Supplement to: Han K, Apio C, Song H, Lee B, Hu X, Park J, Zhe L, Goo T, Park T. An ensemble approach improves the prediction of the COVID-19 pandemic in South Korea. J Glob Health. 2025;15:04079.

Methods

1.1 Statistical models

1.1.1 AutoRegressive Integrated Moving Average

AutoRegressive Moving Average (ARMA) models for time series analysis were first suggested in Time Series Analysis: Forecasting and Control [1]. Since ARMA models could be applied only to stationary time series, AutoRegressive Integrated Moving Average (ARIMA) models utilized differentiation. Using the backshift operator B, we first define the following:

$$BY_t = Y_t - 1,$$

$$\varepsilon_t \sim WN(0, \sigma^2)$$
,

$$\Phi(B) = 1 - \Phi_1 B - \Phi_2 B^2 - \dots - \Phi_n B^p,$$

$$\theta(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_1 B^q,$$

where X_t and ε_t refer to the real value and white noise error of a time series object at time respectively. The variance of white noise is given as σ^2 . Then, a standard ARIMA model with orders p, d, and q is given as follows:

$$\Phi(B)(1-B)^d = \theta(B)\varepsilon_t$$

Furthermore, multiplicative seasonal ARIMA models were developed to include seasonality in ARIMA models [2]. Given orders p, d, q, P, D, Q, and the span of seasonality s, the model is written as follows:

$$\Phi(B)\Phi(B^s)(1-B)^d(1-B^s)^DY_t = \theta(B)\theta(B^s)\varepsilon_t$$

Finally, to obtain future predictions, both base ARIMA models and multiple regression with additional predictors and seasonal ARIMA errors were applied. The R package *forecast* was used for fitting ARIMA and seasonal ARIMA models. Meanwhile, the principle of parsimony was applied to this study. In contrast to previous studies [3] which simply utilized the *auto.arima()* function in R, our study compared Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values for all possible seasonal ARIMA models that fit and chose the best model by limiting the orders of models to integer values chosen beforehand. This helped to avoid overfitting issues.

1.1.2 Holt-Winters model

Holt-Winters Exponential Smoothing, also known as the Holt-Winters method, is a time series forecasting technique introduced by Holt and Winters for dealing with data with seasonality [4,5]. This model extends simple exponential smoothing by adding components for trend and seasonality, making it suitable for more complex time series data. The Holt-Winters method consists of three equations to update level ℓ_t , trend b_t , and seasonal s_t components:

$$\begin{split} \ell_t &= \alpha (Y_t - s_{t-s}) + (1 - \alpha) (\ell_{t-1} + b_{t-1}) \setminus \\ b_t &= \beta (\ell_t - \ell_{t-1}) + (1 - \beta) b_{t-1} \\ s_t &= \gamma (Y_t - \ell_t) + (1 - \gamma) s_{t-s} \end{split}$$

Where, α , β , and γ are smoothing parameters for level, trend, and seasonality respectively, and s represents the length of the seasonality cycle.

Forecasting future values is performed using the formula:

$$\hat{Y}_{t+h} = l_t + hb_t + s_{t+h-s(k+1)}$$

where h is the forecast horizon and k is the integer part of (h-1)/s.

The Holt-Winters model has two variations: additive and multiplicative, depending on the nature of the seasonal component. The additive model is used when seasonal variations are roughly constant through the series, while the multiplicative model is used when seasonal variations are proportional to the level of the series.

To apply this model in practice, we utilized the built-in function HoltWinters() in R. We assumed s = 7, indicating that seasonality repeats weekly. We selected the best model (additive or multiplicative) that provided the better training Weighted Mean Absolute Percentage Error (WMAPE).

1.1.3 Time series Poisson

The time series Poisson model is a form of time series model for count data fitted using the generalized linear models (GLM) for time series counts. Models for count time series should consider that the observations are nonnegative integers, and they should capture suitably the dependence among observations. A convenient and flexible approach is to employ the GLM methodology [6] for modeling the observations conditionally on past information. This methodology is implemented by choosing a suitable distribution for count data and an appropriate link function. Let F_t the history of the joint process $\{Y_t, \lambda_t, X_{t+1}\}$. We aim to model the conditional mean $E(Y_t|F_{t-1})$ by a process $\{\lambda_t\}$, such that $E(Y_t|F_{t-1}) = \lambda_t$. The general form of the model is given as follows:

$$g(\lambda_t) = \beta_0 + \sum_{m \in M} \beta_m \tilde{g}(Y_{t-m}) + \sum_{l \in L} \alpha_l g(\lambda_{t-l}) + \eta^t X_t$$
(10)

where g and \tilde{g} are the link and transformation functions, respectively. M and L are sets of natural numbers which determine the set of past observations or set of past linear predictors used to forecast current data. η represents the effects of covariates. In this study, to consider negative covariate effects, we used the logarithmic link function and let $g(x) = \log(x)$ and $\tilde{g}(x) = \log(x + 1)$. Then the above model can be written again as follows:

$$v_t = \beta_0 + \sum_{m=1}^{M} \beta_m \log(Y_{t-k} + 1) + \sum_{l=1}^{L} \alpha_l v_{t-l} + \eta^t X_t$$
 (11)

where v_t is the linear predictor such that $v_t = \log(\lambda_t)$. We also applied the Poisson assumption for this model, i.e., $Y_t|F_{t-1} \sim \text{Poisson}(\lambda_t)$. tsglm Poisson models are introduced in the *tscount*: An R Package for Analysis of Count Time Series Following Generalized Linear Models (tsglm) [7].

1.1.4 Generalized Additive Model

The Generalized Additive Model (GAM) is a regression model that allows the learning of non-linear relationships between the predictors and response variables [8]. The model specifies the exponential family (binomial, normal, Poisson, etc.) for Y_t . The link function g is used to relate the expectation of Y_t to covariate vector X_t . For each covariate x_{kt} , GAM allows a non-linear relationship between each predictor and $E(Y_t)$, using the smooth function $f_k(x_{kt})$. We can define the general form of this model as follows:

$$g(E(Y_t)) = \beta_0 + f_1(x_{1t}) + \dots + f_K(x_{Kt}),$$

when there are K covariates. After assuming $Y_t \sim \text{Poisson}(\lambda_t)$, our model is as follows:

$$v_{\mathsf{t}} = \beta_0 + \sum_{k=1}^K f_k(x_{kt})$$

where v_t is the linear predictor such that $v_t = \log(\lambda_t)$. Different smoothing functions f_k were used depending on the covariate. For weekdays and dates, cubic splines and P-splines were used, respectively. Thin plate regression splines were used for vaccination variables and SI [9]. R package mgcv was used for fitting GAM models [10,11].

1.2 Mathematical models

1.2.1 Extended SEIRD model

There are many classical susceptible-infectious-recovered models. Their popularity for modeling the spread of the pandemic is because of their simplicity. Here, we considered a susceptible-exposed-

infectious-recovered-death (SEIRD) mathematical model since in some epidemics, there exists a period when signs and symptoms are nonvisible or obvious, but infectious. In such a case, SEIRD is more realistic for considering the incubation time of the infectious disease. The SEIRD model consists of a system of non-linear ordinary differential equations to present the process of transmission. In this model, every individual either belongs to susceptible (S), exposed (E), infected (I), recovered (R) or Death (D). Thus, N = S + E + I + R + D represents the total population, which incorporates the COVID-19 vaccines' waning effect for improved predictions. To consider the waning of immunity after infection, we assumed that some of the recovered group may revert to the susceptible group and added the waning parameter ω . We referred to this model as extended SEIRD as shown in **Figure S1**. The waning effect refers to a decline in the level of immunity provided by a vaccine over time. This can occur due to a variety of factors such as the decline of antibody concentrations in the body, loss of immune memory, and the emergence of vaccine-resistant strains [12]. The waning effect can therefore lead to an increased susceptibility to infection and necessitates additional doses for adequate protection.

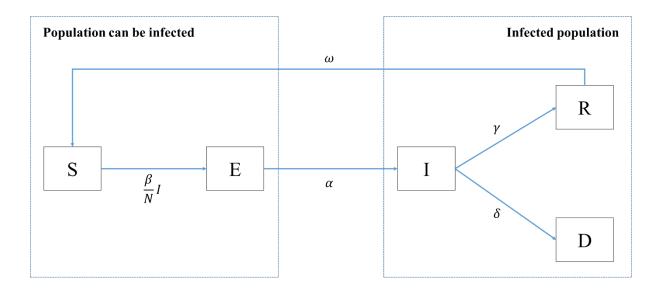


Figure S1. Structure of the extended SEIRD model.

Due to the variation and policy changes over time, the infection rate and the transmission rate also changed with time. Therefore, we divided the dataset into biweekly periods so that accurate parameters could be obtained. For every two weeks, we separately estimated the infection rate, transmission rate, and death rate parameters by using the sum of the square error to choose the optimal parameter value. On the other hand, possibly due to limited access to testing or reporting, the underreporting rate for infected cases was considered and set to 0.35 [13]. The parameters considered are summarized in **Table S1**.

Table S1. List of parameter values of the extended SEIRD model

Parameter symbol	Description	Value
α	infection (onset) rate	$[1/4 \sim 1/1.5]$ (chosen by model)
β	transmission rate	[0.04 ~ 0.27] (chosen by model)
γ	recovery rate	1/7
δ	death rate	[1/800 ~ 1/1100] (chosen by model)
ω	waning effect	4/365
ρ	underreporting rate	0.35

1.3 Machine learning models

1.3.1 Light gradient-boosting machine

Light gradient-boosting machine (LightGBM) is a gradient-boosting decision tree algorithm that can be used for tasks like regression and classification. LightGBM is a histogram-based gradient boosting framework, so it has a faster training speed, lower memory usage and better accuracy than other boosting machines. As gradient boosting machines do, LightGBM consists of weak learners and decision trees. The decision tree uses the input data to determine which learner is the best to make predictions.

Based on the adaptive boosting algorithm, gradient boosting machines can build a strong regression learner by iteratively combining a set of weak regression learners. Gradient boosting

machines use gradient descent to minimize the loss function of a strong regression learner. Like other boosting algorithms, LightGBM adds models into the tree using greedy style [14];

$$F_m(X_t) = F_{m-1}(X_t) + \rho_m h_m(X_t)$$

where; F_m is the updated model, F_{m-1} is the previous model and $\rho_m h_m$ is the newly added model. h_m is the trained base learner which minimizes the loss function L, and ρ is the multiplier which is found by solving the one-dimensional optimization problem;

$$\rho_m = argmin[\Sigma L(Y_t, \mathbb{F}_{m-1}(X_t) + \rho h_m(X_t)]$$

To build our LightGBM model, the 'LightGBM' package in Python was used [15]. We also employed the Jupyter Notebook and the *tmux* to run the model. The hyperparameters considered in the LightGBM model are summarized in **Table S2**. All options not listed in the table were set to their default values.

Table S2. The hyperparameter settings used in the LightGBM model.

Hyperparameter	Range	Explanation
objective	regression	The loss function for the model. Common choices include mean squared error for regression tasks and binary log loss for classification tasks.
num_leaves	[4, 8, 16, 32]	The number of leaf nodes in a tree.
max_depth	[3, 5,8, 10,16]	The maximum depth of a tree.
min_split_gain	0.001	The minimum gain required to split a node.
min_child_samples	[2, 4,8,16,32]	The minimum number of samples required in a leaf node.
num_iterations	2000	The number of iterations (or trees) in the model.
early_stopping_round	50	The number of rounds with no improvement on the validation set before training is stopped early.
reg_alpha	[0, 0.1, 0.3, 1]	L1 regularization coefficient.

subsample_freq	5	The frequency of subsampling the data.
colsample_bytree	0.6,0.8	The fraction of columns (features) to be sampled for each tree.
bagging_seed	777	The random seed used for subsampling or task distribution
reg_lambda	[0, 0.1, 0.3, 1]	L2 regularization coefficient
learning_rate	[0.1,0.01,0.05]	The "shrinkage parameter," controls how much the model's weights are updated in each iteration.
boosting_type	gbdt	Type of boosting to be used in the model.

1.3.2 Bidirectional Long Short-Term Memory Network

To deal with time series data, we considered a Long Short-Term Memory (LSTM) network as a deep learning approach [16]. Since LSTM takes only past information when training, we introduced Bidirectional LSTM (Bi-LSTM) to consider backward propagation information as well [17]. To get a better prediction, we used past observation as a covariate to forecast the Y_t . The optimal lag period is selected among 7, 14, or 21 which yields the least validation Mean Squared Error (MSE). Each block of LSTM computes the activation vector and the hidden state using calculation results from the previous block with the current input data X_t and past observations. The training process is conducted in both forward and backward directions to improve the model performance. Also, to decide the best model structure, we considered two hyperparameters: layer number {2, 3 and dropout rate {0, 0.2}. All the combinations of the hyperparameters were tested and one combination with the lowest validation MSE was selected. The model was developed in Python version 3.7.6 using Keras (Version 2.4.3, https://github.com/keras-team/keras) and TensorFlow (Version 2.3.0, https://github.com/tensorflow/tensorflow) libraries. We also employed the Jupyter Notebook and the tmux to run the model, and CUDA (Compute Unified Device Architecture) was used to accelerate the computation using the GPU. The hyperparameters considered in the Bi-LSTM model are summarized in **Table S3**. All options not listed in the table were set to their default values.

Table S3. The hyperparameter settings used in the Bi-LSTM model.

Hyperparameter	Range	Explanation
Lag period	[7, 14, 21, 28]	The number of past time steps used to predict the future step(s) in time series analysis.
# of layer	[2, 3, 4, 5]	The number of layers in a neural network.
Dropout rate	[0, 0.1, 0.2, 0.3]	The fraction of the input units dropped during training.
Optimizer	Adam	The algorithm is used to update the weights of the network during training.
Activation function	Hyperbolic Tangent	The non-linear transformation is applied to the input that decides whether a neuron should be activated or not.
Loss function	Mean Squared Error	The metric is used to measure the difference between the model's predictions and the actual data.

Table S4. The computational demand for each forecasting model. Please note that the table does not represent the minimum or recommended environment for each method but simply shows the approximate time required in a similar environment.

Method	Local/server	CPU (# Cores)	GPU (GRAM)	Main memory	Time	Language
Extended SEIRD	PC	1x Intel i5-1135G7 (8)	not used	32GB	~10 mins	R v4.2.3
tsglm	PC	1x Apple M2 Pro (12)	not used	32GB	~10 mins	R v4.2.3
ARIMA	PC	1x Intel i7-13700 (16)	not used	32GB	~10 mins	R v4.3.2
GAM	PC	1x Intel i7-13700 (16)	not used	32GB	~10 mins	R v4.3.2
LightGBM	GPU HPC	2x Intel Xeon(R) Gold 5220R (24)	1x NVIDIA TITAN RTX 24GB	93GB	~10 mins	python v3.9.13
Bi-LSTM	GPU HPC	2x Intel Xeon(R) Gold 5220R (24)	1x NVIDIA TITAN RTX 24GB	93GB	144 mins	python v3.7.6
Average ensemble	PC	1x Intel i7-13700 (16)	not used	32GB	~10 mins	R v4.3.2
Weighted average ensemble	PC	1x Intel i7-13700 (16)	not used	32GB	~10 mins	R v4.3.2
Stacking ensemble – LR	PC	1x Intel i7-13700 (16)	not used	32GB	~10 mins	R v4.3.2
Stacking ensemble – SVM	PC	1x Intel i7-13700 (16)	not used	32GB	~10 mins	R v4.3.2

Results

 Table S5. The WMAPE values for all covariate combinations for each single model for Korea.

			Daily (Confirn	ned Cases (Ra	w)				Daily Co	nfirmed	l Cases (Smoot	thed)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson
Null	0.167	0.246	0.185	0.215	0.140	0.108	0.227	0.037	0.102	0.104	0.215	0.022	0.146	0.024
BA.5 rate	0.166	0.245		0.117		0.179	0.166	0.037	0.056		0.099		0.090	0.024
BSR	0.167	0.243		0.088		0.432	0.302	0.037	0.062		0.053		0.145	0.172
BSR+BA.5 rate	0.167	0.260		0.086		0.140	0.161	0.037	0.051		0.046		0.381	0.023
			Daily o	confirm	ed deaths (Ra	w)				Daily con	firmed	deaths (Smoot	thed)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson
Null	0.129	0.250	0.274	0.393	0.214	0.267	0.252	0.031	0.091	0.173	0.406	0.039	0.074	0.033
BA.5 rate	0.134	0.300		0.246		0.282	0.196	0.032	0.110		0.218		0.076	0.164
BSR	0.135	0.260		0.150		0.171	0.223	0.032	0.060		0.061		0.073	0.102
BSR+BA.5 rate	0.138	0.283		0.148		0.348	0.312	0.032	0.108		0.050		0.074	0.100
			I	CU pati	ents (Raw)					ICU	patien	ts (Smoothed)		
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson
Null	0.023	0.059		0.379	0.044	0.054	0.041	0.029	0.028		0.363	0.012	0.045	0.302
BA.5 rate	0.024	0.073		0.200		0.058	0.145	0.028	0.035		0.197		0.042	0.019
BSR	0.020	0.088		0.054		0.066	0.039	0.028	0.028		0.045		0.047	0.013
BSR+BA.5 rate	0.021	0.052		0.045		0.053	0.039	0.028	0.054		0.039		0.034	0.013

 Table S6. The MAPE values for all covariate combinations for each single model for Korea.

			Daily	Confirm	ed Cases (Rav	v)		' <u>-</u>		Daily Co	nfirmed	Cases (Smoot	hed)	_
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson
Null	21.283	64.057	25.426	62.104	12.845	13.251	28.305	4.313	41.062	14.571	64.910	2.366	10.778	3.123
BA.5 rate	21.267	47.836		16.347		16.304	20.186	4.428	18.447		14.779		5.710	2.771
BSR	21.966	34.880		15.683		54.702	51.036	4.392	22.753		13.331		11.259	28.834
BSR+BA.5 rate	22.086	45.976		13.330		13.294	20.633	4.503	19.103		8.041		24.957	2.743
			Daily	confirm	ed deaths (Rav	v)		'		Daily cor	nfirmed	deaths (Smoot	thed)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson
Null	17.977	32.922	39.571	75.098	30.755	23.125	50.067	3.731	13.738	26.018	66.200	6.553	6.240	5.027
BA.5 rate	19.708	61.811		43.981		27.993	35.319	3.856	14.379		39.528		6.213	25.893
BSR	19.433	33.314		24.619		22.389	36.313	3.864	8.478		10.609		6.721	16.549
BSR+BA.5 rate	20.605	46.843		23.667		37.611	55.871	3.852	18.371		8.809		6.014	16.379
			I	CU pati	ents (Raw)			' <u>-</u>		ICU	J patient	ts (Smoothed)		
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson
Null	2.806	8.180		58.032	4.917	5.772	4.814	3.433	3.854		52.757	1.232	8.269	52.489
BA.5 rate	3.048	9.810		27.983		5.490	24.373	3.321	5.129		27.281		5.471	2.494
BSR	2.572	15.106		8.250		5.720	4.485	3.328	3.980		7.306		4.682	1.655
BSR+BA.5 rate	2.787	6.607	_	5.135		5.477	4.472	3.327	8.685	_	4.341		3.714	1.658
							-							

 Table S7. The RMSE values for all covariate combinations for each single model for Korea.

			Daily Co	onfirmed (Cases (Raw)					Daily Con	firmed Ca	ses (Smoothe	q)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters		Time Series Poisson
Null	28923.849	39415.273	31675.730	29467.697	28343.635	18306.154	36377.318	5105.091	12428.733	13142.334	25475.113	4671.020	23269.386	4959.369
BA.5 rate	28950.097	39755.564		21329.940		31419.255	33541.999	5117.707	7787.977		15310.804		15942.346	4843.437
BSR	28930.803	40786.851		15970.159		67211.360	49886.255	5111.678	7009.923		6850.230	1	23262.792	24732.946
BSR+BA.5 rate	28928.642	40064.247		15812.395		23820.078	32033.322	5118.226	6167.074		6731.694		65390.524	4495.094
			Daily co	nfirmed d	leaths (Raw)					Daily conf	irmed dea	ths (Smoothe	d)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson
Null	19.602	36.450	39.963	46.852	32.665	43.678	36.206	4.188	11.192	23.865	44.989	5.251	12.514	4.766
BA.5 rate	20.200	40.211		32.153		49.329	30.186	4.206	15.149		26.337		12.880	23.772
BSR	20.189	36.519		21.842		25.539	35.657	4.194	7.461		7.537		12.280	14.309
BSR+BA.5 rate	20.328	37.663		21.464		46.860	45.527	4.194	15.519		6.261		12.969	14.028
			IC	U patients	s (Raw)					ICU	patients (S	(moothed)		
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt-Winters	LightGBM	Time Series Poisson
Null	14.564	39.948		226.859	32.469	41.682	30.939	18.261	19.529		221.705	11.186	28.105	178.140
BA.5 rate	14.891	50.742		135.915		42.601	98.866	17.638	22.250		136.026		30.124	13.670
BSR	12.583	55.001		36.711		52.917	29.153	17.669	18.786		29.083		35.308	8.744
BSR+BA.5 rate	12.687	34.607		33.684		40.990	29.156	17.666	38.119		28.267		25.756	8.715

 Table S8. The MSE values for all covariate combinations for each single model for Korea.

			Daily Co	onfirmed Ca	ises (Raw)					Daily Con	firmed Case	s (Smoothe	d)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson
Null	8.366e+08	1.554e+09	1.003e+09	8.683e+08	8.034e+08	3.351e+08	1.323e+09	2.606e+07	1.545e+08	1.727e+08	6.490e+08	2.182e+07	5.415e+08	2.460e+07
BA.5 rate	8.381e+08	1.581e+09		4.550e+08		9.872e+08	1.125e+09	2.619e+07	6.065e+07		2.344e+08		2.542e+08	2.346e+07
BSR	8.370e+08	1.664e+09		2.550e+08		4.517e+09	2.489e+09	2.613e+07	4.914e+07		4.693e+07		5.412e+08	6.117e+08
BSR+BA.5 rate	8.369e+08	1.605e+09		2.500e+08		5.674e+08	1.026e+09	2.620e+07	3.803e+0 7		4.532e+07		4.276e+09	2.021e+07
			Daily con	nfirmed dea	ths (Raw)					Daily conf	ïrmed death	s (Smoothe	d)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson
Null	384.249	1328.574	1597.072	2195.110	1067.032	1907.761	1310.874	17.537	125.267	569.533	2023.982	27.577	156.601	22.715
BA.5 rate	408.029	1616.917		1033.810		2433.336	911.200	17.692	229.494		693.629		165.885	565.107
BSR	407.609	1333.622		477.061		652.240	1271.447	17.594	55.670		56.806		150.797	204.741
BSR+BA.5 rate	413.237	1418.474		460.705		2195.858	2072.723	17.593	240.841		39.200		168.204	196.779
			ICU	U patients (I	Raw)					ICU	patients (Sn	noothed)		
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson
Null	212.121	1595.852		51464.926	1054.216	1737.357	957.226	333.477	381.372		49153.064	125.126	789.905	31733.766
BA.5 rate	221.743	2574.747		18472.768		1814.881	9774.497	311.096	495.050		18503.071		907.485	186.863
BSR	158.322	3025.071		1347.703		2800.224	849.874	312.203	352.898		845.804		1246.678	76.459
BSR+BA.5 rate	160.963	1197.666		1134.643		1680.146	850.083	312.102	1453.067		798.998		663.373	75.951

Table S9. The r^2 values for all covariate combinations for each single model for Korea.

			Daily Con	nfirmed C	ases (Raw)					Daily Conf	irmed Cas	es (Smoothe	d)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson
Null	0.941	0.876	0.913	0.925	0.935	0.986	0.886	0.998	0.989	0.990	0.939	0.998	0.995	0.998
BA.5 rate	0.941	0.874		0.961		0.971	0.906	0.998	0.997		0.978		0.998	0.998
BSR	0.940	0.872		0.978		0.781	0.791	0.998	0.998		0.996		0.993	0.945
BSR+BA.5 rate	0.940	0.875		0.978		0.971	0.914	0.998	0.997		0.996		0.944	0.998
			Daily con	firmed de	aths (Raw)					Daily confi	rmed deat	hs (Smoothe	e d)	
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson
Null	0.965	0.891	0.877	0.800	0.909	0.986	0.884	0.998	0.993	0.961	0.800	0.997	0.999	0.998
BA.5 rate	0.963	0.871		0.905		0.969	0.919	0.998	0.978		0.933		0.999	0.945
BSR	0.963	0.892		0.954		0.980	0.885	0.998	0.997		0.994		0.999	0.980
BSR+BA.5 rate	0.962	0.886		0.956		0.989	0.817	0.998	0.987		0.996		0.999	0.981
			ICU	patients ((Raw)					ICU I	oatients (S	moothed)		
	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson	ARIMA	Bi-LSTM	Extended SEIRD	GAM	Holt- Winters	LightGBM	Time Series Poisson
Null	0.998	0.990		0.589	0.992	0.993	0.993	0.997	0.998		0.614	0.999	0.997	0.780
BA.5 rate	0.998	0.979		0.855		0.995	0.926	0.997	0.997		0.857		0.998	0.999
BSR	0.999	0.985		0.989		0.992	0.993	0.997	0.998		0.993		0.998	0.999
BSR+BA.5 rate	0.999	0.990		0.991		0.996	0.993	0.997	0.989		0.994		0.998	0.999

Table S10. The selected error measures are used to calculate the weight in each WAE model.

Raw / Smoothed	Response variable	Error measures to calculate the weights
	Daily Confirmed Cases	MSE_train
Raw	Daily Confirmed Deaths	MSE_train
	Daily ICU Patients	MSE_train
	Daily Confirmed Cases	MSE_train
Smoothed	Daily Confirmed Deaths	MSE_train
	Daily ICU Patients	MAPE_train

Table S11. Comparison between the first-best and second-best models on test data for Korea.

			First best model		Second best model		Absolute
Raw / Smoothed	Response variable	Error measure	Model name	Error value	Model name	Error value	difference of error values
		WMAPE	Stacking Ensemble (SVM)	0.2353	GAM	0.2444	0.0091
	Daily	MAPE	GAM	26.5349	Stacking Ensemble (SVM)	27.4088	0.8739
	Confirmed Cases	MSE	Stacking Ensemble (SVM)	9.38e+07	GAM	1.58e+08	6.40e+07
	Cases	RMSE	Stacking Ensemble (SVM)	9683.991	GAM	12562.66	2878.664
. <u>-</u>		r^2	Stacking Ensemble (LR)	0.936	LightGBM	0.9301	0.0059
		WMAPE	Stacking Ensemble (SVM)	0.1177	Weighted Average Ensemble	0.119	0.0013
	Daily	MAPE	Stacking Ensemble (SVM)	16.9015	Average Ensemble	17.4184	0.5169
Raw	Confirmed	MSE	Stacking Ensemble (SVM)	70.4556	Average Ensemble	78.6074	8.1518
	Deaths	RMSE	Stacking Ensemble (SVM)	8.3938	Average Ensemble	8.8661	0.4723
. <u>-</u>		r^2	GAM	0.6844	Time Series Poisson	0.6486	0.0358
		WMAPE	Stacking Ensemble (SVM)	0.0193	Time Series Poisson	0.0218	0.0025
	Daily ICU Patients	MAPE	Stacking Ensemble (SVM)	1.9401	Time Series Poisson	2.2037	0.2636
		MSE	Holt-Winters	144.5502	Stacking Ensemble (SVM)	161.0596	16.5094
	1 attents	RMSE	Holt-Winters	12.0229	Stacking Ensemble (SVM)	12.6909	0.668
		r^2	Holt-Winters	0.2257	Average Ensemble	0.0215	0.2043
		WMAPE	Holt-Winters	0.0575	Weighted Average Ensemble	0.0598	0.0023
	Daily	MAPE	Holt-Winters	6.4849	Average Ensemble	6.618	0.1331
	Confirmed	MSE	Average Ensemble	1.32e+07	Holt-Winters	1.46e+07	1.48e+06
	Cases	RMSE	Average Ensemble	3626.812	Holt-Winters	3824.683	197.871
_		r^2	ARIMA	0.9398	Stacking Ensemble (LR)	0.9273	0.0126
		WMAPE	ARIMA	0.0583	Stacking Ensemble (LR)	0.0865	0.0282
	Daily	MAPE	ARIMA	5.7793	Stacking Ensemble (LR)	8.6046	2.8253
Smoothed	Confirmed Deaths	MSE	ARIMA	11.3387	Stacking Ensemble (LR)	25.5007	14.162
		RMSE	ARIMA	3.3673	Stacking Ensemble (LR)	5.0498	1.6825
		r^2	Holt-Winters	0.0776	GAM	0.0334	0.0442
- -		WMAPE	Weighted Average Ensemble	0.013	ARIMA	0.0131	0.0001
	Deile ICU	MAPE	Weighted Average Ensemble	1.3237	ARIMA	1.3239	0.0002
	Daily ICU Patients	MSE	ARIMA	71.0381	Weighted Average Ensemble	72.1149	1.0768
	_	RMSE	ARIMA	8.4284	Weighted Average Ensemble	8.492	0.0636
		r^2			Ensemble		

Table S12. The error values for the best covariate combination for each model and the error methods for the USA.

	Daily Confirmed Cases (Raw)					Daily Confirmed Cases (Smoothed)					
	MSE	RMSE	MAPE	WMAPE	r^2	MSE	RMSE	MAPE	WMAPE	r^2	
ARIMA	omicron	omicron	omicron	omicron	omicron	omicron	omicron	omicron	omicron	omicron	
	[3.192e+10]	[178664.217]	[41.832]	[0.339]	[0.822]	[4.211e+08]	[20520.684]	[6.002]	[0.050]	[0.995]	
Bi-LSTM	omicron	omicron	omicron	omicron	omicron	BSR-omicron	BSR-omicron	Null	BSR-omicron	BSR-omicron	
	[2.028e+10]	[142395.210]	[50.974]	[0.311]	[0.929]	[1.236e+09]	[35150.010]	[17.598]	[0.101]	[0.998]	
GAM	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	
	[8.165e+09]	[90361.097]	[25.852]	[0.202]	[0.919]	[1.382e+09]	[37178.799]	[11.671]	[0.097]	[0.998]	
LightGBM	omicron	omicron	omicron	omicron	BSR	BSR	BSR	BSR	BSR	BSR	
	[2.678e+09]	[51748.062]	[14.908]	[0.117]	[0.986]	[2.634e+09]	[51321.514]	[6.819]	[0.107]	[0.999]	
time series Poisson	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	
	[2.633e+10]	[162261.220]	[50.121]	[0.334]	[0.936]	[5.995e+09]	[77426.229]	[26.144]	[0.172]	[0.982]	
	Daily Confirmed Deaths (Raw)					Daily Confirmed Deaths (Smoothed)					
	MSE	RMSE	MAPE	WMAPE	r^2	MSE	RMSE	MAPE	WMAPE	r^2	
ARIMA	Null	Null	omicron	Null	Null	Null	Null	Null	Null	Null	
	[5.504e+05]	[741.905]	[44.805]	[0.329]	[0.781]	[2.416e+03]	[49.155]	[2.195]	[0.021]	[0.996]	
Bi-LSTM	BSR	BSR	BSR	BSR	BSR	omicron	omicron	omicron	omicron	omicron	
	[2.736e+05]	[523.067]	[41.524]	[0.254]	[0.895]	[8.772e+03]	[93.661]	[4.431]	[0.037]	[0.992]	
GAM	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	
	[1.183e+05]	[343.890]	[25.132]	[0.152]	[0.910]	[1.866e+04]	[136.614]	[7.664]	[0.068]	[0.985]	
LightGBM	Null	Null	Null	Null	omicron	BSR	BSR	BSR	BSR	BSR-omicron	
	[5.503e+05]	[741.828]	[40.415]	[0.384]	[0.986]	[5.681e+03]	[75.373]	[2.704]	[0.032]	[0.997]	
time series Poisson	BSR-omicron	BSR-omicron	BSR	omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	
	[3.031e+05]	[550.581]	[32.418]	[0.226]	[0.772]	[1.461e+05]	[382.205]	[18.349]	[0.168]	[0.939]	
		IC	U patients (Ra	nw)		ICU patients (Smoothed)					
	MSE	RMSE	MAPE	WMAPE	r^2	MSE	RMSE	MAPE	WMAPE	r^2	
ARIMA	omicron [1.444e+05]	omicron [380.035]	BSR [1.758]	omicron [0.017]	omicron [0.995]	omicron [1.325e+05]	omicron [363.968]	omicron [1.626]	omicron [0.016]	omicron [0.995]	
Bi-LSTM	BSR	BSR	BSR	BSR	omicron	omicron	omicron	BSR-omicron	omicron	BSR-omicron	
	[2.385e+05]	[488.396]	[2.320]	[0.024]	[0.998]	[2.539e+05]	[503.924]	[2.270]	[0.022]	[0.999]	
GAM	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	
	[3.678e+04]	[191.779]	[1.017]	[0.009]	[1.000]	[3.522e+05]	[593.450]	[3.187]	[0.028]	[0.999]	
LightGBM	BSR-omicron	BSR-omicron	BSR-omicron	BSR-omicron	omicron	omicron	omicron	omicron	omicron	omicron	
	[3.956e+04]	[198.886]	[1.120]	[0.011]	[1.000]	[1.147e+05]	[338.727]	[1.889]	[0.019]	[1.000]	
time series Poisson	omicron	omicron	omicron	omicron	omicron	BSR	BSR	BSR	BSR	BSR	
	[3.942e+06]	[1985.379]	[9.003]	[0.087]	[0.961]	[3.411e+06]	[1846.920]	[8.124]	[0.080]	[0.942]	

Table S13. Comparison between the first-best and second-best models on test data for the USA.

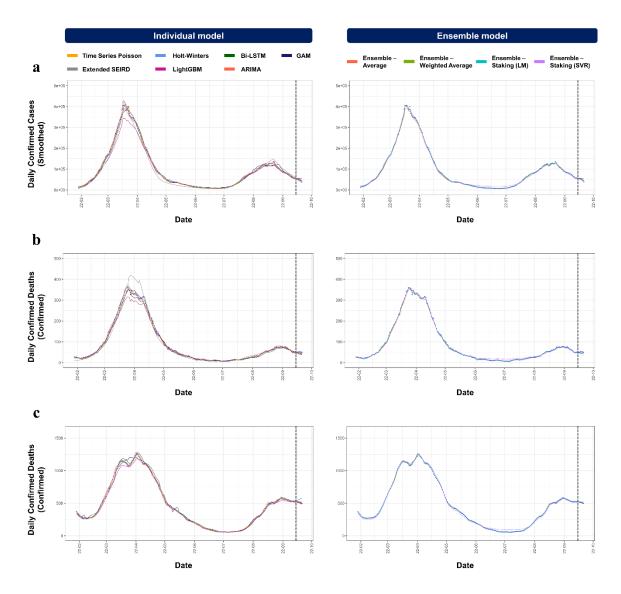

Raw / Response Smoothed variable		F	First best model		Second best model		Absolute	
		Error measure	Model name	Error value	Model name	Error value	difference of error values	
		WMAPE	GAM	0.2509	Time Series Poisson	0.2984	0.0475	
	Daily Confirmed Cases	MAPE	GAM	32.1687	Stacking Ensemble (SVM)	32.7418	0.5731	
		MSE	GAM	4.12E+08	Time Series Poisson	7.97E+08	3.85E+08	
		RMSE	GAM	20297.8712	Time Series Poisson	28231.0583	7933.1872	
		r^2	GAM	0.5017	Holt-Winters	0.2312	0.2704	
		WMAPE	ARIMA	0.1762	Weighted Average Ensemble	0.197	0.0208	
	Daily	MAPE	ARIMA	28.3623	Weighted Average Ensemble	31.4959	3.1336	
Raw	Confirmed Deaths	MSE	Average Ensemble	3.00E+05	ARIMA	3.35E+05	34859.2255	
Kaw	Deaths	RMSE	Average Ensemble	547.5762	ARIMA	578.5317	30.9555	
		r^2	Holt-Winters	0.7979	Time Series Poisson	0.7344	0.0635	
	Daily ICU Patients	WMAPE	Weighted Average Ensemble	0.0067	GAM	0.0091	0.0024	
		MAPE	Weighted Average Ensemble	0.7009	Stacking Ensemble (SVM)	0.8978	0.1969	
		MSE	Weighted Average Ensemble	5115.0321	Stacking Ensemble (SVM)	8168.8659	3053.8338	
		RMSE	Weighted Average Ensemble	71.5195	Stacking Ensemble (SVM)	90.3818	18.8623	
		r^2	Holt-Winters	0.999	Weighted Average Ensemble	0.9988	0.0002	
		WMAPE	Stacking Ensemble (SVM)	0.048	Weighted Average Ensemble	0.0537	0.0057	
	Daily Confirmed Cases	MAPE	Stacking Ensemble (SVM)	4.7483	Average Ensemble	5.2952	0.5469	
		MSE	LightGBM	2.15E+07	Weighted Average Ensemble	2.23E+07	8.14E+05	
		RMSE	LightGBM	4632.6628	Weighted Average Ensemble	4719.7452	87.0824	
		r^2	Time Series Poisson	0.9198	Bi-LSTM	0.9045	0.0153	
	Daily Confirmed Deaths	WMAPE	Average Ensemble	0.0701	Holt-Winters	0.0716	0.0015	
		MAPE	Average Ensemble	7.0831	Holt-Winters	7.3011	0.2179	
Smoothed		MSE	Average Ensemble	18344.6078	Holt-Winters	23444.0032	5099.3954	
21110011111		RMSE	Average Ensemble	135.4423	Holt-Winters	153.1143	17.6721	
		r^2	Time Series Poisson	0.9803	Weighted Average Ensemble	0.7996	0.1807	
	Daily ICU Patients	WMAPE	Stacking Ensemble (SVM)	0.0013	Stacking Ensemble (LR)	0.0019	0.0006	
		MAPE	Stacking Ensemble (SVM)	0.1332	Stacking Ensemble (LR)	0.1947	0.0615	
		MSE	Stacking Ensemble (SVM)	212.8753	Stacking Ensemble (LR)	439.8658	226.9905	
		RMSE	Stacking Ensemble (SVM)	14.5902	Stacking Ensemble (LR)	20.973	6.3827	
		r^2	Weighted Average Ensemble	0.9998	Stacking Ensemble (SVM)	0.9998	0	

Table S14. Mean and variance of error measures for Korea analysis.

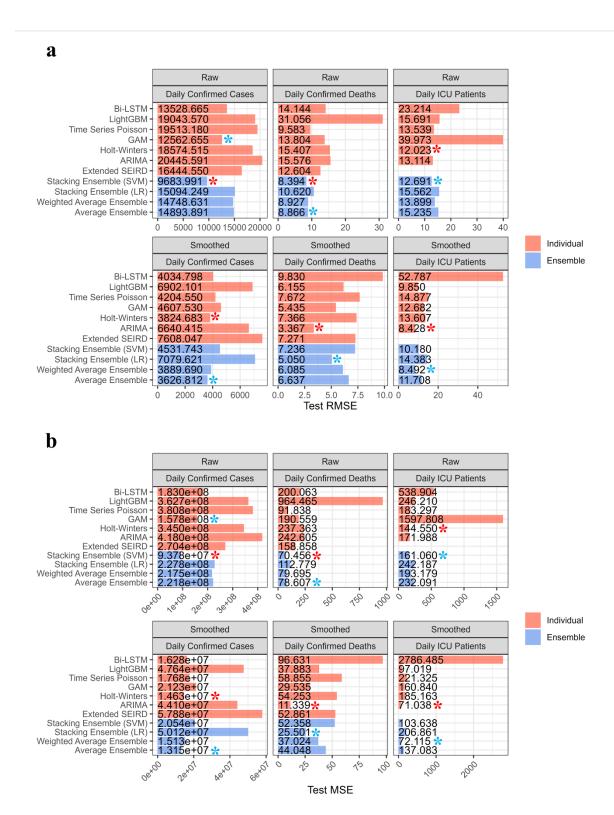
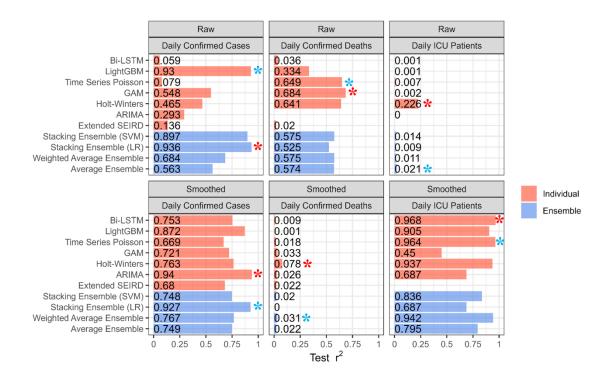

Raw / Response		Error	M	ean	Variance		
Smoothed	variable	measure	Ensemble	Individual	Ensemble	Individual	
	Daily Confirmed	WMAPE	0.327	0.366	4.037.E-03	8.096.E-03	
		MAPE	37.508	43.351	4.588.E+01	7.927.E+01	
		MSE	1.90.E+08	3.03.E+08	4.153.E+15	1.019.E+16	
	Cases	RMSE	1.36.E+04	1.72.E+04	6.854.E+06	9.453.E+06	
		r^2	0.767	0.359	3.201.E-02	9.929.E-02	
		WMAPE	0.130	0.280	3.585.E-04	1.686.E-02	
	Daily	MAPE	18.561	32.330	5.776.E+00	2.438.E+02	
Raw	Confirmed	MSE	85.384	297.965	3.505.E+02	8.899.E+04	
	Deaths	RMSE	9.202	16.025	9.505.E-01	4.803.E+01	
		r^2	0.563	0.338	6.482.E-04	1.026.E-01	
	Daily ICU Patients	WMAPE	0.024	0.034	1.084.E-05	4.297.E-04	
		MAPE	2.396	3.422	1.139.E-01	4.382.E+00	
		MSE	207.129	480.459	1.390.E+03	3.206.E+05	
		RMSE	14.347	19.592	1.736.E+00	1.159.E+02	
		r^2	0.014	0.039	2.898.E-05	8.352.E-03	
	Daily Confirmed Cases	WMAPE	0.077	0.085	4.306.E-04	6.636.E-04	
		MAPE	8.433	9.155	5.847.E+00	6.793.E+00	
		MSE	2.474.E+07	3.135.E+07	2.962.E+14	3.213.E+14	
		RMSE	4781.966	5403.161	2.491.E+06	2.512.E+06	
		r^2	0.798	0.771	7.514.E-03	1.003.E-02	
	Daily Confirmed Deaths	WMAPE	0.109	0.118	3.515.E-04	1.555.E-03	
		MAPE	10.849	11.719	3.490.E+00	1.550.E+01	
Smoothed		MSE	39.732	48.765	1.293.E+02	7.215.E+02	
		RMSE	6.252	6.728	8.631.E-01	4.085.E+00	
		r^2	0.018	0.027	1.660.E-04	6.240.E-04	
	Daily ICU Patients	WMAPE	0.018	0.032	1.410.E-05	8.804.E-04	
		MAPE	1.776	3.207	1.487.E-01	9.027.E+00	
		MSE	129.924	586.978	3.334.E+03	1.164.E+06	
	1 attents	RMSE	11.191	18.705	6.253.E+00	2.845.E+02	
		r^2	0.815	0.819	1.106.E-02	4.355.E-02	

Table S15. Mean and variance of error measures for USA analysis.


Raw /	Response	Error	Error Mean		Variance	
Smoothed	variable	measure	Ensemble	Individual	Ensemble	Individual
		WMAPE	0.335	0.494	5.025.E-05	5.182.E-02
	Daily	MAPE	39.329	65.416	3.578.E+01	1.496.E+03
	Confirmed Cases	MSE	9.737.E+08	1.646.E+09	1.030.E+16	1.505.E+18
		RMSE	3.117.E+04	3.842.E+04	2.590.E+06	1.979.E+08
		r^2	0.141	0.160	2.402.E-04	2.883.E-02
		WMAPE	0.233	0.312	1.181.E-03	1.864.E-02
	Daily	MAPE	35.069	42.864	7.960.E+00	1.405.E+02
Raw	Confirmed	MSE	3.630.E+05	6.475.E+05	3.221.E+09	2.679.E+11
	Deaths	RMSE	601.101	766.775	2.191.E+03	6.948.E+04
		r^2	0.653	0.584	3.285.E-03	6.812.E-02
	Daily ICU Patients	WMAPE	0.018	0.067	2.655.E-04	1.095.E-02
		MAPE	1.824	6.896	2.884.E+00	1.137.E+02
		MSE	4.205.E+04	1.036.E+06	4.093.E+09	5.585.E+12
		RMSE	166.037	606.103	1.931.E+04	8.022.E+05
		r^2	0.998	0.992	5.023.E-07	8.065.E-05
	Daily Confirmed Cases	WMAPE	0.070	0.203	1.387.E-03	3.095.E-02
		MAPE	7.267	20.988	1.705.E+01	3.179.E+02
		MSE	4.720.E+07	4.013.E+08	1.756.E+15	4.085.E+17
		RMSE	6.459.E+03	1.616.E+04	7.306.E+06	1.634.E+08
		r^2	0.882	0.881	3.963.E-05	8.326.E-04
	Daily Confirmed Deaths	WMAPE	0.103	0.162	6.242.E-04	1.175.E-02
		MAPE	10.460	16.401	6.694.E+00	1.159.E+02
Smoothed		MSE	4.566.E+04	1.386.E+05	4.918.E+08	2.795.E+10
		RMSE	208.264	322.189	3.046.E+03	4.056.E+04
		r^2	0.579	0.454	1.484.E-01	6.154.E-02
	Daily ICU Patients	WMAPE	0.021	0.068	6.655.E-04	9.446.E-03
		MAPE	2.125	6.975	6.903.E+00	9.577.E+01
		MSE	9.910.E+04	1.279.E+06	2.298.E+10	7.877.E+12
	1 aucius	RMSE	219.087	710.873	6.814.E+04	9.282.E+05
		r^2	1.000	0.998	8.868.E-08	8.493.E-06

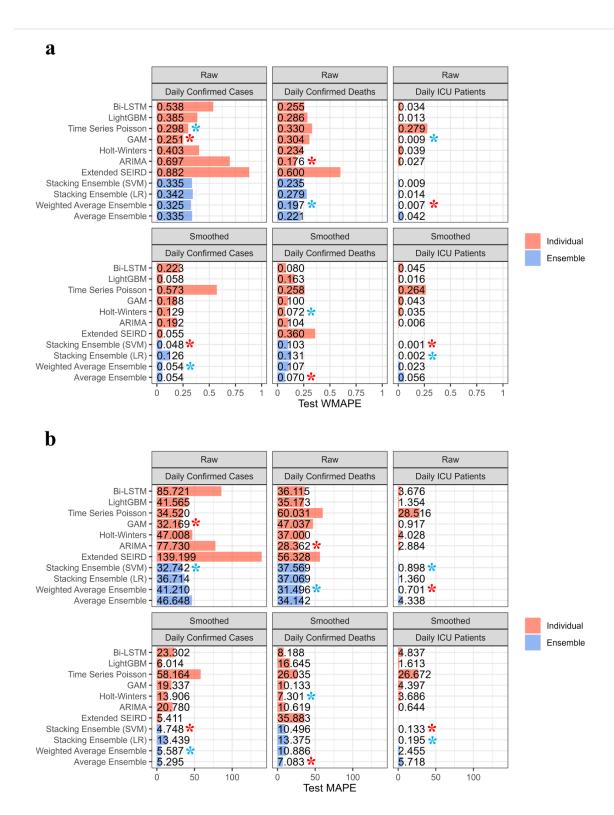

Figure S2. Plots showing the forecasting of daily confirmed cases, daily confirmed deaths and daily ICU patients for the seven individual models (ARIMA, GAM, LightGBM, Bi-LSTM, extended SIERD, Holt winter's and time series Poisson) and ensemble models with smoothed data for Korea. The right side of the vertical line marks the test period.

Figure S3. Summary of the performance of individual models and ensemble models using test data for Korea. (a) Performance using RMSE values. (b) Performance using MSE values. The horizontal bars represent the size of the error. The first best-performed models are marked with *, and the second best-performed models are marked with *.

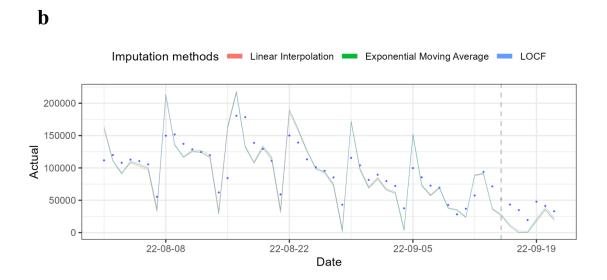


Figure S4. Summary of the performance of individual models and ensemble models for Korea, using test data using r^2 . The horizontal bars represent the size of the r^2 . The first best-performed models are marked with *, and the second best-performed models are marked with *.

Figure S5. Summary of the performance of individual models and ensemble models using test data for USA. (a) Performance using WMAPE values. (b) Performance using MAPE values. The horizontal bars represent the size of the error. The first best-performed models are marked with *, and the second best-performed models are marked with *.

Figure S6. Small set analysis to assess the effect of different imputation methods on prediction results for (a) whole periods $(2022-01-01 \sim 2022-09-22)$, and (b) recent periods $(2022-08-01 \sim 2022-09-22)$. Three different methods were used to impute the BA.5 variant rate, and the ARIMA model using the BA.5 variant rate as covariates was fitted to predict raw daily confirmed cases.

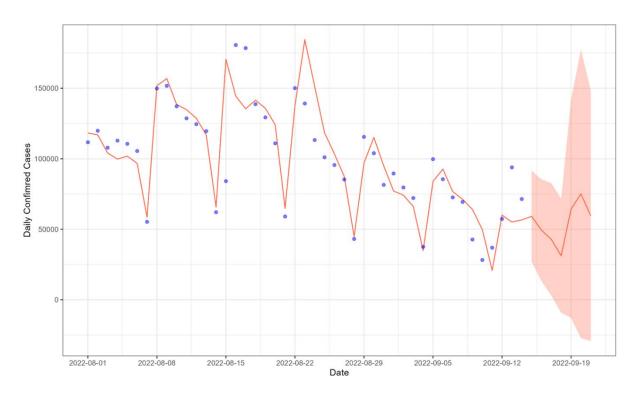


Figure S7. The confidence intervals (CIs) for the test period using the Holt-Winter's model

Supplementary Data Excel file can be downloaded at:

 $\underline{https://docs.google.com/spreadsheets/d/1WHpzlUKy4VAa6CPZJZ8Vgy6RNa9YhOF_/edit?usp=driv}\\ \underline{e_link\&ouid=107888743466298049125\&rtpof=true\&sd=true}$

References

- Box GE, Jenkins GM, Reinsel G. Time series analysis: forecasting and control Holden-day San Francisco. BoxTime Series Analysis: Forecasting and Control Holden Day1970. 1970.
- Yaffee RA, McGee M. An introduction to time series analysis and forecasting: with applications of SAS® and SPSS®: Elsevier; 2000.
- Darapaneni N, Reddy D, Paduri AR, Acharya P, Nithin H, editors. Forecasting of COVID-19 in India using ARIMA model. 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON); 2020: IEEE.
- Holt C. Forecasting seasonals and trends by exponentially weighted averages (ONR Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA. 1957;10.
- Winters PR. Forecasting sales by exponentially weighted moving averages. Management science. 1960;6:324-42.
- Nelder JA, Wedderburn RW. Generalized Linear Models. J R Stat Soc Ser a-G. 1972;135:370-84.
- Liboschik T, Fokianos K, Fried R. tscount: An R Package for Analysis of Count Time Series Following Generalized Linear Models. J Stat Softw. 2017;82.
- 8 Hastie T, Tibshirani R. Generalized Additive Models. Statistical Science. 1986;1:297-310.
- 9 Wood SN. Thin plate regression splines. J R Stat Soc B. 2003;65:95-114.
- 10 Wood SN. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc. 2004;99:673-86.
- 11 Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B. 2011;73:3-36.
- Menni C, May A, Polidori L, Louca P, Wolf J, Capdevila J, et al. COVID-19 vaccine waning and effectiveness and side-effects of boosters: a prospective community study from the ZOE COVID Study. Lancet Infect Dis. 2022;22:1002-10.
- Albani V, Loria J, Massad E, Zubelli J. COVID-19 underreporting and its impact on vaccination strategies. Bmc Infect Dis. 2021;21.
- Gumaei A, Al-Rakhami M, Al Rahhal MM, Albogamy FRH, Al Maghayreh E, AlSalman H. Prediction of COVID-19 Confirmed Cases Using Gradient Boosting Regression Method. Cmc-Comput Mater Con. 2021;66:315-29.
- 15 Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems. 2017;30.
- Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9:1735-80.
- Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks. 2005;18:602-10.