, these mutations do not appear
to have significantly affected the 3-fold interactions between hexamers (Fig. 6C).
Overall, the R18A, E28A, and R18A/E28A X-ray crystal structures demonstrated that the
mutations neither affected the folding of the CA protein nor dramatically altered the CA
hexamer assembly. The structures also showed, as in previously determined structures
of CA assemblies, that the E28�K30= interaction was part of a larger cluster of charged
interactions at the site (Fig. 7). There appeared to be a facile reorganization of side
chains to form salt bridges and alternate interaction in the hexamers, depending on the
detailed configuration of the subunits. This is consistent with the alternative ring of
interactions observed at this site in our MD simulations of the nx2 isolate.

MD Simulations of CA dimers. To observe whether the E28�K30= H-bond impacts
the dynamics of the pentameric and hexameric interfaces, we performed two 100-ns
MD simulations for the WT using two neighboring dimers extracted from the central
pentamer of POH and a hexameric dimer extracted from the native CA X-ray hexamer
crystal structure (PDB ID: 4XFX). Similar simulations were performed for the E28A
mutant in both cases. By combining all the conformations extracted from the simula-
tions at each frame (20,002 conformations for both WT and E28A), complete backbone
deformation (Neq; see Materials and Methods) profiles were quantified for both the WT
and mutant dimers (Fig. 8; see also Table S3).

Note that the dimers used for these computations did not correspond to the CA
symmetric dimers (Dsym) solved in solution NMR by Deshmukh et al. (PDB ID: 2M8L)
(34). Here, the dimers were extracted from formed pentamers and hexamers. Conse-
quently, monomers A and B of the dimer did not show the same flexibility as the
positions involved at the interface, and the positions exposed to solvent were not the
same for each monomer.

TABLE 2 Self-assembly phenotypes of HIV-1 CA mutations in vitro

Protein In vitro assembly Phenotype Interpretationa

CA � � � Tubes Hexamer �� pentamer
R18A � � � Spheres, sheets May stabilize pentamers
E28A � � (attenuation) Tubes, spheres, sheets Hexamer � pentamer
R18A/E28A � (attenuation) Spheres, sheets May stabilize pentamers
a���, efficient in vitro assembly as compared to WT CA; ��, attenuated (3-6 fold decrease) in vitro
assembly as compared to WT CA; �, severely attenuated (�6 fold decrease) in vitro assembly as compared
to WT CA. Tubes and sheets are assumed to be formed by hexamers; spheres are assumed to also contain
pentamers.

Intersubunit Interactions in HIV-1 Core ®

March/April 2019 Volume 10 Issue 2 e02858-18 mbio.asm.org 9

http://www.rcsb.org/pdb/explore/explore.do?structureId=3H47
http://www.rcsb.org/pdb/explore/explore.do?structureId=4XFX
http://www.rcsb.org/pdb/explore/explore.do?structureId=2M8L
https://mbio.asm.org


FIG 5 Effects of R18A, E28A, and R18A/E28A mutations on CA assembly. Images represent results of TEM analysis of CA mutant
assemblies. Projection images were recorded at �2,500 magnification (A to B), �20,000 magnification (C and D), and �40,000
magnification (E and F) from the corresponding samples as indicated. Scale bars are 1 �m in panels A and B, 100 nm in panels C
and D, and 50 nm in panels E and F.
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In pentameric dimers, positions surrounding the residues forming the H-bond
(positions 30 and 31 from monomer A and positions 29 and 30 from monomer B)
showed a slight increase of �1 Neq unit in deformation in the mutant dimers. Also in
the pentamers, the ends of helix H1 and helix H1= (positions from 28 to 31) in the WT
dimer were connected via the E28�K30= H-bond in 85.6% and 85.1% of the trajectories,
respectively. In contrast, the ends of H1 and H1= were almost never connected in the
E28A mutant, with E28�K30= H-bonds formed in 0.1% and 0.4% of the trajectories and
E29�K30= formed at only a few time steps. This suggests that the differences in Neq

results were related to enhanced deformation of the region from the absence of the
E28�K30= H-bond.

FIG 6 X-ray crystal structures of R18A, E28A, and R18A/E28A CA mutants compared to WT CA. (A) HIV-1 CA mutants R18A (CANTDs in light cyan,
CACTDs in cyan), E28A (CANTDs in light pink, CACTDs in purple), and R18A/E28A (CANTDs in light green, CACTDs in green) form a hexamer that is very
similar to WT CA (PDB ID: 4XFX). The side chains for the positions of interest (R18 or A18, E28 or A28, and K30=) are shown as black sticks. The
3-fold CACTD interfaces are indicated with red triangles. (B) Close-up views of red boxes in panel A. Two helices 1 (H1 and H1=), encompassing
the NDI pocket, are very similar to the WT CA (shown in white). The side chains are shown for positions 18, 28, and 30= only. For the R18A structure,
a water molecule mediates an indirect H-bond interaction between E28 and K30=. (C) Close-up views of the 3-fold interfaces shown in panel A
as black boxes. All CA mutant structures were aligned to the WT at the 3-fold axis (residue range, 195 through 221).
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Surprisingly, the major differences in deformation between WT and E28A occurred
at distant regions of the sequences. In pentameric dimers, two regions, consisting of
positions 59 to 61 of monomer A and positions 201 to 209 of monomer B, showed large
decreases in deformation for the mutant. Residues 59 through 61 were positioned at
the end of helix H3 close to the mutation site (�5 Å), while positions 201 through 209
were positioned in a loop very distant from it (�30 Å) and were largely accessible to
solvent.

In hexameric dimers, more deformation was seen for the mutant in both monomers,
around position 90, in the CypA loop at the top of CANTD. Interestingly, the dynamics
of this loop have already been described as determinant for binding of CypA (63), a
host cell factor known to stabilize CA (64).

The intrinsic flexibility differences between the WT and the E28A variant suggest
that destabilizing the E28-K30 interaction may affect the dynamics of the CA subunits
in ways that may have implications for capsid assembly.

DISCUSSION

CA residues R18, E28, and K30 are highly conserved among known HIV-1 isolates.
They are at opposite ends of the N-terminal domain interface (or NDI) pocket formed
by the ends of two symmetry-related helices (R18 and E28 in H1 and K30= in H1=) from
neighboring CAs within a pentameric or hexameric unit. R18 is at the “top” of the
pocket, whereas E28 and K30= are at the “floor” (Fig. 2). The NDI pockets seem to differ
in intrapentamer versus intrahexamer interfaces.

In the available models of the HIV-1 cores, E28 and K30= interact through an H-bond
and form the floor of the NDI pocket in 87% of the intrapentamer and 24% of the
intrahexamer interfaces. In contrast, interactions at the top of the pocket (R18) appear
to be more important at intrahexameric interfaces, consistent with the loss of hexamer-
containing tubes observed in our TEM studies with R18A. On the basis of the data, it is
likely that both parts of the NDI pocket contribute to stabilization during assembly.

MD studies performed with WT and E28A CA dimers have identified a possible

FIG 7 Charged amino acids at the NDI pocket in WT and mutant CA hexamers. Lysine is shown in blue, glutamate/
aspartate in red, and arginine in purple (PDB ID: WT CA, 4XFX; structures reported here, 5W4O, 5W4P, and 5W4Q). One NDI
pocket is highlighted in green (in the WT) with the surrounding charged amino acids labeled. H1 and the beginning of H2
are shown as cartoons. In R18A, the water molecules that bridge interaction between E28 and K30= are shown as yellow
spheres.
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mechanism through which the E28�K30= interaction affects the global dynamics of CA
during assembly. Loss of the E28�K30= interaction revealed changes in flexibility at
residue positions proximal to E28 and K30= (residues 59 to 61) and, interestingly, at a
remote region (residues 201 to 209) as well (Fig. 8). The latter changes suggest that the
E28A mutation at the interpentamer interface allosterically affects the interactions
between the H1 and H1= helices. Similar long-range interactions between remote CA
regions have been previously described. Noviello et al. (65) reported that CA mutations
H62A and H62F have no effects on the release of VLPs but result in aberrant core
morphologies correlated to their infectivity defects. Remarkably, two compensatory
mutations that improved infectivity were mapped to residue 208 (G208R and G208A).
In the CA pentameric dimer, H62 is located behind the E28�K30= H-bond, and G208 is
a part of the loop between helices H10 and H11. The authors proposed that H62
mutants alters the 3-fold CACTD interface and that mutation in residue 208 repositions
helix H11 to accommodate the histidine 62 mutation.

FIG 8 Backbone deformation of CA dimers comparing WT and E28A mutants in pentameric and hexameric conformations. The Neq profiles of the two
monomers of a pentameric dimer (top) and a hexameric dimer (bottom) are shown for the WT (in black) and the E28A mutant (in red). Values corresponding
to the CACTD disordered region (positions 219 through 231) have been omitted for clarity. A cartoon representation of the pentameric dimer is shown in the
center, and meaningful differences between both WT and mutant Neq values are indicated with a purple sphere where the mutant has a higher value and with
a green sphere where the WT has a higher value.
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Under physiological conditions, CA monomers interact via the 2-fold CACTD/CACTD

interface to form symmetric dimers (Dsym) (66). Interactions between three Dsym,
around the 3-fold axis, form a trimer of dimers (TOD), which has been reported in
coarse-grain and mathematical models as a building block of the CA hexameric lattice
(36, 67). However, the recent coarse-grained simulation suggests that the addition of
Dsym onto formed TODs represents the basic nucleation pathway rather than a simple
aggregation of distinct TODs (35). As illustrated in Fig. 11 in reference 67 (or see Fig. S4A
in the supplemental material), the pentamers can be viewed as an aberration in the
TOD lattice, where two TODs overlap and share one Dsym. In this context, pentamer
formation into the CA lattice cannot result from the polymerization of distinct TODs but
has to be the product of the addition of Dsym in the existing pentameric dimer (Fig. S4B
and C).

Our results suggest that E28A affects neither the formation of the Dsym and the TOD
nor their polymerization, as we observed tubes in vitro (Fig. 5). However, we showed
that E28A affects the incorporation of pentamers. We thus propose that proper
pentamer formation in the CA lattice requires specific flexibility of the H10/H11 loop at
the free end of the CACTD (Fig. S4D). Moreover, we propose that the E28�K30= H-bond
between the adjacent monomers in the pentameric dimer is the key to this flexibility.

Lemke et al. (41) previously identified the K30R substitution as a resistance mutation
corresponding to the BM compounds, a family of CA assembly inhibitors that act
primarily by blocking the assembly of mature conical capsids. The X-ray crystal structure
of CANTD in complex with BM-4 (PDB ID: 4E92) showed binding in a hydrophobic pocket
at the bottom of the CANTD, just behind H1 and K30, that slightly reorganized the
bottom of the helix bundle in the CANTD. Interestingly, mutation of lysine to arginine,
a similarly charged but longer amino acid, resulted in significant BM inhibitor resistance
(4-fold for BM-2, 5-fold for BM-3) without reducing the binding of the compounds. The
authors concluded that the “resistance conferred by these substitutions were not
attributable to reduced inhibitor binding affinity, implying that they act via an indirect
mechanism.” Regarding our study, it is tempting to speculate that the binding of BM
compounds perturbs the formation of the E28�K30= H-bond and that the R30= mutant
positioning brings its charge closer to E28 in a range suitable for H-bond formation.

Finally, we propose the NDI pocket is an interesting target for the discovery and
design of antiviral inhibitors. This pocket is (i) not subject to crucial binding site
reorganization (it is located between helix bundles displaying low backbone deforma-
tions and mobility); (ii) located near the 6-fold axis channel, which could be interesting
for designing compounds to disturb nucleotide recruitment through the pore; and (iii)
capped at the top by two R18 residues and at the bottom by E28 and K30=, positions
that have been identified previously and in the current study as important for core
assembly. Moreover, the end of helix H3 (positions 58 and 59) forms the deepest part
of the pocket and comprises the same loop as the neighboring H62, which is highly
conserved, and its impact on capsid assembly has been well studied.

Given these observations, we performed a preliminary high-throughput virtual
screen focusing on the NDI pocket using the FightAIDS@Home project (FA@H; http://
fightaidsathome.scripps.edu/Capsid/index.html) in collaboration with IBM’s World
Community Grid (https://www.worldcommunitygrid.org/). More than 1.6 million com-
mercially available compounds have been used to target, inter alia, 20 conformations
of the NDI pocket, selected from hexameric and pentameric interface assemblies.
Preliminary results show that the NDI pocket is a plausible binding site for antiviral
compounds (Fig. 9) from a molecular docking point of view. Evaluation and character-
ization of these compounds are the subjects of an ongoing independent study.

In conclusion, through biochemical, virological, TEM, crystallographic, and MD
simulation analyses, we characterized interactions primarily present in pentameric
interfaces in the HIV-1 capsid core and showed them to be important for assembly. Our
data highlighted the importance of a novel N-terminal domain interface (NDI) pocket
that is amenable to antiviral targeting.
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MATERIALS AND METHODS
NDI pocket identification. The NDI pocket was identified in the CA hexamer X-ray crystal structure

(PDB ID: 4XFX [48]) using AutoSite (68). In this method, energetic grid points in space combined with a
clustering algorithm are used to select high-affinity groups of points around the receptor. Clusters are
then scored and ranked to provide a list of potential binding sites. Fifteen unique pockets were identified
on the surface of the CA hexamer. The NDI pocket was scored in the top three pockets in terms of
AutoSite score (AS score, 33.90; Nbr points, 186; RadGyr, 4.39; buriedness, 0.89).

Modeling and MD simulations. The CA pentamer and pentamers of hexamers (POH) models were
constructed using MODELLER (69) as follows. The WT POH and CA pentamer coordinates were from PDB
ID 3J3Y (pdb-bundle 21 chains c, d, e, f, and g). The WT POH was used as a template to model the POH
of the 03GH173_06 and nx2 isolates. Positions of specific atoms in the three POH systems were
constrained to maintain the CA lattice curvature during the MD trajectory. The constrained atoms were
the C� of the proline 147 (P147) of monomers that are on the exterior ring of the POH and not in contact
with the central pentamer (Fig. 3A). As P147 is a part of the linker and has no side chain, we assumed
that the constraint does not drastically impact the intrinsic dynamics of either CANTD or CACTD.

For the simulations of dimers, two pairs of monomers (chains c/d and chains f/g) were extracted from
the pentamer and used as the templates to model two mutant E28A pentameric dimers by replacing the
side chains of residues 28 in PyMOL (http://www.pymol.org/). Similarly, a pair of monomers was extracted
from the X-ray crystal structure of the CA hexamer with PDB ID 4XFX. The missing parts of the structure
(positions 6 to 10 and 222 to 231) were modeled using MODELLER (69). This hexameric dimer structure
was used to model the mutant E28A hexameric dimer by replacing the side chains of residue 28 in
PyMOL.

MD simulations were performed with GROMACS (70) using the AMBER99sb force field (71). Each
structure was immersed in a periodic dodecahedral box using TIP3P water molecules (72) and neutralized
with Na� counter ions. The system was energetically minimized with a steepest-descent algorithm for
10,000 steps. The MD simulations were performed in an isotherm-isobar thermodynamics ensemble
(NPT) with temperature fixed at 300 K and pressure at 1 bar. A run of 1 ns was performed to equilibrate
the system using the Berendsen algorithm for temperature and pressure control (73). A production step
of 100 ns or 200 ns was carried out using the Parrinello-Rahman algorithm (74) for temperature and
pressure control, with coupling constants of T�0.1 ps and P�4 ps. All bond lengths were constrained
with the LINCS algorithm (75), which allowed an integration step of 2 fs. The PME algorithm (76) was
applied for long-range electrostatic interactions using a cutoff value of 1 nm for nonbonded interactions.

FIG 9 Top 5 compounds from a virtual screen of the NDI pocket. Docking results are shown as the
superposition of five different molecules (yellow sticks) binding in the NDI pocket from the X-ray crystal
structure of the native CA (PDB ID: 4XFX).
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Coordinates were saved every picosecond. Trajectory analyses were performed with GROMACS software
and in-house R scripts.

Nonbonded interactions of the bottom of H1 pentamer helices were computed using the g_energy
command from GROMACS software. The group composed of residues 28, 29, 30, and 31 in the five
monomers was defined to compute their Lennard-Jones and Coulomb interactions with themselves and
also with the rest of the proteins. The obtained values were summed for each frame and were averaged
over the trajectory.

CA backbone deformations and mobility analysis. Backbone deformations were quantified using
Neq (77), a measure of structural variability. First, structural alphabet protein blocks (PBs), composed of
16 prototypes (78), were employed to classify local conformations. Each specific PB is characterized by
the �, � dihedral angles of five consecutive residues. The 16 PBs give a reasonable approximation of all
local protein 3D structures (79). PB assignment was carried out using PBxplore (80) for each CA monomer
from both capsid core models. From this description, we computed the Neq (77), a statistical measure-
ment similar to entropy that represents the average number of PBs that a residue may adopt at a given
position. It is calculated as follows:

Neq � exp���
PB�1

16

fPBln�fPB��
where fPB is the frequency of a particular PB at the position of interest and the sum is performed over
all 16 PBs. An Neq value of 1 indicates a rigid region where only one type of PB is observed, while a value
of 16 indicates a totally flexible region with equal frequencies for all 16 states. Values for disordered parts
of proteins are typically close to or higher than 8.

pGagP6-CTE. pGagP6-constitutive export element (pGagP6-CTE) (described previously [81]) was
produced by replacing the BH10 HIV sequence with the NL4-3 lb/in2 signal and Gag protein through the
P6 domain (deleting the frame-shifted protease containing extended polyprotein) using Gibson cloning.
The final plasmid contained the viral Gag sequence under the control of a cytomegalovirus (CMV)
promoter, and nuclear export was achieved via a CTE in the 3= untranslated region (3=-UTR) of the
resulting RNA. Mutations were introduced into pGagP6-CTE using an NEB Q5 site-directed mutagenesis
kit (E0554S), and all sequences were verified by analysis of capillary sequencing reactions.

Transfection and VLP formation. pGag-CTE and mutations were transfected into HEK293T cells 24
h postseeding using polyethylenimine (PEI) as described previously (82). The supernatant (10 ml) was
collected for each sample 24 h posttransfection, and cells were harvested via trypsin digestion.

Sucrose gradient centrifugation and Gag detection. Expression of Gag-containing complexes was
assayed as previously described (51, 53) with a few modifications. Gag-expressing cells were lysed in lysis
buffer A (10 mM HEPES [pH 7.5], 10 mM NaCl, 1 mM magnesium acetate, 0.85% octyl-�-D-
glucopyranoside) for 10 min on ice, and the lysates were spun at 500 � g for 5 min to clear insoluble
nuclei. The lysates were then loaded onto the top of an 11-ml 10% to 60% sucrose gradient and spun
in the ultracentrifuge using a Beckman Coulter SW41Ti rotor at 35,000 rpm for 3 h. Centrifuged samples
were separated into 300-�l aliquots. A 100-�l volume of each fraction was added to 200 �l distilled water
(dH2O), and all fractions were subsequently blotted onto low-fluorescence polyvinylidene difluoride
(PVDF) membranes (Bio-Rad) using a microsample filtration manifold (Schleider & Schuell). On a separate
membrane, serial dilutions of the VLP-containing supernatant collected as described above were also
loaded onto PVDF membranes. All membranes were then subjected to standard Western blotting using
a fluorescently labeled �-P24 antibody (Millipore MAB880-AF). Gag signal was detected using a Bio-Rad
Versadoc 4000MP system and quantified using Image Studio 5.2.

Design, expression, and purification of CA mutant proteins. R18A, E28A, and R18A/E28A CA
mutants were based on a pET11a construct (48). Mutations were introduced using overlap extension PCR
cloning and verified by DNA sequencing. Mutant CA proteins were expressed and purified as previously
described (48, 83).

TEM assembly of CA mutants. WT CA and CA mutants (R18A, E28A, and R18A/E28A) were
assembled at 150 �M in buffer containing 1 M NaCl and 50 mM Tris-HCl (pH 8.1) at 37°C for 1 h. A 5-�l
volume of each sample was adsorbed during 5 min on grids coated with colloidal carbon made
hydrophilic by glow discharge for 45 s. After that step, excess fluid was removed, and grids were washed
with water, fixed in a drop of 2% uranyl acetate, and dried before visualization using a JEOL JEM 1400
transmission electron microscope at magnifications of �2,500, �20,000, and �40,000. Each reaction was
repeated at least three times.

Crystallographic structures of CA mutants. Crystals of the CA mutant proteins grew at 18°C in
hanging drops, containing 2 to 5 mg/ml of protein, 6% to 9% polyethylene glycol (PEG) 3350, 2% to 6%
glycerol, sodium iodide, and sodium cacodylate. Hexagonal plate-like crystals appeared after 5 days, and
crystal growth was completed over 2 weeks. Crystals were briefly dipped in paraffin oil before cryo-
cooling in liquid nitrogen was performed.

Data were collected on a Dectris Eiger-16m detector at Advanced Photon Source (APS) beamline
23-ID-B, Argonne National Laboratory. Datasets were collected and processed using XDS (84). The data
were examined for the presence of systematic absences. However, no characteristic patterns were
observed. Thus, the crystals were indexed in hexagonal space group P6 with one CA molecule in the
asymmetric unit. No twinning was present, as determined by the use of either POINTLESS (85) or XTRIAGE
(86). Space group and twinning were also verified in ZANUDA (62). Initial phases were obtained by
molecular replacement via PHASER (62) using WT CA (PDB ID: 4XFX) as the starting model. Several rounds
of iterative model building and refinement were carried out using Coot (87) and PHENIX (86), REFMAC
(62, 88), or PDBREDO (https://pdb-redo.eu/). Structure validation of final models was performed with
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MOLPROBITY (http://molprobity.biochem.duke.edu/). Accessible and buried surface areas were calcu-
lated using PISA (62). The figures showing structural information were generated in PyMOL (http://www
.pymol.org/) and CCP4MG (62).

Data availability. Structure factors and coordinates have been submitted to the RCSB Protein Data
Bank (PDB) for the R18A, E28A, and R18A/E28A CA X-ray crystal structures (PDB IDs: 5W4O, 5W4P, and
5W4Q, respectively).
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