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Abstract

Suboptimal gestational weight gain (GWG), which is linked to increased risk of adverse out-

comes for a pregnant woman and her infant, is prevalent. In the study of a large cohort of

Canadian pregnant women, our goals are to estimate the individual weight growth trajectory

using sparsely collected bodyweight data, and to identify the factors affecting the weight

change during pregnancy, such as prepregnancy body mass index (BMI), dietary intakes

and physical activity. The first goal was achieved through functional principal component

analysis (FPCA) by conditional expectation. For the second goal, we used linear regression

with the total weight gain as the response variable. The trajectory modeling through FPCA

had a significantly smaller root mean square error (RMSE) and improved adaptability than

the classic nonlinear mixed-effect models, demonstrating a novel tool that can be used to

facilitate real time monitoring and interventions of GWG. Our regression analysis showed

that prepregnancy BMI had a high predictive value for the weight changes during preg-

nancy, which agrees with the published weight gain guideline.

Introduction

Normal physiological adaptations to pregnancy favor weight gain to support fetal growth, fol-

lowed by weight loss postpartum to meet increased maternal energy demands during lactation

[1, 2]. It is well known that the risk of poor maternal and fetal health outcomes increases when

women gain either too little or too much weight during pregnancy. Gaining too little weight is

associated with low birth weight and preterm birth [3]. Excessive weight gain in pregnancy,

which is a growing problem in developed countries, contributes to increased rates of maternal

and perinatal complications, including gestational diabetes, emergency caesarian delivery,

large infant (>90% percentile) for gestational age at birth and sometimes even fetal death [4].

It has been reported that across all prepregnancy BMI categories, 45-80% of Canadian women

gain in excess of their respective BMI category-specific Gestational Weight Gain (GWG) rec-

ommendations from Institute of Medicine [5–7]. Excessive GWG adds to the growing
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prevalence of overweight and obesity among women entering pregnancy (in the case of a sub-

sequent pregnancy) and increases women’s long-term risk of obesity and obesity-related

chronic diseases, such as diabetes, hypertension, and certain cancers [8].

Customized counseling and education combined with individual weight monitoring have

been shown to improve GWG adherence [9, 10]. Women are currently referred to general

weight gain trajectory based on their prepregnancy BMI category, but that adherence rates

might be improved if weight trajectory could be individualized. Thus, monitoring and model-

ling individual weight growth trajectories during pregnancy could be clinically relevant and

useful for women and health care providers. For example, the weight growth trajectory may be

used to predict the gestational weight changes so that women at high risk of suboptimal GWG

can be identified and appropriate intervention can be offered.

Instead of an individual’s unique trajectory, previous modeling studies on gestation weight

growth aim to obtain a reference weight trajectory for the population of pregnant women [11–

13]. Most statistical methods of modeling individual trajectory were developed for modeling

the daily or monthly cycling patterns of certain biomarkers [14–16]. These mixed effects mod-

els require a large number of measurements per individual. This data requirement needs

intensive data collection, which is challenging for large cohort studies over a 9-month preg-

nancy in the research setting. To reduce the data collection burden for both study participants

and the research team, a model that can estimate individual trajectory using irregularly spaced

sparse longitudinal data is needed. The search of suitable statistical method leads us to examine

the functional principal component analysis (FPCA) approach [17]. The development of

FPCA is motivated by irregularly spaced sparse functional or longitudinal data, where the

functional principal component (FPC) scores are framed as conditional expectations. With a

cohort of sparse longitudinal samples, FPCA is capable of efficiently estimating the individual

continuous trajectory by borrowing information from the whole cohort.

We have three objectives in this study. First, to investigate whether the FPCA approach pro-

vides a good fit to individual gestational weight growth trajectory. Second, to compare the per-

formance of FPCA to the classic method for trajectory analysis, i.e., the mixed effects model.

Lastly, to examine the contribution of prepregnancy BMI to the variation in gestational weight

changes.

Materials and methods

Materials

Data collection. In the Alberta Pregnancy Outcome and Nutrition (APrON) study, preg-

nant women who were less than 27 weeks of gestation were recruited. The study protocol has

been published elsewhere [18]. The ethical approval is granted through University of Alberta

Ethic Board (Human ethics PRO00002954). Briefly, upon a woman’s recruitment, informed

written consent was obtained and her prepregnancy weight (W0) and due date were self-

reported. Women recruited before 13 weeks gestation were assessed in each trimester, labeled

as gestation stage A, B, C. Those recruited in 14-27 weeks gestation were assessed in gestation

B and C. Each assessment included a weight measurement; a 24-hour food recall, either web-

based to be completed online or interviewer-administered to be completed at a study site; a

self-administered Baecke’s physical activity (PA) questionnaire, among other questionnaires.

The web-based 24-hour food recall was developed by Hanning et al. [19] and the database was

modified to include food items typically only consumed by adults, including alcohol [20]; and

the interviewer-administered instrument was described by Conway et al. [21]. The Baecke’s

PA questionnaire, first proposed by Baecke et al. [22], was modified for pregnancy [23]. In

addition, height was measured at her first study visit, which was used to calculate her

Trajectory modeling of gestational weight

PLOS ONE | https://doi.org/10.1371/journal.pone.0186761 October 24, 2017 2 / 15

Funding: This research project was made possible

through grants from Women and Children’s Health

Research Institute to YY (www.wchri.org), Natural

Sciences and Engineering Research Council of

Canada to LK (http://www.nserc-crsng.gc.ca/

index_eng.asp), Canadian Statistical Sciences

Institute to LK (http://www.canssi.ca), and Alberta

Innovates Health Solutions to RB (http://www.

aihealthsolutions.ca/). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0186761
http://www.wchri.org
http://www.nserc-crsng.gc.ca/index_eng.asp
http://www.nserc-crsng.gc.ca/index_eng.asp
http://www.canssi.ca
http://www.aihealthsolutions.ca/
http://www.aihealthsolutions.ca/


prepregnancy BMI. Gestational age (GA) was calculated based on due dates. Each women was

asked to attend a postpartum visit at three months after delivery, during which her highest

weight during pregnancy (WH) and delivery date were reported.

The weights measured in gestation stage A, B, C are denoted as WA, WB, and WC respec-

tively. In the 24-hour food recall, macro- and micro-nutrient intakes were calculated. A cali-

bration study showed that direct pooling of the results from the web-based and interviewer-

administered instrument may not be feasible [24] and therefore we model them separately.

Levels of PA measured in the Baecke’s questionnaire were represented by the PA indices. Each

subject had a maximum of 5 body weight data points, the self-reported W0 and WH and the

measured WA, WB, WC for a trajectory, where corresponding GAs vary from 0 to 42 weeks.

One or more of these data points could be missing due to missed study visit(s). We associate

W0 to t = 0, and WH to the GA at birth.

Inclusion criteria. Subjects who had a full-term (GA at birth�37 weeks), singleton live

birth were included. For statistical modeling, we required the subject to have at least one

record of physical activities or food intake, height measurement, W0 and at least one measured

weight (WA, WB and WC) with corresponding GA. Consistency is also required, for example,

the GA at birth should be greater than the GA of WC.

Method

FPCA set up and trajectory estimation. The Functional Principle Component Analysis

(FPCA) approach proposed by Yao et al. [17] is developed for sparse, irregularly measured lon-

gitudinal data. We assume that each subject’s measurements come from a smooth underlying

trajectory subject to measurement errors. The FPCA procedure first estimates the smooth

covariance surface of the observed data as a function of time, then captures the principal com-

ponents (PC) as functions of time that explain variance among all observed data. An estimated

trajectory for each subject is reconstructed through a linear combination of the first few PC

functions that captures most of the variation in the data. Since the PC functions are estimated

from all available data, the reconstruction of trajectories borrows information from the entire

sample. The validity of the FPCA approach is guaranteed even when there are only a few mea-

surements for each subject. A mathematical overview of FPCA is provided below; readers who

are less sophisticated in statistics may skip this section.

We consider a smooth random function X(t), with unknown mean μ(t) and smooth covari-

ance function cov(X(s), X(t)) = G(s, t). Suppose that Xi(t), i = 1, . . ., n, are its n realizations,

each with Ni observations, Xi(Tij) + �ij, which were made at different time points Tij, j = 1, . . .,

Ni and subject to uncorrelated measurement errors �ij with mean 0 and constant variance σ2.

In our case, X(t) can be one of the trajectory of weight, nutrient intake, or PA index. The time t
is in a closed time interval T between 0 and 42 weeks. In FPCA, the j–th observation of the i-
th realization is expressed as

Yij ¼ XiðTijÞ þ �ij ¼ mðTijÞ þ
X1

k¼1

xik�kðTijÞ þ �ij; ð1Þ

where ϕk’s are the k-th principal component (PC) functions, assumed to be smooth, and ξik’s

are the FPC scores that are uncorrelated with zero mean and unit standard deviation.

The estimation of the trajectory is implemented in the following four steps.

Step 1 Estimation of the mean function.

The mean function μ is estimated based on all the data points from all individuals, where

local linear kernel smoothers proposed by Fan et al [25] are employed.
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Step 2 Estimation of the covariance structure.

Let GiðTij;TilÞ ¼ ðYij � m̂ðTijÞÞðYil � m̂ðTilÞÞ be the “raw” covariances of the observed data.

Then we have

E½GiðTij;TilÞjTij;Til� � covðXðTijÞ;XðTilÞÞ þ s2djl;

where δjl = 0 for j 6¼ l and δjl = 1 for j = l. Therefore, we use only those Gi(Tij, Til) with j 6¼ l
to first obtain the smoothed covariance surface of X(t) by the local linear kernel smoother,

denoted by Ĝðs; tÞ. As noted by Yao et al [17], when the assembled pairs (Tij, Til) are suffi-

ciently dense in the domain, the estimation of the covariance function is feasible. Next a

local linear component along the diagonal and a quadratic component along the direction

perpendicular to the diagonal are fitted. We denote the diagonal of the estimated surface by

~GðtÞ. A local linear kernel smoother V̂ ðtÞ focusing on diagonal entries of {G(t, t) + σ2} is

obtained by using G(Tij, Tij) as input.

Step 3 Estimation of eigendecomposition.

The estimation of eigendecomposition, including the eigenfunctions (PCs) and eigenvalues,

is essentially to solve the eigenequations

Z

T
Ĝðs; tÞ�̂kðsÞds ¼ l̂k�̂kðtÞ ð2Þ

with respect to �̂k’s and l̂k’s. These eigenfunctions are estimated by discretizing the

smoothed covariance as in [26].

Step 4 Prediction of FPC scores.
To predict the FPC scores, the integration of a smooth function is needed, and general Rie-

mann sums may not work well due to the sparse data. Denote ~Y i ¼ ðYi1; :::; YiNiÞ, then in

FPCA through conditional expectation [17], the best prediction of the FPC scores is the

conditional expectation Eðxikj~Y iÞ. If we further assume that ξik and �ij are jointly normal,

the conditional expectation is given by [27]

~x ik ¼ Eðxikj
~Y iÞ ¼ lk�

T
ikS
� 1

Yi
ð~Y i � miÞ; ð3Þ

where ϕik = (ϕk(Ti1), . . ., ϕk(TiNi
)), μi = (μ(Ti1), . . ., μ(TiNi

)), and

SYi
¼ covð~Y i;

~Y iÞ ¼ covð~Xi;
~XiÞ þ s2INi

, is a Ni × Ni matrix, the (j, l) entry of which is G
(Tij, Til) + σ2 δjl, with δjl = 0 for i 6¼ j and δjl = 1 for i = j. Plugging in the unknown quantities

in Eq (3) by their estimates, we obtain the “plugging in” estimator of the FPC score

x̂ ik ¼ Êðxikj
~Y iÞ ¼ l̂k�̂

T
ikŜ

� 1
Yi
ð~Y i � m̂iÞ; ð4Þ

where m̂i is obtained in Step 1, ðŜYi
Þj;l ¼ ĜðTij;TilÞ þ ŝ2djl is estimated in Step 2, and �̂ ik ¼

ð�kðTi1Þ; :::; �kðTiNi
ÞÞ and l̂k is obtained from Step 3.

For our data analysis, we use the MATLAB package, Principal Analysis by Conditional

Expectation (PACE) [17], for the implementation of FPCA.

Typically, the first few PCs explain the largest fraction of total variation in all the trajecto-

ries, thus represent the dominant modes of variation. For each individual, the trajectory can be

well approximated by a linear combination of these first K smooth functions. Popular

approaches to choose K include the Akaike information criterion (AIC) and fraction of vari-

ance explained (FVE). We employ the FVE method with a threshold of 0.99 of the variance

explained. That is, we choose the smallest K eigenfunctions that explain at least 99% of the
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total variance. Once K is chosen we approximate the trajectory of the i-th subject as

X̂K
i ðtÞ ¼ m̂ðtÞ þ

XK

k¼1

x̂ ik�̂kðtÞ; ð5Þ

where x̂ ik’s are the individual-specific FPC scores defined in (4). In (5), the terms m̂ðtÞ and

�̂kðtÞ borrows information from the entire data set, while x̂ ik is driven by ~Y i, the observations

of the specific subject. As described previously, we have up to 5 weight records for each subject

in our study measured from t = 0 (W0) to t� 37 (WH at GA at birth). Individual weight trajec-

tories can be estimated following steps 1 to 4 outlined above. Simultaneous confidence interval

bands for individual trajectories are also obtained; details on the construction of confidence

interval bands are given in Appendix A.

Performance comparison: FPCA vs. non-linear mixed effect model for trajectory

modeling. The performance of the FPCA-based individual trajectory is compared with the

classic model for trajectory modelling. Since the weight growth curve is nonlinear (Fig 1), we

choose a parametric nonlinear mixed effect model. It is also observed that the mean weight

curve is convex during early and mid-pregnancy and there is an inflection point at 30 weeks

(Fig 1). Thus we use a logistic curve to model this shape of weight trajectory, which is in the

form of

WðtÞ ¼
L

1þ exp ð� kðt � t0ÞÞ
:

As a logistic curve always starts from zero, we add an intercept c to this model. The model then

has the following form:

WðtÞ ¼
L

1þ exp ð� kðt � t0ÞÞ
þ c: ð6Þ

Fig 1. (a) Assembled pairs (Tij, Tik) of all weight records. (b) Individual weight trajectories of 100 randomly selected subjects, overlaid with the smooth

estimate of the mean function.

https://doi.org/10.1371/journal.pone.0186761.g001
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In (6), L is the maximum of of the curve, which is related to the total weight gain. Since we use

only part of the curve, it acts as a magnifying factor. k is the steepness of the curve, which is

affected by the weight growth rate. t0 is an inflection point. From the shape of the estimated

mean function, we set it at 30 weeks. c is a baseline weight and can be interpreted as the pre-

pregnancy weight. L and c are treated as random effects and k is treated as a fixed effect of the

model to be estimated from the data.

After estimating the weight trajectory of each subject with models 5 and 6, we compare the

model-based weight estimates at each study visit to the observed weights for each subject to

quantify the model fit. The mean squared error (MSE) and root mean squared error (RMSE) is

thus calculated as

MSE ¼
1

Pn
i¼1

Ni

Xn

i¼1

XNi

j¼1

ðŴðTijÞ � WðTijÞÞ
2
; RMSE ¼

ffiffiffiffiffiffiffiffiffiffi
MSE
p

Gestational weight change. The gestational weight change can be defined either abso-

lutely or relatively. The conventional gestational weight change is defined by total GWG,

which is the weight at delivery minus the prepregnancy weight. As weight at delivery is

unavailable in our data set, it is substituted with WC or WH whichever is larger. Thus the abso-

lute change in weight is:

G ¼ maxfWH;WCg � W0: ð7Þ

This GWG has three potential drawbacks: (i) For subjects whose self-reported WH is less

than measured WC, the latter is used as the highest weight. However, we know from our data

that subjects are unlikely to schedule a visit after 37 weeks of GA. WC measured before 37

weeks of GA is likely differ from weight at delivery; (ii) It is possible that the weight of a preg-

nant woman drops during the last few weeks of gestation. The highest weight may differ from

her weight at delivery; (iii) Both WH and W0 are self-reported and subject to bias in recall and

reporting [28, 29]. Thus, absolute weight change as defined in (7) may overestimate the total

GWG. Alternatively, estimated total GWG can be obtained from the weight trajectory given

by FPCA, denoted by G’:

G0 ¼ ðweight estimated at GA at deliveryÞ � ðweight estimated at GA ¼ 0Þ:

The relative weight change is expressed as a ratio of weight at delivery and pre-pregnancy

weight. A log-transformed weight ratio is denoted by LG and LG’, respectively:

LG ¼ log ðmaxfWH;WCgÞ � log ðW0Þ ¼ log
maxfWH;WCg

W0

� �

;

LG0 ¼ log
weight estimated at GA at delivery

weight estimated at GA ¼ 0
:

G, G0, LG and LG0 are the four possible response variables for the regression model. The

covariates include prepregnancy BMI, nutrient intakes, and PA. In the APrON study, nutrient

intakes and PA indices were collected longitudinally during the same study visit when the

weight was measured.

To fit a multiple linear regression model, we use the average of all relevant measurements

from one subject as her covariate value for the nutrient intake and PA.

Trajectory modeling of gestational weight
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We have also directly modelled the estimated weight trajectory as the response variable and

the estimated trajectories of nutrient intakes and PA as the explanatory variables, extending

the approach by Müller et al. [30]. The results from this approach are not reported because the

complex model with trajectory as covariates has identical R2 and MSE as the much simpler

and more straightforward multiple linear regression model.

Results

The APrON study recruited 2191 pregnant women, among which 1629 subjects have full-

term, singleton, live births, and at least one weight record. 101 were excluded because they

completed neither food recall nor Baecke’s PA questionnaire. We further excluded 6 subjects

who completed both the interviewer-administered and web-based versions of food recall. In

our final cohort, 725 completed only the interviewer-administered version of the 24-hour food

recall, 797 completed only the web-based version of the 24-hour food recall.

Modeling the trajectories of weight with FPCA

The distribution of the time points when the observations were made is revealed by the assem-

bled pairs of time (Tij, Tik), where i indexes subject and j, k index time points. The assembled

pairs of all the weight records of the 1540 subjects are shown in Fig 1(a). Note that by assigning

WH to GA at delivery, a larger cluster occurs at Tij� 37. The self-reported prepregnancy

weight is assigned to GA = 0, resulting in the horizontal and vertical lines Ti1 = 0. Both lines

approximately start at 5 and ends at 42 weeks, indicating that there exists a weight record from

a certain subject at almost any time point after 5 weeks. A smoothed mean weight trajectory is

estimated for all subjects using the FPCA method (Fig 1(b)).

The smooth estimate of the variance function for weight data is shown in Fig 2(a). It

decreases prior to 25 weeks of gestation, suggesting that variation in the weights are largest at

the beginning of pregnancy. As the measurement times were schedule by trimesters, there are

few measurement at the boundary between two trimesters. Specifically, there are only a few

Fig 2. (a) Smooth estimate of the variance function of the weight data; (b) Smooth estimate of the correlation surface.

https://doi.org/10.1371/journal.pone.0186761.g002
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data points around GA = 29 (Fig 1), the estimate of variance around t = 29 is not as reliable as

estimates elsewhere where more data points were available. Thus, the fluctuation observed

around 27-35 weeks of gestation (Fig 2(a)) is more likely due to a lack of data than due to a

true underlying pattern. After 35 weeks of gestation, the variance decreases rapidly, which

indicates a smaller variance among WH than W0 of all subjects.

The smooth estimate of the correlation surface of weight data is shown in Fig 2(b). The

entire surface is above 0.7, indicating that weight records of the same subject are highly corre-

lated at all times. However, the correlation between the weight during the first 20 weeks of ges-

tation and weight measured at later times decreases drastically. Correlation between W0 and

the gestational weight is weaker in later pregnancy (>20 weeks) than that in early pregnancy.

It suggests that a subject’s weight begins to develop new patterns after 20 weeks. A strong cor-

relation of weight within second/third trimester indicates that the weight at any two time

points after a woman enters second trimester are highly correlated.

The scree plot is shown in Fig 3(a). The first 3 PCs account for more than 99% of the varia-

tion, thus they are used to estimate an individual’s weight trajectory. Accounting for 95.7% of

the total variation, the first PC is an average over the pregnancy, which is flat during the first

trimester, and decreases rapidly in the second and third trimester (Fig 3(b)). It corroborates

the fact that the majority of weight is gained during the last two trimesters. The second PC

increases most rapidly in the first trimester, corresponding to a contrast between weights in

pre- or very early pregnancy and the second/third trimester (Fig 3(c)). The third PC (Fig 3(d))

corresponds to a contrast between the second and the third trimester.

The weight gain estimated from trajectory could account for the weight gain in the last few

weeks even if the subject does not have any weight record. Moreover, FPCA method has a

smoothing effect. For subjects with large/small weight gain, the estimated trajectory tends to

have a lowered/increased weight gain, and thus the estimated weight gain is closer to the mean

weight gain. This effect can be seen from Fig 4(b). The weight gain estimated from the trajec-

tory, G0, is highly correlated with the weight gain directly calculated, G, but tends to be smaller

than G when G is large, or larger than G when G is small. This approach of estimating GWG

may reduce the bias of under-reporting the prepregnancy BMI or over-reporting the WH, as

noted in [28, 29].

Comparison of FPCA and non-linear mixed effect model for weight

trajectory

Fig 5 displays observed weights during pregnancy from four study subjects, one from each pre-

pregnancy BMI category as defined by the Institute of Medicine [5]. The estimated trajectories

using the FPCA model (5) and NLME model estimated in the form of (6) are superimposed in

the same panel. For subject A, her weight steadily increases during pregnancy, which is of sim-

ilar pattern to the mean function of all samples; see Fig 1. Estimated trajectories from both

FPCA and NLME are in good agreement with the observed weights. Subject B lost weight at

the beginning of her pregnancy and did not regain to her prepregnancy weight even in the 3rd

trimester. So her weight gain pattern deviates from the mean function of all samples. The

NLME approach uses a curve shape similar to subject A (and in fact, similar to the mean func-

tion of all samples), so the fitted trajectory gives poor estimates for her observed weights that

yields large residuals jŴðTijÞ � WðTijÞj. The trajectory estimated by FPCA gives much better

estimates for subject B’s observed weight.

As illustrated in Fig 5, FPCA provides a flexible fit to the weight data and a significantly bet-

ter fit to the weight trajectory than the classic NLME model. The superior model fit is also
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confirmed by a 35% reduction in residual variance when FPCA is compared to NMLE (4.4kg2

FPCA vs. 6.8kg2 NLME).

We also applied FPCA model to the sparse longitudinal nutrient intake data and PA indices

to estimate their trajectories. However, these attempts did not yield satisfactory fit (results not

shown).

Explaining variation in gestational weight change

We successfully estimated the trajectories of weight from sparse measurements, which may be

used to predict the total GWG and inform interventions such as counseling and education.

Our next goal is to identify the factors associated with the weight change during pregnancy,

such as prepregnancy BMI, caloric intakes and physical activity.

Fig 3. (a) Scree plot of the weight data and (b–d) The first, second and third principle component (PC) functions for the weight data which account for

95.7%, 2.8%, and 1.1% of the total variation, respectively.

https://doi.org/10.1371/journal.pone.0186761.g003
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Fig 4. (a) Scatter plot of the estimated relative weight (Wd/W0) from the trajectory on log-scale vs. prepregnancy BMI on log-scale (Wd: weight at birth;

W0: prepregnancy weight) and (b) Weight gain predicted from the trajectory vs. weight gain directly calculated.

https://doi.org/10.1371/journal.pone.0186761.g004

Fig 5. Estimated weight trajectories of four subjects, one from each prepregnancy weight categories.

https://doi.org/10.1371/journal.pone.0186761.g005
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Since we observed a nonnegligible discrepancy in caloric intakes calculated from the two

24-hour food recall instruments [24], we built separate models, stratifying participants by food

recall instrument. The results from the two separate models are similar. Thus, we presented

the results from modeling participants who completed the interview-administrated 24h food

recall as an example to illustrate our findings. Our explanatory variables are prepregnancy

BMI, the average total caloric intake and the average of the PA indices. Table 1 reports the

RMSE and R2 of these regression models.

We observe the following: 1) The weight change as estimated from the weight trajectory

can be explained better than the weight change calculated from the weight records; 2) The rela-

tive weight change (log-transformed) can be explained better than the absolute weight change;

3) Adding nutrient intake and PA data did not improve model fit as measured by the RMSE or

R2, when compared to the corresponding simple linear regression model with prepregnancy

BMI (BMIp) as the only predictor. Among these models, the most parsimonious model is

given by

LG0 ¼ b0 þ b1BMIp;

where the response variable is the log transformed relative weight change calculated from the

estimated weight trajectory and the explanatory variable is the prepregnancy BMI, which

explains 51% of the variation in weight changes during pregnancy. Fig 4(a) shows a scatter plot

of the relative weight change and prepregnancy BMI (both on log-scale), illustrating a strong

negative linear association between prepregnancy BMI and weight change during pregnancy.

Discussion

Meeting GWG recommended by guideline was achieved only in a minority of the pregnancies

[7]. A useful intervention is to combine customized counseling and education with individual

weight monitoring [9, 10], which could benefit from a personalized weight growth trajectory

as a reference for targeted intervention. Our study demonstrated that the FPCA approach suc-

cessfully captures the shape of the individual gestational weight growth trajectory with sparse

(3 to 5 observations per subject) irregularly-spaced gestation weight (Fig 1). FPCA has the

potential to be developed into a tool for predicting gestational weight growth. In addition, we

found that the variation in gestational weight change estimated from these individualized tra-

jectories can be largely explained by woman’s prepregnancy BMI. Contrary to our expectation,

adding the dietary intake and physical activity covariates, either as trajectories or numeric

averages, does not improve the explained variation of weight changes. The most likely explana-

tion is that dietary intake and physical activity data are subject to large variation (e.g. day-to-

Table 1. Comparison of the regression models with different forms of responses and predictors.

Response R 2(RMSE)

BMIp BMIp, T, TI
G 0.05 (6.25) 0.08 (6.09)

LG 0.27 (0.07) 0.29 (0.07)

G0 0.22 (3.91) 0.25 (3.81)

LG0 0.51 (0.05) 0.52 (0.05)

BMIp: prepregnancy BMI (kg/m2); T: Average total calorie intakes during pregnancy; TI: Average physical

indices during pregnancy. All the models are using the data captured by the interviewer-administered

instrument.

https://doi.org/10.1371/journal.pone.0186761.t001
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day variation in diet and physical activities), as well as large measurement errors due to the

nature of survey data. Moreover, the dietary intake and physical activity data are more sparse

than the weight data, making accurate trajectory modeling more challenging.

When modeling the individual weight trajectory with our sparse, irregularly collected longi-

tudinal data, FPCA offers a significant advantage when compared to the NLME, a classic

approach in modeling individual curves [14–16]. As seen in Fig 5, the curves estimated using

NLME all follow a fixed shape of the mean weight trajectory of the population. This is because

once the function is specified, the estimated trajectories can only differ by a dilation and shift

but maintain the shape of the curve. Thus, NLME can not capture large deviation in individual

patterns from the mean weight trajectory. It is also known that when there are only three or

four data points per subject, the parameters of NLME estimated using either restricted maxi-

mum likelihood or maximum likelihood are prone to be biased. In contrast, the curve esti-

mated using FPCA is flexible and adaptive to the observed sparse data points, which is

especially useful for individuals who have different weight trajectories from the mean weight

trajectory of the population. For each subject we have only up to five weight records. In the

four steps of our estimation, estimation of both the PFC scores and eigenfunctions relies on

the estimate of the covariance surface. As long as the total covariance structure is consistently

estimated, which relies on sufficient density of the assembled pairs (Tij, Tik), the estimate of tra-

jectory works reasonably well.

The principle components identified by the FPCA offers insight into the weight trajectories

among subjects. The first principle component is flat in the first trimester then rapid declines,

which corresponds to the overall pattern of bodyweight variances during pregnancy. That is,

as gestational age increases, the variation in body weight decreases. This trend agrees with our

second study finding that the estimated total GWG is negatively correlated with prepregnancy

BMI and more than half of the variation in total GWG are explained by prepregnancy BMI

alone. This strong negative correlation between GWG and prepregnancy BMI is consistent

with the GWG guidelines from IOM [31], which recommends women in a lower prepreg-

nancy BMI category to gain more weight during pregnancy than those in a higher prepreg-

nancy BMI category.

Within subject correlation provides insight into individual patterns of GWG. The correla-

tion between the weights at the beginning and towards the end of the pregnancy was low. It

suggests that in general, women’s weight develops a new pattern after 20 weeks into gestation.

This within subject weight correlation pattern suggests that an efficient time to start predicting

weight growth is likely to be in the second trimester for the majority of pregnant women.

The FPCA method borrows information from the entire data set, and does not incorporate

women’s prepregnancy BMI information. However, women with lower prepregnancy BMIs

tend to have higher GWG and their weight growth trajectories are likely steeper than the mean

weight growth trajectory. Women with higher prepregnancy BMIs have an opposite trend;

their weight trajectories are more gradually rising than the mean weight growth trajectory. For

our future research, we will address this limitation and improve fit by incorporating additional

BMI category-specific FPCAs.

Appendix A: Confidence bands of individual trajectories

Let K be the number chosen using FVE approach, and ξK, i = (ξi1, . . ., ξiK)T, ~ξK;i ¼ ð
~x i1; :::;

~x iKÞ
T

be the vector of FPC scores. The covariance matrix of ~xK;i can be written as HS� 1

Yi
HT , where H

is the covariance matrix between ξK,i and ~Y i. Note that for a fixed sample, λk, ϕik and ðŜYi
Þj;l ¼

ĜðTij;TilÞ þ ŝ2djl are independent with ~Y i, so ~ξK;i is a linear function of ~Y i. H can be rewritten
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as

H ¼ ðl1�i1; � � � ; lK�iKÞ
T
: ð1Þ

The estimation error of ~ξK;i can be assessed by varð~ξK;i � ξK;iÞ. The conditional expectation

EðxK;ij
~Y iÞ is the projection of ξK,i on the space spanf~Y ig, thus Eð~ξK;iξ

T
K;iÞ ¼ Eð~ξK;i

~ξT
K;iÞ, and

varð~ξK;i � ξK;iÞ ¼ varðξK;iÞ � varð~ξK;iÞ ¼ OK ;

where OK ¼ L � HS� 1

Yi
HT ¼ diagðl1; :::; lKÞ � HS� 1

Yi
HT . Under Gaussian assumptions, we

have ð~ξK;i � ξK;iÞ � N ð0;OKÞ. From (5), the individual trajectory is estimated as

X̂K
i ðtÞ ¼ m̂ðtÞ þ

PK
k¼1

x̂ ik�̂kðtÞ. It was showed that X̂K
i ðtÞ � XðtÞ approximately follows normal

distribution N ð0; �̂T
K;tÔK �̂K;tÞ, where �̂K;t ¼ ð�̂1ðtÞ; :::; �̂KðtÞÞ

T
, ÔK ¼ L̂ � Ĥ Ŝ � 1

Yi
ĤT ; with

L̂ ¼ diagðl̂1; :::; l̂KÞ, Ĥ ¼ ðl̂1�̂ i1; � � � ; l̂K �̂iKÞ
T
. Therefore, the (1 − α) asymptotic pointwise

confidence intervals for individual trajectories are given as

X̂K
i ðtÞ � F� 1ð1 � a=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂T
K;tÔK �̂K;t

q

: ð2Þ

The (1 − α) asymptotic simultaneous confidence intervals for individual trajectories are given

as

X̂K
i ðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
K;1� a

�̂T
K;tÔK�̂K;t

q

: ð3Þ
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