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Abstract

The advent of machine learning-based structure prediction algorithms such as

AlphaFold2 (AF2) and RoseTTa Fold have moved the generation of accurate

structural models for the entire cellular protein machinery into the reach of

the scientific community. However, structure predictions of protein complexes

are based on user-provided input and may require experimental validation.

Mass spectrometry (MS) is a versatile, time-effective tool that provides infor-

mation on post-translational modifications, ligand interactions, conforma-

tional changes, and higher-order oligomerization. Using three protein systems,

we show that native MS experiments can uncover structural features of ligand

interactions, homology models, and point mutations that are undetectable by

AF2 alone. We conclude that machine learning can be complemented with MS

to yield more accurate structural models on a small and large scale.
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1 | INTRODUCTION

Machine learning (ML)-based algorithms have been
hailed as the solution to the protein structure prediction
problem and are already being used to predict structures

across entire proteomes.1,2 For example, using protein
sequence data as the only user input, AF23 can generate
models of ordered, monomeric proteins that rival in qual-
ity experimentally derived structures,4 which can be
assembled into complexes using AF2 Multimer.5
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However, it is important to remember that the models
are generated according to user-provided input. For
example, AF2 Multimer does not suggest an oligomeric
state; instead, the stoichiometry for the model must be
specified along with the sequences of the components.
Moreover, AF2 may propose seemingly plausible models
for a protein interaction even if this is not biologically rel-
evant, for example, because the proteins are in different
cellular compartments. Furthermore, using AF2 to pre-
dict interactions involving dynamic regions,6 ligand bind-
ing sites, or point mutations,7 all of which are major focal
points of structural biology, remains challenging.8 In
these cases, additional structural data may be required to
assess the validity of the computed structures, for exam-
ple, from X-ray crystallography and cryo-EM. However,
obtaining such data is challenging, resulting in a need for
alternative strategies.

Mass spectrometry (MS), with its rapidly expanding
structural biology toolbox,9 can provide structural data
that are directly complementary to ML (Figure 1a).
Despite not being a stand-alone structure determination
technique, MS offers a wealth of information for hybrid
structural biology approaches.9 It has a well-developed
capacity to provide proteoform primary structure infor-
mation, such as post-translational modifications, via MS-
sequencing. In combination with in-solution labeling
methods such as hydrogen-deuterium exchange (HDX),
MS can inform about local structural dynamics. Native
MS, where the non-covalent interfaces in macromole-
cules are preserved in the experiment, is widely used to
determine oligomeric states, which is of particular impor-
tance when building models of protein complexes.
Crosslinking and ion mobility (IM) measurements reveal
the spatial arrangements of components in a protein
complex. Unlike other biophysical methods, MS offers
the crucial advantage of being able to provide structural
data on the proteome scale. For example, proteome-wide
crosslinking studies can help to filter biologically irrele-
vant interactions.14 Collision-cross sections (CCSs, effec-
tively 2D-projections of the structures) can be calculated
for entire model proteomes and used to filter complex
architectures by IM-MS.15 Last, hybrid MS methods, such
as NativeOmics, can reveal direct connections between
primary and quaternary structure variations, as well as
help to identify ligands or cofactors that may be structur-
ally and functionally important.16

We, therefore, asked whether native MS, which is
widely employed to study protein interactions, can be
readily used to assess the plausibility of structural models
generated by AF2. For this purpose, we selected three
protein complexes whose interactions involve disordered
regions, ligands, and point mutations. In all three cases,
the native MS data show specific effects that are not

detectable by AF2 alone, illustrating the complementarity
of the two approaches.

2 | RESULTS AND DISCUSSION

As a first example, we tested the ability of AF2 to predict
the structure of dihydroorotate dehydrogenase
(DHODH), a mitochondrial enzyme involved in uracil
synthesis. Inhibition of DHODH selectively kills cancer
cells, making it a prime target for the development of
novel therapeutics.17 When using AF2 to predict the
structure of the soluble domain of DHODH, the result is
nearly indistinguishable from the available X-ray
structures,18 with a Cα root-mean-square deviation
(RMSD) of 0.5 Å2 (Figure 1b), with the exception that the
predicted structure contains a central cavity which in the
experimental structures is occupied by the cofactor flavin
mononucleotide (FMN). In fact, overlaying the ligand-
binding sites of the AF2 prediction and the X-ray struc-
ture reveals a nearly identical arrangement of the resi-
dues that coordinate FMN (Figure S1a). We have
previously used native MS to assess the relationship
between ligand binding and folding of DHODH10 and
found that the protein exists mostly in the holo-form. We
also detected a small apo population with higher charge
states, indicating unfolding in solution. Indeed, IM-MS
revealed that FMN-bound protein adopts a compact con-
formation, whereas the FMN-free protein is largely
unfolded, as evident from the CCS distributions of the
13+ charge state of both populations (Figure 1b).10 When
we computed the CCSs of the experimental and the
predicted structures, we found them to be virtually iden-
tical (Figure 1b). Taken together, we find that AF2 pre-
dicts the fold of the holo-form of DHODH even without
the co-factor. The recently solved crystal structure of the
FMN-free form of the homologous DHODH from
Trypanosoma brucei reveals backbone re-arrangements
in the FMN pocket which result in increased local flexi-
bility.19 Native MS shows that the human protein cannot
maintain the correct conformation in the absence of
FMN in MS, which strongly supports that FMN is
required to adopt a stable conformation. This discrep-
ancy could arise from co-factor-bound proteins being
part of the AF2 training set, yet the co-factors themselves
are not considered in the prediction. Although alterna-
tive computational tools may be used to incorporate
ligands in AF2 models, the connection between binding
and folding is not considered in the predictions. As
shown for DHODH, native MS can inform about the role
of the co-factor in promoting the correct fold of DHODH,
a role that is not evident from the ML-based prediction
alone.
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FIGURE 1 (a) The structural mass spectrometry (MS) toolbox offers information that is directly complementary to machine learning-

based structure prediction. MS can inform about proteoforms (MS sequencing), structural dynamics (HDX-MS), the spatial arrangements of

proteins in a complex (ion mobility and crosslinking MS), and oligomeric states (native MS). (b) Left: Experimental and predicted structures

for holo- (left) and apo-DHODH show near-identical three-dimensional folds. Middle: Native MS reveals the presence of a small population

of apo protein.10 Right: IM-MS of the 13+ charge states of apo- and holo-DHODH shows that the protein with co-factor has a native-like

CCS, whereas the protein without co-factor is unfolded. (c) Left: Crystal structures for the HSP 17.7 and 18.1 homodimers are virtually

indistinguishable from the AF2-predicted heterodimer. Native MS of a mixture of HSP 17.7 and 18.1 under denaturing conditions (middle)

and after refolding (right) reveals that no heterodimer formation takes place.11 (d) Left: AF2 predicts that the D40N mutant of MaSp1 NT

forms a homodimer that closely resembles the dimeric structure of wt MaSp1 NT, despite showing partial loss of the D39/D40/K65 salt

bridge. Middle: pLDDT plots indicate that the D40N mutation does not affect the prediction confidence for the subunits in the NT dimer.

Right: Native MS analysis of both NT variants at pH 6.0 shows that the D40N mutation abolishes NT dimerization.12 All AF predictions were

carried out using ColabFold V1.5, using AF2 Multimer 2.2.13 Predictions were run with the AMBER refinement step but without templates.

The MS data for all three proteins were taken from each respective reference publications.
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Next, we asked whether native MS and AF2 could
capture the effect of a flexible segment on the formation
of a protein complex. For this purpose, we turned to the
paralogous small heat shock proteins 17.7 and 18.1 from
Pisum sativum. Both form highly similar homodimeric
protomers via a conserved dimerization interface and
swapping of a flexible loop, which then assemble into tet-
rahedral dodecamers.11 Using AF2, we could correctly
predict both homodimers (Figure 1c), and also the hypo-
thetical HSP 17.7–18.1 heterodimer with a per-residue
confidence score (pLDDT, which corresponds to the
model's predicted score on the Local Distance Difference
Test and measures distances between atom pairs20) equal
to those of the homodimers, and a Cα RMSD of 0.73 and
0.66 Å2 for the 17.7 and 18.1 heterodimer, respectively.
Similarly, the predicted alignment error plots show no
discernable difference (Figure S1). We also used the pTM
score in Alphafold Multimer 2.221 to assess the quality of
the interface predictions and found that the heterodimer
scored essentially the same (0.891 ± 0.005) as the
homodimers (0.879 ± 0.007 and 0.882 ± 0.007). However,
the proteins do not coassemble in vivo, despite being col-
ocalized and coexpressed to high concentrations during
heat stress.12 Upon refolding a mixture of denatured HSP
17.7 and 18.1, native MS revealed homodimer formation
and assembly into dodecamers, while at the same time
suggesting that, despite no direct steric hindrance and
seemingly compatible dimer interfaces, heterodimeri
zation is practically impossible (Figure 1c). This prefer-
ence arises from an inability of the different monomers
to bind each other's flexible loops due to differences in
non-interfacial residues, which provides a penalty for
hetero-oligomerization.11 Such a preference of homo-
over hetero-oligomerization is likely a wide-spread phe-
nomenon.11 However, as it is mediated by a flexible
region outside of the well-defined dimerization surface, it
has no significant impact on the confidence of the AF2
model, but can be readily detected by MS.

Last, we investigated the ability of MS and AF2 to
capture the impact of point mutations on protein com-
plex formation. Mutations that do not introduce signifi-
cant steric hindrance yield near-identical AF2 structures7

that nonetheless show measurable differences in stabil-
ity.8 However, it is unclear to what extent AF2 can
inform about the effect of mutations on protein–protein
interactions. We chose the N-terminal domain (NT) of
the spider silk protein Major ampullate Spidroin
1 (MaSp1) from Euprosthenops australis, which is mono-
meric above, and dimeric below, pH 6.5.12,22 This pH sen-
sitivity is in part due to a conserved salt bridge between
D39/D40 and K65 on the opposing subunit.23,24 We used
AF2 to predict the structure of the dimeric wild-type pro-
tein, as well as a point mutant with a weakened salt

bridge, D40N (Figure 1c). Importantly, AF2 does not
explicitly address the protonation state of ionizable resi-
dues, but may indirectly reflect the interactions observed
under the solution conditions used to solve the structures
included in the training set. Comparison of the pLDDT
scores of the top five models for each variant showed no
discernable differences (Figure 1d) with a Cα RMSD of
0.2 Å2, indicating highly similar structures. Native MS
analysis of both proteins at pH 6.0, on the other hand,
showed that the D40N mutation abolished dimerization
nearly completely (Figure 1d).12 In summary, mutating
aspartate 40 to asparagine does not introduce structural
changes or steric clashes and does not appear to have
notable consequences for the F2 model of the dimer. The
impact of losing this salt bridge on dimer formation,
therefore, requires experimental validation, such as
through native MS analysis.

3 | CONCLUSIONS

Here, we examined the ability of MS to provide comple-
mentary information to ML-based structure predictions
of protein complexes. While AF2 predictions are gener-
ally highly accurate, they do not specifically address the
influence of bound ligands, flexible regions, and point
mutations on protein interactions. Native MS, on the
other hand, does not provide structural details but can
capture a wide range of protein interactions with a single
measurement. Of particular importance for structure pre-
diction is the ability of MS to provide accurate informa-
tion on protein oligomeric states. While MS is unrivaled
in the detail of the mass measurements, reliable mass
measurement of multimeric stoichiometries can be
obtained from various alternative techniques, opening
even more ways to complement ML predictions. Going
forward, MS should be combined with ML either by
defining the modeling question a priori using MS data
(MS/AI) or by using MS data to identify a likely model a
posteriori (AI/MS). We anticipate that whole-proteome
structural MS data, and even mass measurements in
physiological solutions, such as analytical ultracentrifu-
gation and small-angle X-ray scattering, but also new
methods like mass photometry,25 could be incorporated
into large-scale ML predictions, for example in the form
of constraints, to generate accurate structural maps of the
entire cellular environment.
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