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H I G H L I G H T S
� Land cover change was studied in Buffalo, NY, Denver, CO, and San Diego, CA since the Great Recession.
� Increases in developed classes and decreases in green areas were minimal given increases in population and demand for development in the years following the Great
Recession.

� Some clustering in development at a small spatial scale was found in San Diego and at a larger spatial scale in Denver.
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A B S T R A C T

Using imagery available through Google Earth Pro and a point sampling methodology, changes in land cover for
three U.S. cities were assessed, beginning during the Great Recession (2007) and extending through to 2018. The
cities were Buffalo (New York), Denver (Colorado), and San Diego (California), and 11 land cover classes were
used to characterize each. The novel contributions of this work, and the innovative contributions to science
include an analysis of urban land cover change in the years since the Great Recession, and the use of point pattern
analysis on sample points that changed from non-developed in 2007 to developed in 2018, to determine whether
a spatial pattern of land cover class change was evident. An initial assumption was made that forest cover change
in these three cities would be minimal since the Great Recession. In fact, forest cover decreased by less than 1% in
all three cities with the greatest decrease in Buffalo. Over the post-recession study period, increases in the
developed land classes were evident in all three cities at the expense of grasses, tree cover, and other land classes.
Some clustering of new development activities was noticed at a relatively small scale in San Diego, while some
dispersion of new developed activities was noticed at a larger scale in Denver. Among other factors, changes in
population, economics, and land use are factors that influence land cover change with specific impacts on forest
cover, and therefore in the provision of urban forest benefits to the environment and society.
1. Introduction

Urban areas are dynamic systems that can undergo continuous
alteration of use (dominant activity) and cover (material on the surface)
over time, and these characterizations can be important in the manage-
ment and planning of urban landscapes (Hermosilla et al., 2012). Urban
land uses include features related to the presence and expansion of cities
(buildings, roads, powerlines, airports, etc.), features needed to maintain
or support growth (agricultural areas, water), and other features (forests)
that would be beneficial for ensuring a healthy environment (Zhang
rry).
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et al., 2010). Over time, land uses can change; forests for example can
often transition into developed features such as roads, buildings, and
other human infrastructure (Bettinger and Merry, 2019; Auch et al.,
2016). Socio-economic forces (financial instruments and tools that allow
people to carry debt) have been noted as important mechanisms that can
influence changes in land use in the United States (Sealey et al., 2018).
For example, tighter credit availability during the recent Great Recession
has been suggested to have negatively influenced both unemployment
and the ability of people to obtain loans to purchase houses (Bandyo-
padhyay et al., 2018).
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Figure 1. Unemployment rates for Buffalo (New York), Denver (Colorado), and
San Diego (California), 2000–2019 (US Bureau of Labor Statistics, 2022).
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While concerns about land use changes typically focus on its impact
on people's quality of life and public health such as childhood obesity and
social cohesion (Bell et al., 2008; Ulmer et al., 2016), the impact of
changes in land use on the environment can be just as important. In-
creases in air pollution and noise levels are often associated with changes
in land use resulting from fewer and unequally distributed green areas
(Lederbogen et al., 2011; Lin et al., 2015). Therefore, it is important to
understand the current and historic land use patterns of cities as they are
fundamental inputs for city leaders in the decision-making process
addressing the needs of a community (Anderson et al., 1976). As one
resource, urban trees provide a wide range of environmental, social, and
economic benefits and play an important role in climate change mitiga-
tion efforts within cities and at larger scale. As urban development ex-
pands to accommodate a growing population, urban forests and other
green areas are becoming more valuable as they can help mitigate issues
associated with such growth (e.g., urban heat island, air quality, and
noise pollution, etc.) (Nowak et al., 2021; Nowak and Greenfield, 2018).
Estimates of the current land uses and types of cover are indicators of the
condition and character of the land that when tracked over time, can
serve to inform stakeholders of potential drivers of change. For example,
changes in tree cover or other green areas within a city might be corre-
lated with improving or declining economic conditions. The former
condition (improving economic conditions) might reveal needs for
changes in land use to support housing development, urban farming, and
transportation expansion, among others; the latter condition (declining
economic conditions) might reveal changes in land use associated with
Figure 2. The city maps with random point
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land abandonment, which in turn may result in a natural or purposeful
reversion of open areas to areas covered by shrubs or trees.

Urban forests are admittedly just one of many different types of urban
land uses, yet they constitute a key component of urban ecosystems as
they add diversity to elements and characteristics of the other different
land uses. A parking lot that is positioned next to a grassy field, a patch of
trees, and a large building creates a heterogeneous environment that has
implications for aesthetic values, wildlife habitat, erosion potential, noise
potential, and many other issues of interest to society. With this in mind,
one might define urban forests as an urban green infrastructure with a
diverse arrangement of tree species and other vegetation. An urban forest
might further include grassy areas, individual trees, groves, groups of
trees in parks and along sidewalks and road verges, green belts, and
entire forested areas in and around a city (Pearlmutter et al., 2017;
Endreny, 2018). In contrast to roads, houses, airports, lakes, and other
landscape features, the definition of an urban forest can be elusive. In
Europe, for example, urban forests are viewed as urban green spaces
where trees may have been planted and are subsequently managed, and
wooded places where aesthetic values and recreational pursuits are
important (Konijnendijk, 2003). As one piece of a broader landscape
matrix, urban forests provide many regulating, cultural, and supporting
ecosystem services such as climate and noise amelioration, community
connections, and others previously mentioned.

While again just one of many different types of urban land uses, tree
cover is one important aspect of urban areas that city planners monitor.
Even though the correlation between human population density and
abundance of tree cover or developed features in an urban area depends
on local environmental and socio-economic conditions (Locke and Grove,
2016), city leaders and local populations are often interested in
increasing vegetative cover. The success of initiatives to increase vege-
tative cover may depend on the ability and capacity of city leaders to
monitor and evaluate the current state of land uses and understand the
factors that influence land use change. Tree cover and other green areas
are just a few land use classes that managers might monitor when
assessing changes in the local environment and the associated impacts on
human well-being.

There are two general methods for detecting urban land uses: 1) A
census-based approach that utilizes remote sensing methods to capture
multispectral satellite imagery and algorithms to process and categorize
the complete set of information, and 2) A sampling-based approach
which is based on the examination of sample points or sample areas in
conjunction with remotely sensed imagery (Kaspar et al., 2017). The
former approach might require specialized skill to process and interpret
(classify using supervised or unsupervised methods and associated al-
gorithms) an entire study area using multispectral imagery (satellite-,
aerial-, or drone-derived). Here, an algorithm, perhaps with some assis-
tance (training areas) conducts the work of land classification. The latter
s (A: San Diego; B: Denver; C: Buffalo).



Table 1. Land cover classes and descriptions of each class used in Buffalo,
Denver, and San Diego.

Class Class Description

Grass Athletic grass (baseball and soccer fields, golf course fairways, and
putting greens)

Business grass (grass within commercial, school, and church
properties)

Cemetery grass

General grass (grass that is neither recreational nor athletic)

Grass parking lot

Highway grass (grass in medians, off-ramps, and adjacent to highways
and interstates)

Leisure grass (recreational grass not used for athletic activity)

Powerline grass (grass within a powerline right-of-way)

Residential grass

Developed
areas

Athletic facilities (stadium seating, tennis courts)

Buildings (residential and commercial structures)

Cemented surfaces (bricking, empty cement lots not used for parking,
cemented patios)

Commercial (paved lots associated with a commercial function like
storage)

Driveways (paved residential driveways)

Parking lots

Power plants

Residential hardscapes

Swimming pools

Sidewalks

Water treatment facilities

Transportation Airports

Dirt roads

Railroads

Paved roads

Bare ground Bare ground (dirt plots of land, dirt lots, and dirt driveways)

Rocks

Sand (sand and sand traps on a golf course)

Shrubs Naturally occurring shrubs

Landscape shrubs

Trees Coniferous trees

Deciduous trees

Crop/Pasture Agricultural crop land including farms

Pastures (both commercial and non-commercial)

Nursery/
Orchard

Plant and tree nurseries

Fruit orchards

Water Natural water (lakes, rivers, and ponds)

Reservoirs and man-made ponds

Marsh Marshlands

Other Junk piles

Unmanaged grassy area

Solar panels (not attached to a building)
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approach, however, allows one to obtain a similar level of accuracy while
using faster, less expensive, and simpler procedures that involve viewing
geographic points placed upon remotely sensed imagery, and subse-
quently interpreting the land use at those points (Hostetler et al., 2013).
Here, a human, perhaps with some assistance (definitions, guides, or
templates) conducts the work of land classification. The effectiveness of
using either approach has been demonstrated in several studies involving
assessments of land cover transition (e.g., Bettinger and Merry, 2019;
Nowak and Greenfield, 2012; Nowak et al., 2013). Richardson and
Moskal (2014) suggested that in comparison to census-based landscape
classification methods, random sampling provides more unbiased results
in detecting land cover changes, although it may require a large number
of point samples to provide an acceptable level of statistical confidence.
3

King and Locke (2013) did not find a significant statistical difference in
detecting land cover changes between census-based and sampling ap-
proaches, yet Parmehr et al. (2016) found a 4.5% variation in urban tree
canopy maps developed using landscape classification techniques that
combined multispectral satellite imagery and LiDAR data, and a point
sampling approach that used high resolution aerial imagery. One
advantage of using a point sampling approach in conjunction with high
resolution aerial imagery is that fine-scale developmental activities (e.g.,
sidewalks, individual trees) which may otherwise be lost through clas-
sification of satellite imagery (e.g., Landsat) should facilitate a more
precise quantification of land uses and help contribute to our under-
standing of how people in society manage land and whether significant
recent changes in management have occurred. The results of this study
aim to guide city forest planners in determining a sustainable path to
maintain and increase green cover and to develop forest management
plans that generate desired environmental and socio-economic benefits
of a particular urban community.

The objectives of this study are to estimate recent land cover and land
use changes associated with urban forest cover in three moderately large
cities distributed across the conterminous United States: San Diego
(California), Denver (Colorado), and Buffalo (New York). A point sam-
pling approach that uses high resolution aerial imagery in Google Earth
Pro was employed. The analysis involves a range of time that begins with
the Great Recession (2007–2009), when financial instruments and tools
that allow people to carry debt were limited and extends to the current
time (or latest availability of aerial images) by using the point sampling
method. The Great Recession resulted in varying effects (usually de-
clines) in revenue, budgets, employment, investment, and economic
development activities in states and local governments of the United
States. Some of the most affected sectors of the economy were govern-
ment, real estate, and construction, and in some areas building permits
declined considerably (Bardhan and Walker, 2011; Hinkley and Weber,
2021). The selected cities are quite different concerning their position
within the geography of the country, local climatic conditions, and their
history of development. While the Great Recession ended officially in
mid-2009, some national (U.S.) measures of economic activity did not
return to pre-recession levels until 2013 (Frone, 2018), while local un-
employment rates may have taken a few years longer to return to
pre-recession levels (Figure 1). The selected cities have also undergone
different developmental histories. For example, the population of Buffalo
has been declining along with the city's basic industries, while the pop-
ulation of Denver and San Diego have been increasing over the last
decade. These changes likely influence demand for housing and infra-
structure (e.g., utilities, road access, etc.).

2. Methods

The methodology of this study began with the selection of three
diverse urban areas, and the time frame within which to study their land
uses. In discussing the time frame of the study, concerns over the avail-
ability of aerial imagery and a desire to study responses to recent global
economic challenges were considered. The method for estimating land
uses and land use change was then selected, along with the associated
statistical procedures to determine the magnitude and significance of the
results.

2.1. Area of study

Three United States cities were included in the land cover assessment
presented here: San Diego (CA), Denver (CO), and Buffalo (NY) (Merry,
2022). These cities were chosen because they are different in their ge-
ography, climate, and landscape characteristics. The area studied
included the officially designated, specific municipalities of the three
cities, and not the broader, more generally (or locally) known metro-
politan area of each. For the purpose of this paper, their history of
development from the Great Recession in 2007 through 2018 is



Table 2. Percent change of land cover classes between 2007 and 2018 in San Diego.

2018 2007

Land class Grass Developed Transportation Bare
ground

Shrub Tree Crop/
Pasture

Nursery/
Orchard

Water Marsh Other Total SE

2007 Grass 9.91 0.96 0.22 0.30 0.35 0.04 0.04 - - - - 11.83 0.007

Developed 0.13 24.74 - 0.04 - - - - - - - 24.91 0.009

Transportation 0.09 0.04 10.83 0.04 0.13 - - - - - - 11.13 0.007

Bare ground 0.57 0.70 0.13 1.52 0.48 0.04 - - - - - 3.43 0.004

Shrub 0.17 0.17 0.13 0.30 34.61 0.09 0.04 - 0.04 - - 35.57 0.010

Tree 0.22 0.26 - - 0.09 6.26 - 0.04 - - - 6.87 0.005

Crop/Pasture 0.30 - 0.09 0.04 - - 1.00 0.04 - - - 1.48 0.003

Nursery/
Orchard

- 0.04 - 0.04 - - - 0.48 - - - 0.57 0.002

Water - - - - - - - - 3.96 0.09 - 4.04 0.004

Marsh - - - - - - - - - 0.17 - 0.17 0.001

Other - - - - - - - - - - - -

2018 Total 11.39 26.91 11.39 2.30 35.65 6.43 1.09 0.57 4.00 0.26 -

SE 0.007 0.009 0.007 0.003 0.010 0.005 0.002 0.002 0.004 0.001 -
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highlighted. In addition, these cities all have populations over 250,000
and the average density of people living within each city ranged from 3,
698 to 7,206 people per square mile. Of the three cities, San Diego is the
8th largest city by population in the United States with a little over 1.4
million residents in 2018, while Denver is the 19th with a population of
about 716,000 in 2018 and Buffalo the 88th with a current population of
about 256,000 in 2018 (US Census Bureau, 2020a; US Census Bureau,
2020b). The size of each city's municipal area varies according to how
they are defined by local government administrators; populations within
the surrounding greater metropolitan areas of these cities could be two to
four times greater than the official city area in which we concentrate this
study.

2.2. Point sampling

In this study, we employed a simple random sample design in
conjunction with aerial interpretation (expert recognition and knowl-
edge) procedures to estimate land covers. A vector geographic informa-
tion system (GIS) database of each city's physical boundary was acquired
from the city GIS data repository websites. These databases were
Table 3. Changes of land cover classes in time series from 2007 to 2018 in San Dieg

Land cover
classes

2007–2008 2008–2009 2009–2010 2010–2011 2011–2012 2012–2013 201

Grass 0.13 0.04 0.17 -0.04 -0.26 0.04 -0.0

Developed 0.17 0.09 0.17 0.17 0.13 0.13 0.22

Transportation - 0.04 -0.04 0.04 0.04 - -0.0

Bare ground -0.22 -0.26 -0.22 -0.04 -0.04 -0.13 0.39

Shrub -0.13 0.09 0.09 -0.04 0.13 0.04 -0.2

Tree - - - 0.04 - -0.04 -

Crop/Pasture - -0.04 -0.17 -0.13 - -0.04 -

Nursery/
Orchard

- - - - - - -

Water 0.04 - - - -0.09 - -

Marsh - - - - 0.09 - -

Other - 0.04 - - - - -

*Changes significantly different from zero as p < 0.05.
**Changes significantly different from zero as p < 0.01.
***Changes significantly different from zero as p < 0.001.
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projected to the Universal Transverse Mercator (UTM) system using the
appropriate UTM zones: UTM 17N (Buffalo), UTM 13N (Denver), and
UTM 11N (San Diego). Within each city's physical boundary, 2,300
points were randomly distributed using ArcGIS 10.6 (Figure 2). A single
point is described by the northing and easting values of its position
within the appropriate UTM zone. A Google Earth KML file was then
created from the set of 2,300 points for interpretation across multiple
years. A detailed assessment of the proportions of major land uses sug-
gested that as the number of sample points exceeded 91.8% þ/- 1.5%
(San Diego), 92.6%þ/-1.4% (Buffalo), and 81.7%þ/-2.1% (Denver), the
value of these proportions, with 99% confidence, was largely unchanged.
It may have been possible, with respect to the major land use classes that
had more sample points, that a 99% confidence level could have been
met with fewer samples. However, the trade-off of using more sample
points, involving additional time and yet greater statistical precision, was
considered worthwhile for estimating the conditions of, and transitions
involving, minor land use classes.

We employed the imagery available within Google Earth Pro for this
analysis. While the imagery was generally available for more recent
years, it was not available across all three cities; therefore, the years 2019
o.

3–2014 2014–2015 2015–2016 2016–2017 2017–2018 Net change
(2018–2007)

Average
change per
year

3 -0.13 - 0.09 -0.17 -0.43 -0.04

0.26 0.39 0.17 0.09 2.00*** 0.18

9 0.22 0.09 - -0.04 0.26 0.02

-0.17 -0.39 -0.13 0.09 -1.13** -0.10

2 -0.13 0.17 0.04 0.04 0.09 0.01

- -0.30 -0.09 -0.04 -0.43 -0.04

- - -0.04 0.04 -0.39* -0.04

- 0.04 -0.04 - - -

- - 0.09 -0.09 -0.04 -

- - -0.09 0.09 0.09 0.01

-0.04 - - - - -



Table 4. Percent change of land cover classes between 2007 and 2018 in Denver.

2018 2007

Land class Grass Developed Transportation Bare
ground

Shrub Tree Crop/
Pasture

Nursery/
Orchard

Water Marsh Other Total SE

2007 Grass 26.43 1.17 0.57 1.17 1.09 0.30 0.39 0.04 0.13 - 0.09 31.39 0.010

Developed 0.17 26.39 0.09 0.26 - 0.04 - - - - - 26.96 0.009

Transportation 0.09 0.04 14.22 0.17 0.04 - - - - - - 14.57 0.007

Bare ground 1.00 0.39 0.22 0.96 0.17 - 0.09 - 0.04 - - 2.87 0.004

Shrub 0.43 0.04 0.04 0.09 1.13 - 0.04 - - - - 1.78 0.003

Tree 0.57 0.22 0.04 0.04 - 8.30 - - 0.04 - - 9.22 0.006

Crop/Pasture 0.35 0.17 0.04 0.30 0.13 - 10.00 - - - 0.09 11.09 0.007

Nursery/
Orchard

- - - - - - - - - - - - -

Water - - - 0.04 - - - - 1.17 - - 1.22 0.002

Marsh - - - - - - - - - 0.09 - 0.09 0.001

Other 0.04 0.35 - 0.04 - - - - - - 0.39 0.83 0.002

2018 Total 29.09 28.78 15.22 3.09 2.57 8.65 10.52 0.04 1.39 0.09 0.57

SE 0.009 0.009 0.007 0.004 0.003 0.006 0.006 0.000 0.002 0.001 0.002
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and 2020 were omitted from the analysis. Google Earth Pro imagery
viewed at low-eye altitude (e.g., 5 km above ground or lower) are ac-
quired from local or federal government sources such as the U.S.
Department of Agriculture National Agriculture Imagery Program (NAIP)
or sources such as DigitalGlobe, GeoEye-1, Ikonos, and others (Taylor,
2014). Prior to delivery through Google Earth Pro, the imagery is
aggregated and sharpened; therefore, spatial resolution is difficult to
define (Bettinger and Merry, 2019). The approximate spatial resolution
for image interpretation purposes using Google Earth Pro imagery is
about 2 m or less (Bettinger and Merry, 2019). Throughout the United
States, imagery available through Google Earth Pro is less frequent, and
often too coarse for interpretation of small features prior to about 2007.
This date coincides, fortunately, with the advent of the Great Recession.

Land cover classes were developed based on preliminary visual as-
sessments of the land cover contained in each city. Once the interpreta-
tion of sample points began, a land cover class for each point was
assigned. An initial image interpretation effort was conducted by an
intern who had been trained in interpretation methods. One hundred
percent of the sample points were then re-interpreted by a person with
significant experience in remote sensing and image interpretation. Each
sample point was assigned one of 41 classes that were aggregated into 11
broad classes for analysis (Table 1). Some land cover classes (e.g., side-
walks) required close inspection of the imagery (low-eye altitude in
Google Earth Pro), while other land cover classes (e.g., various types of
grasses) required a broader perspective (higher eye altitude); therefore, a
standard elevation above ground level was not employed in these efforts.

Seven image interpretation principles were employed when exam-
ining the aerial imagery in Google Earth Pro: size, color, shape, shadows,
pattern, texture, and convergence of evidence (Paine and Kiser, 2012). An
eighth image interpretation principle, time, was also of assistance in
overcoming some of the challenges related to image interpretation
thanks to the time series of imagery made available through Google Earth
Pro. Of the broad land cover classes, developed areas included structures
(i.e., buildings and homes) that might be considered improvements to the
property or might be considered manufacturing or commercial facilities
(Ficek et al., 1980). Parking lots, swimming pools, sidewalks, and other
hardscape features were also grouped into the developed area class, and
often these interpretation calls required utilizing the time series of im-
agery (and associated changes in tone and color) along with evidence of
pattern and shape. Discerning the difference between grasses often
required a broader perspective to associate these features with other
surrounding features. For example, residential grass was located next to
homes, while athletic grass was found in schoolyards and parks. Further
challenges encountered involved using expert knowledge, evidence of
5

shadows, and the Google Earth Pro street view to distinguish, for example,
the tree class from the shrub class.
2.3. Statistical methods

For each city, the proportion of each cover class (p) was estimated by
dividing the number of sample points (x) classified as a particular land
cover class and the total number of interpretable sample points (n) within
each city (p ¼ x/n). Subsequently, the standard error of the estimate (SE)
was calculated (Lindgren and McElrath, 1959). This method has been
used to assess canopy cover in other studies (e.g., Nowak et al., 1996;
Nowak and Greenfield, 2010; Nowak and Greenfield, 2012). The
McNemar test was used to assess statistical significance in changes in the
proportion of a land cover class (McNemar, 1947; Bradley, 1968; Foody,
2004). Here, the test was employed to determine whether a statistical
significance in the gain or loss of land cover classes over time was
observed. In this study, the test was used to determine whether a net
change of y% in the developed area class between 2007 and 2018 was
different than zero using an assumed alpha (significance) level. Other
studies (e.g., Nowak and Greenfield, 2012; Nowak and Greenfield, 2020;
Momeni et al., 2016; Yan et al., 2006) have also used the McNemar test
for similar purposes.

In addition, using R Statistical Software (version 1.2.5001, RStudio,
Inc., Boston, MA, USA), point pattern analysis was conducted on points
that were classified as not developed in 2007 and developed in 2018 to
determine the spatial pattern of cover class change. The L(r) function,
normalized version of Ripley's K function, was applied given its wide use
in point pattern analyses (Law et al., 2009; Gadow et al., 2012). To plot
the result, the L(r) function was subtracted from the r (bandwidth) using
the equations below:

KðrÞ function : KðrÞ¼ A
n2
Xn

i¼1

Xn

j
wij

�1Ir
�
uij
�

(1)

LðrÞ function : LðrÞ¼
ffiffiffiffiffiffiffiffiffiffi
KðrÞ
π

r
(2)

The normalized version of LðrÞ function : bLðrÞ¼
ffiffiffiffiffiffiffiffiffiffi
KðrÞ
π

r
� r (3)

where A is the study area, n is the number of individuals, Irðuij Þ is an
indicator function (which is either 1 when uij < r or 0 when uij > r), and
wij is a weight value for edge correction. Since the study site did not
guarantee a homogeneous density of points across their areas, the Het-
erogeneous Poisson process (HP) model was preferred as the null model
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rather than the complete randomness process (CSR) which assumes ho-
mogeneity across the study site (Wiegand and Moloney, 2013). Monte
Carlo simulation (200 permutations) was applied to produce the envelop
covering the 95% confidence level range of the null model. When the
observed values were located outside the envelop, the pattern of land use
change was suggested to be statistically significantly different than the
null model. Further, a negative value was indicative of a dispersed
pattern, while a positive value was indicative of a clustered pattern
(Wiegand and Moloney, 2013).

3. Results

In San Diego, during 2007, the shrub land cover classification type
occupied the largest percentage of the city (35.6%), followed by developed
areas (24.9%), grasses (11.8%), transportation (11.1%), and trees (6.9%)
(Table 2). In 2018, the developed, transportation, shrub, andmarsh classes
increased their cover by þ2.0%, þ0.3%, þ0.1%, þ0.1%, respectively
(Table 3). In contrast, a decrease in grass (�0.4%), bare ground (�1.1%),
tree (�0.4%), and crop/pasture (�0.4%) cover classes occurred between
2007 and 2018. As a result, the land cover classification types that occu-
pied the largest percentages in 2018 was the shrub with 35.7% followed
by the developed area with 26.9%. Both transportation and grass cover
types occurred at the same proportion (11.4%) in 2018 (Table 2). Sig-
nificant changes were observed for the developed (p < 0.001), bare
ground (p ¼ 0.0015), and crop/pasture (p ¼ 0.0265) classes (Table 3). In
addition, the most prominent San Diego land cover class transitions be-
tween 2007 and 2018 occurred as follows: grass to developed areas
(1.0%), bare ground to developed areas (0.7%), bare ground to grass
(0.6%), bare ground to shrub (0.5%), grass to shrub (0.4%) (Table 2).

In Denver, the greatest amount of land cover in 2007 was grass
(31.4%) followed by developed areas (27.0%), transportation (14.6%),
crop/pasture (11.1%), and trees (9.2%) (Table 4). In 2018, we estimated
a decrease in grasses (�2.3%) and trees (�0.6%), as well as crop/pasture
(�0.6%) and the “other” (�0.3%) land cover class (Table 5). In contrast,
developed areas (þ1.8%), transportation (þ0.7%), bare ground
(þ0.2%), shrub (þ0.8%), nursery/orchard (þ0.04%), and water
(þ0.2%) classes increased their proportion of land cover by 2018
(Table 5). The results of the McNemar test showed that there were sig-
nificant decreases in the grass (p< 0.001) and tree (p¼ 0.026) land cover
classes. Otherwise, significant increases were observed in the developed
(p < 0.001) and transportation (p ¼ 0.012) classes (Table 5). The most
pronounced land cover transitions between 2007 and 2018 occurred
from grass to developed areas (1.2%), grass to bare ground (1.2%), grass
to shrub (1.1%), bare ground to grass (1.0%), tree to grass (0.6%), grass
to transportation (0.6%), and shrub to grass (0.4%). Denver showed the
highest percentage of crop/pasture lands of the three cities (Table 4).

Finally, in Buffalo, the developed (38.7%), grass (23.8%), tree
(16.2%), transportation (14.1%), and shrub (2.4%) land cover classes
had the highest percentages of the sampled land cover in 2007 (Table 6).
By 2018, land cover proportion increased for the developed areas
(þ0.5%), transportation (þ0.1%), shrub (þ0.6%), and water (þ0.04%)
classes. In contrast, a decrease in land cover classes grass (�0.04%), bare
ground (�0.3%), trees (�0.9%) and marsh (�0.04%) was observed
(Table 7). Significant differences in land cover changes were only
observed in the tree and shrub land cover classes with p-values of 0.001
and 0.026, respectively (Table 7). Of the percentage of land cover change
between 2007 and 2018, bare ground transitioned to grass (0.6%), tree to
grass (0.6%), grass to developed areas (0.6%), grass to shrub (0.5%),
developed areas to grass (0.5%) and grass to bare ground (0.3%)
(Table 6).

In general, we observed that between 2007 and 2018 grass and tree
land cover classes decreased while the developed, transportation, and
shrub classes increased in coverage in all three cities (Figures 3, 4, and 5).
The bare ground class only increased in Denver (Figure 3) and the crop/
pasture class remained stable only in Buffalo (Figure 4) where it was of
minor significance. No statistically significant changes were observed for



Table 6. Percent change of land cover classes between 2007 and 2018 in Buffalo.

2018 2007

Land class Grass Developed Transportation Bare
ground

Shrub Tree Crop/
Pasture

Nursery/
Orchard

Water Marsh Other Total SE

2007 Grass 21.91 0.61 0.22 0.30 0.52 0.22 - - - - - 23.78 0.009

Developed 0.48 38.04 - 0.09 0.09 0.04 - - - - - 38.74 0.010

Transportation 0.09 0.04 14.00 - - - - - - - - 14.13 0.007

Bare ground 0.61 0.22 - 0.74 0.13 0.04 - - - - - 1.74 0.003

Shrub 0.04 0.09 - 0.22 2.09 - - - - - - 2.43 0.003

Tree 0.61 0.26 0.04 0.09 0.17 15.00 - - - - - 16.17 0.008

Crop/Pasture - - - - - - 0.09 - - - - 0.09 0.001

Nursery/
Orchard

- - - - - - - - - - - - -

Water - - - - - - - - 2.35 - - 2.35 0.003

Marsh - - - - - - - - 0.04 0.30 - 0.35 0.001

Other - - - - - - - - - - 0.22 0.22 0.001

2018 Total 23.74 39.26 14.26 1.43 3.00 15.30 0.09 - 2.39 0.30 0.22

SE 0.009 0.010 0.007 0.002 0.004 0.008 0.001 - 0.003 0.001 0.001

Table 7. Changes of land cover classes in time series from 2007 to 2018 in Buffalo.

Land cover
classes

2007–2008 2008–2009 2009–2010 2010–2011 2011–2012 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 2017–2018 Net change
(2018–2007)

Average
change per
year

Grass -0.04 0.09 -0.13 -0.04 0.04 0.13 0.04 -0.13 0.17 -0.13 -0.04 -0.04 -

Developed -0.04 0.04 - 0.13 0.22 -0.22 0.04 - -0.04 0.22 0.17 0.52 0.05

Transportation - - 0.09 -0.09 0.04 - 0.04 -0.09 0.04 - 0.09 0.13 0.01

Bare ground 0.13 -0.04 -0.13 -0.09 -0.26 0.09 0.17 0.35 -0.17 -0.26 -0.09 -0.30 -0.03

Shrub - -0.09 0.22 0.13 0.09 -0.04 -0.09 -0.04 0.13 0.17 0.09 0.57* 0.05

Tree -0.04 -0.04 -0.04 -0.04 -0.13 0.04 -0.17 -0.09 -0.17 - -0.17 -0.87** -0.08

Crop/Pasture - - - - - - - - - - - - -

Nursery/
Orchard

- - - - - - - - - - - - -

Water - - - - - 0.04 - - - - - 0.04 -

Marsh - - - - - -0.04 - - - - - -0.04 -

Other - 0.04 - - - - -0.04 - 0.04 - -0.04 - -

*Changes significantly different from zero as p < 0.05.
**Changes significantly different from zero as p < 0.01.
***Changes significantly different from zero as p < 0.001.
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the water, marsh, and nursery/orchard land cover classes in any of the
three cities (Figures 3, 4, and 5).

Lastly, as a result of applying the bL (r) functions to investigate pat-
terns of the points that changed from not developed to developed be-
tween 2007 and 2018 (Figure 6), we observed some trends. Specifically,
some of the locations of those points that converted to the developed land
cover in 2018 exhibited a clustered pattern at a smaller scale, while
others exhibited a dispersed pattern at a larger scale (Figure 7). A sta-
tistically discernible clustered pattern was observed in San Diego at the
range of 2.5 km, while a statistically discernible dispersed pattern was
observed in Denver at larger than 5 km of range (Figure 7). This suggests
that development activities during the study period were concentrated in
local areas throughout these two cities, and not randomly dispersed.
There was no evidence of a clustered or dispersed spatial pattern in the
places that had become developed in Buffalo over the 2007–2018 time
period.

4. Discussion

As of 2019, there were an estimated 7.7 billion people worldwide.
Although the increase in the world's population is slowing, it has been
7

projected that the global population could reach 8.5 billion in 2030 and
9.7 billion in 2050 (United Nations, 2019a). In the United States, about
327 million people (82% of the population) lived in urban areas in 2018
and the percentage is likely to increase above 90% by 2050 (United
Nations, 2019b). Continued urbanization of cities implies a higher de-
mand for land development which in turn creates land cover changes.
Certainly, several factors (both natural and human) may influence the
general structure and condition of land cover of a particular place
(Sanders, 1984). Examples of potential temporal changes in land cover
after a recessionary economic period are presented in this study. For
instance, Denver, San Diego, and Buffalo all showed a decrease in green
areas (e.g., grass and tree land cover classes) during 2007–2018.
Although an increase in green areas was observed in the shrub land cover
class, transitions to the shrub land cover class mainly came from bare
ground (0.5% in San Diego) or grass classes (1.1% in Denver and 0.5% in
Buffalo). Here, such green spaces seem to have been mainly replaced
with developed land uses including transportation-related surfaces.
Otherwise, there were minor transitions from non-green areas to green
areas. In addition, even though the majority portion of the bare ground
stayed as bare ground, the bare ground stage of land development may be
transitory in the long run; thus, the largest percentage of change within



Figure 3. The land cover class composition by percentage in San Diego (A: 2007; B:2018).

Figure 4. The land cover class composition by percentage in Denver (A: 2007; B:2018).

Figure 5. The land cover class composition by percentage in Buffalo (A: 2007; B:2018).
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this class was to grass in both Denver and Buffalo while in San Diego it
was from bare ground to developed. This result is particularly important
if we recall that the studied cities (and many others in the U.S.) have
different programs and campaigns to plant or re-plant trees focused on
8

increasing tree canopy in their urban areas. However, our results suggest
that these types of land cover classes have decreased over the last decade
which is comparable to findings from Nowak and Greenfield (2012) in
other cities in the U.S. Particularly, the results presented here are



Figure 6. The changed land cover class locations between 2007 and 2018 (A: San Diego; B: Denver; C: Buffalo).
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comparable to those of forest cover in Denver (Nowak and Greenfield,
2012) indicating that there has been little permanent change in forest
cover since the end year of their analysis (2009) and to global trends of
urban tree cover decrease and urban impervious cover increase (Nowak
and Greenfield 2020). However, the estimated forest cover in San Diego
from this study (6.4%, 2018) is nearly half that of the estimate (13%,
2017) of the City of San Diego (2017) in 2015. Although the estimate of
forest cover in the City of San Diego in 2017 was derived utilizing remote
sensing technologies (rather than sampling), we believe that the differ-
ence in analytical methods had a minor influence on the accuracy of data
quality (King and Locke, 2013). The time difference between the two
studies might have also been a reason for the difference among estimates.
Regarding Buffalo, we are unaware of any forest canopy cover estimates
for this city; therefore, no benchmark can be used for direct comparison.

Unlike other studies, we applied spatial pattern analysis to represent
how patterns of locations where the land cover class changed look alike
using a normalized version of Ripley's K function. In San Diego, the land
cover classes changed in a clustered pattern, while the land cover classes
changed in a more dispersed manner in Denver. In Buffalo however, the
land cover class change appeared to be randomly distributed across the
city. These results can aid the urban planning process as detecting land
cover class changes and assessing the connectivity of green areas are
essential in urban planning (Bagan and Yamagata 2014; Pirnat and
Hladnik, 2018). Anecdotally, through visual assessment, the majority of
conversion to development in Denver occurred in the north-northeastern
portion of the city and was predominantly new residential and com-
mercial development with most transitions originating from bare ground
or grass land cover classes. However, changes to developed land cover
were dispersed across other parts of the city and were largely categorized
as infill development with limited loss of tree cover. In San Diego, the
majority of conversion to the developed land class was located in the
northern portion of the city and included some residential and com-
mercial development. Similarly, the majority of these changes originated
from bare ground or grass land cover classes, with only one sample point
noted as transitioning from trees to developed.

The fact that our observations did not indicate large changes in tree
cover had occurred between 2007 and 2018 suggests that the effective-
ness of tree planting campaigns and other initiatives to increase urban
tree cover might need to be adjusted and should not be viewed as a final
solution to addressing perceived low urban tree canopy levels (Nowak
and Greenfield, 2012). However, one might also conclude that tree
planting campaigns and other initiatives were effective at staving off
declines in tree canopy cover in the face of increasing development ac-
tivities. Interestingly, we observed land class transitions between the
green land classes (grass, shrub, tree), but rarely from non-green to green
land class. Tree planting strategies need to be well articulated, with
policies and programs for planting and evaluation of effects at the local
9

level, so that a more tangible impact can be achieved. One limitation of
this study is the lack of a social analysis component that might support a
potential relationship between income and green areas, race and green
areas, etc. Locke and Grove (2016) suggested that to increase tree canopy
in an urban area it is necessary to increase tree planting or tree preser-
vation on commercial and private residential properties. Others have
pointed to open areas within cities (bare land or areas containing grasses
or shrubs) as potential places to increase the urban tree canopy (Merry
et al., 2013). Additionally, to increase the success of greening programs,
it is necessary to understand the ecological and economic characteristics
of a city which are drivers of tree canopy distribution (Locke et al., 2017).
Such studies, like the one presented here, along with others on urban
land cover change, tree health, planning and zoning, and area de-
mographics can serve as stronger tools for managers and policy makers.
Therefore, this work can help inform urban planning policies by showing
evidence of potential land use and tree cover changes due to a higher
demand for development, and due to changes in socio-economic condi-
tions after a recessionary economic period perhaps in response to a
growing population.

Without a deeper investigation into the demographics and eco-
nomic condition of the landowners or the desires of governmental
agencies associated with the land use changes, it is difficult to un-
derstand why clumped or dispersed patterns of new development
occurred. Silverman et al. (2015) suggested that land abandonment
and re-development seemed to concentrate in certain areas of Buffalo.
In fact, the City of Buffalo officials demolished over 3,000 houses
between 2007 and 2012 to stimulate development, perhaps clustered
in certain areas of the city (Silverman et al., 2015), yet our analysis did
not detect a clustered pattern of development over the study period.
The motives of landowners and governmental agencies may also drive
development decisions. After the recession, some landowners may
have sensed an opportunity to increase their net worth and may have
pursued developmental projects. Governmental agencies on the other
hand may have allowed development (roads, buildings) to occur on
vacant lots for the greater social benefit, through growth management
or urban revitalization strategies. Yet without a deeper investigation of
each instance of development action, it is impossible to know whether
the land use changes were planned over a long period of time (perhaps
even before the recession) or were opportunistic and conducted rather
quickly. And it would also be difficult to know whether the develop-
mental changes occurred prior to or after a change in ownership
among individuals, or similarly after transfer of ownership to a
governmental agency due to tax delinquencies or land abandonment,
without a thorough analysis of the thousands of land records (deeds)
associated with land use changes. These questions pertaining to the
spatial aspects of neighborhood decline and economic development
remain an open area of work.



Figure 7. The bL(r) function of the changed land cover class between 2007 and 2018 (A: San Diego; B: Denver; C: Buffalo). The black line represents the observed
patterns, while the red dot-line shows the expected value under Heterogeneous Poisson process (HP) and the shaded area represents envelopes for 200 Monte Carlo
simulations with 95% of confidence level.
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5. Conclusions

Land cover change was studied for three cities in the United States,
and although the employed statistical tests showed significant changes
for some of the classes (particularly increases in the developed class and
decreases in the green areas), these seemed to not be very remarkable
given the continuous population increase and the demand for developed
infrastructure. Notwithstanding, this study provides results that can be
complemented further with social and economic analysis to produce
richer evidence of relationships between all these factors in connection to
land cover change. Some evidence of the clustering of new develop-
mental activities was observed at a relatively small spatial scale in San
10
Diego. Further, some evidence of the dispersion of new developed ac-
tivities was noticed at a larger scale in Denver. The similarities (slight
increase in developed areas, slight decrease in green areas) and the dis-
similarities (the spatial arrangement of changes in land uses) further adds
to the land use history story of development in United States cities, and
how geography, demographics, and history can contribute to the
intriguing futures of these human systems. If decision-makers are con-
cerned about recent trends in the pattern of development, as well as in
the relative size and rate of change of land uses, the employment of this
analysis can help them coordinate planning policies that focus on the
management of urban change, urban footprints, and urban forests. The
methods employed to estimate transitions in land use over time, and to
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estimate whether development activities are statistically clustered, can
easily be applied to other urban areas of the world. There are no place-
specific limitations with regard to the sampling and analysis protocols,
other than certain land uses may be less relevant in other parts of the
world, and other land uses not recognized here may be more relevant in
other parts of the world.
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