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Abstract: (-)-Sophoranone (SPN) is a bioactive component of Sophora tonkinensis with various
pharmacological activities. This study aims to evaluate its in vitro and in vivo inhibitory potential
against the nine major CYP enzymes. Of the nine tested CYPs, it exerted the strongest inhibitory
effect on CYP2C9-mediated tolbutamide 4-hydroxylation with the lowest IC50 (Ki) value of 0.966
± 0.149 µM (0.503 ± 0.0383 µM), in a competitive manner. Additionally, it strongly inhibited other
CYP2C9-catalyzed diclofenac 4′-hydroxylation and losartan oxidation activities. Upon 30 min
pre-incubation of human liver microsomes with SPN in the presence of NADPH, no obvious shift
in IC50 was observed, suggesting that SPN is not a time-dependent inactivator of the nine CYPs.
However, oral co-administration of SPN had no significant effect on the pharmacokinetics of diclofenac
and 4′-hydroxydiclofenac in rats. Overall, SPN is a potent inhibitor of CYP2C9 in vitro but not in vivo.
The very low permeability of SPN in Caco-2 cells (Papp value of 0.115 × 10−6 cm/s), which suggests
poor absorption in vivo, and its high degree of plasma protein binding (>99.9%) may lead to the lack
of in vitro–in vivo correlation. These findings will be helpful for the safe and effective clinical use
of SPN.

Keywords: (-)-sophoranone; CYP2C9; potent inhibition; in vitro; in vivo; drug interaction; low
permeability; high plasma protein binding

1. Introduction

(-)-Sophoranone (SPN; Figure 1), a major bioactive flavonoid isolated from the roots of Sophora
tonkinensis, is used in traditional Chinese medicine for the treatment of acute pharyngolaryngeal
infections and sore throat [1–3]. It exhibits anti-inflammatory effects by inhibiting nitric oxide production
in macrophages [4] and 5-lipoxygenase activity [3]. Several studies have also demonstrated its other
biological activities, such as anti-cancer [5], anti-diabetic diabetic [6], and immunomodulatory [7]
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activities. In our previous study, after orally administering 12.9 mg/kg SPN to rats, the maximum
plasma concentration (Cmax) was approximately 13.1 ng/mL at 60 min [8]. Thus, although conclusive
results are lacking, SPN is likely to be a promising drug candidate.
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Drug–drug interactions can increase the likelihood of treatment failure or the frequency and
severity of adverse events [9]. Thus, drug–drug interaction assessment is a critical component of
new drug discovery and development as well as clinical practice [9,10]. The majority of known
drug interactions occur because of inhibition of drug-metabolizing enzymes [11–13]. Among all
drug-metabolizing enzymes, the cytochrome P450 (CYP) superfamily plays an important role in the
oxidation of almost 90% of currently used drugs [14]. Among at least 57 human cytochrome P450
enzymes identified to date, 9 hepatic P450 enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and
3A4) have shown to play predominant roles in the metabolism of drugs and other xenobiotics [12].
Therefore, the inhibitory potential of SPN on the nine major CYP enzymes should also be investigated.
There are a few reports on the in vitro and in vivo inhibitory effects of SPN on CYP enzymes. In rats,
oral administration of 5 g/kg S. tonkinensis extract over 14 days was found to increase the plasma
concentrations of metoprolol, omeprazole, and bupropion. This might be attributed to the inhibition of
the activities of rat CYP enzymes, CYP2D6, CYP2C19, and CYP2B6 [15]. However, these results could
not directly reflect the in vivo inhibitory potential of SPN on CYP enzymes due to multiple components
of the extract. Several flavonoids, including SPN, have been found to inhibit CYP3A4-mediated
reactions in vitro [16].

However, currently, there is limited information about SPN’s in vitro inhibitory potentials,
especially on the other eight CYP enzymes, thereby warranting further in vitro and in vivo
investigations to improve our understanding of drug interactions with SPN. Using human liver
microsomes in this study, we evaluated SPN’s potential to inhibit CYP1A2, CYP2A6, CYP2B6, CYP2C8,
CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 in a reversible and time-dependent manner. We
report herein that SPN is a potent inhibitor of CYP2C9 in vitro but not in vivo. To explain this lack of
correlation between in vitro and in vivo results, we performed plasma protein binding of SPN and
permeability test using Caco-2 cells.

2. Materials and Methods

2.1. Chemicals and Reagents

Pooled human liver microsomes from 150 donors (75 males; 75 females) were purchased from
Corning Life Sciences (Woburn, MA, USA), and (-)-sophoranone (99.7% purity; SPN) was supplied
by SK Chemicals Ltd. (Sungnam, Gyeonggi-do, Korea). β-Nicotinamide adenine dinucleotide
phosphate disodium salt (NADP), glucose 6-phosphate disodium salt hydrate, glucose 6-phosphate
dehydrogenase, MgCl2, and all chemicals including the specific substrates, its metabolites, and
well-known inhibitors of nine P450s were purchased from Sigma–Aldrich Corporation (St. Louis,
MO, USA), Santa Cruz Biotechnology (Dallas, TX, USA), or Cayman Chemicals (Ann Arbor, MI, USA)
unless stated otherwise. The purity of all purchased compounds was higher than 97.0%. HPLC-grade
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acetonitrile and methanol were obtained from Burdick & Jackson Company (Morristown, NJ, USA).
Caco-2 cells were supplied by the Korean Cell Line Bank (Seoul, Korea) and cultured according to
the supplier’s recommendations. Transwell (24-well, 6.5 mm polycarbonate inserts, 0.4-µm pore) and
cell culture reagents were purchased from Corning Life Sciences. Heparinized human plasma was
obtained from donors at the Severance Hospital of Yonsei University Health System (Seoul, Korea) and
stored at −80 ◦C prior to use.

2.2. Reversible Inhibition of (-)-Sophoranone towards the Nine CYP Isoforms in Human Liver Microsomes

The inhibitory effects of SPN on CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6,
CYP2E1, and CYP3A4 were evaluated in pooled human liver microsomes through the use of specific
CYP probe substrates (cocktail assay), as previously described [17,18] with a slight modification.
Concentrations of each CYP probe in Table 1 were used close to their reported Km values [17,18].

Briefly, a 90-µL incubation mixture, including pooled human liver microsomes (final concentration
0.1 mg/mL), 50 mM phosphate buffer (pH 7.4), each CYP-probe substrate cocktail set, and SPN
(0–50 µM), was pre-incubated for 5 min at 37 ◦C. SPN was dissolved in methanol and spiked into the
incubation mixture to a final concentration of 0.5% methanol. All P450-selective substrates (except
coumarin due to solubility) were dissolved in methanol and serially diluted with methanol to the
required concentrations, and the organic solvent was subsequently evaporated under a gentle stream
of N2 gas to minimize the effects of organic solvents on CYP activities. On the other hand, coumarin
dissolved in 50 mM phosphate buffer (pH 7.4) was directly added into the mixed tube. The reaction
was initiated by adding 10-µL aliquot of NADPH-generating system (1.3 mM NADP+, 3.3 mM glucose
6-phosphate, 3.3 mM MgCl2, and 0.4 unit/mL glucose-6-phosphate dehydrogenase) before 15 min
incubation at 37 ◦C in a shaking water bath. After incubation, the reactions were stopped by adding
200 µL of ice-cold acetonitrile containing 2 µM chlorpropamide as an internal standard. The incubation
mixtures were centrifuged (16,000× g, 15 min) and 5 µL of the supernatant was injected into the
LC-MS/MS system. All incubations were performed in triplicate, and the data are shown as the mean
± standard deviation. Incubation samples containing well-known CYP inhibitors for each isozyme
(Table 2) in parallel were included to compare inhibitory effects, all of which appear on the US FDA list
of recommended or accepted in vitro inhibitors [12,19–21].

Additionally, to determine whether the inhibition of CYP2C9 by SPN was substrate specific, we
also examined SPN’s inhibitory effects on other CYP2C9-specific biotransformation pathways (i.e.,
diclofenac 4′-hydroxylation and losartan oxidation) in human liver microsomes [22,23]. Diclofenac and
losartan were used at 5 µM, respectively, and other procedures were similar to those of cocktail assays.

2.3. Determination of the Ki of (-)-Sophoranone on CYP2C9 Activity in Human Liver Microsomes

Among the nine tested CYP enzymes, SPN showed the lowest IC50 value for CYP2C9 (Table 2).
Based on the IC50 values, the Ki values of SPN on CYP2C9 activity were determined. Briefly, Ki

values were obtained by incubating various concentrations of two CYP2C9 probe substrates (50, 100,
and 150 µM tolbutamide; or 2, 5, and 10 µM diclofenac) in the presence of 0−5 µM SPN or 0−2 µM
sulfaphenazole, a well-known typical CYP2C9 inhibitor. Other procedures were similar to those of the
reversible inhibition studies. All incubations were performed in triplicate, and the data are shown as
the mean ± standard deviation.
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Table 1. Optimized mass parameters for the detection of metabolites of the nine P450-probe substrates and internal standard used in the cocktail assays.

CYPs Probe Substrates Km (µM) Metabolite ESI a Q1 Ion (m/z) Q3 Ion (m/z) Q1 Pre-bias (V) CE b (eV) Q3 Pre-bias (V)

1A2 Phenacetin 50 Acetaminophen + 152 110.2 −14 −12 −19
2A6 Coumarin 5 7-Hydroxycoumarin + 163 107 −15 −35 −15
2B6 Bupropion 50 6-Hydroxybupropion + 256 238 −15 −35 −15
2C8 Rosiglitazone 10 p-Hydroxyrosiglitaonze + 374 151 −15 −35 −15
2C9 Tolbutamide 100 4-Hydroxytolbutamide + 287 87 −15 −35 −15

2C19 Omeprazole 20 5-Hydroxyomeprazole + 362 214 −13 −13 −22
2D6 Dextromethorphan 5 Dextrorphan + 258 157 −15 −35 −15
2E1 Chlorzoxazone 50 6-Hydroxychlorzoxazone − 184 119.9 18 15 24
3A4 Midazolam 2 1′-Hydroxymidazolam + 342 203 −15 −35 −15

Chlorpropamide (Internal standard) 2
+ 277 111 −15 −20 −15
− 275 190 15 35 15

The optimized ion spray voltage was 4 kV and a nebulizing gas flow of 3 L/min, heating gas flow of 10 L/min, an interface temperature of 300 ◦C, desolvation line temperature of 250 ◦C,
heating block temperature of 400 ◦C, and a drying gas flow rate of 10 L/min. a ESI, electrospray ionization mode; b CE, collision energy.
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Table 2. IC50 values of well-known CYP inhibitors and SPN in reversible inhibition studies using a
cocktail assay (n = 3).

CYPs
IC50 Values (µM)

Well-Known Inhibitors SPN

1A2 α-Naphthoflavone 0.0458 ± 0.00694 >50 a

2A6 Tryptamine 2.98 ± 0.635 >50 a

2B6 Ticlopidine 2.19 ± 0.513 >50 a

2C8 Quercetin 8.51 ± 0.958 13.6 ± 3.15
2C9 Sulfaphenazole 0.677 ± 0.109 0.966 ± 0.149

2C19 S-benzylnirvanol 0.215 ± 0.0228 16.8 ± 3.21
2D6 Quinidine 0.127 ± 0.0192 >50
2E1 Diethyldithiocarbamate 12.0 ± 3.67 >50 a

3A4 Ketoconazole 0.0404 ± 0.00821 >50

Data represent the mean ± standard deviation of triplicate. a The remaining activities at the highest concentration
tested, 50 µM, were greater than 80%.

2.4. Time-Dependent Inactivation of (-)-Sophoranone toward the Nine CYP Isoforms in Human
Liver Microsomes

Pooled human liver microsomes (1 mg/mL) were incubated with SPN (0−50 µM) for 30 min at
37 ◦C in the absence or presence of an NADPH-generating system (i.e., the “inactivation incubation”).
After inactivation incubation, aliquots (10 µL) were transferred into fresh incubation tubes (final
volume 100 µL) containing an NADPH-generating system and each P450-selective substrate cocktail
set. The reaction mixtures were incubated for 15 min at 37 ◦C in a shaking water bath. After incubation,
the reactions were stopped by adding 200 µL of ice-cold acetonitrile containing 2 µM chlorpropamide,
as an internal standard. The incubation mixtures were centrifuged (16,000× g, 15 min) and 5 µL of the
supernatant was injected into the LC-MS/MS system. All incubations were performed in triplicate, and
the data are shown as the mean ± standard deviation.

2.5. Caco-2 Cell Permeability of (-)-Sophoranone

Caco-2 cell permeability was assessed to predict the oral absorption of SPN. Cell culture and
transport studies were performed as previously described [24,25]. Briefly, for the bi-directional
transport studies, the cells were seeded at a density of 1 × 105 cells/well, and the cell medium was
replaced until they formed confluent monolayers. On the 25th day, the cell monolayers were washed
with pre-warmed HBSS buffer. The bi-directional permeability assay was instigated by adding 10 µM
for propranolol, or 10 µM and 50 µM for SPN in HBSS to an apical well (200 µL) for apical (A) to
basolateral (B) transport or to a basolateral insert (800µL) for the B to A transport. Before the experiment,
the integrity of the cell monolayers was evaluated by measuring the transepithelial electrical resistance
using a Millicell ohmmeter. After 2 h incubation at 37 ◦C, samples were withdrawn from both sides,
respectively. All samples were stored at −80 ◦C until LC-MS/MS analysis, and all experiments were
performed in triplicate.

The apparent permeability coefficient (Papp) was calculated using the following equation.

Papp = (Vr/C0) × (1/A) × ([Drug]/t)

where, Vr is the volume of medium in the receiver chamber, C0 is the donor compartment concentration
at time zero, A is the area of the cell monolayer, t is the treatment time of the drug, and [Drug] is the
drug concentration in the receiver chamber.

2.6. Effects of (-)-Sophoranone on the Pharmacokinetics of Diclofenac in Rats

In this study, we investigated whether SPN, an in vitro potent inhibitor of CYP2C9, affects the
pharmacokinetics of diclofenac in rats. Male Sprague–Dawley rats (8 weeks, 270–290 g) were purchased
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from Orient Bio (Sungnam, Gyeonggi-do, Korea), and the protocol for pharmacokinetic interaction
studies in rats was approved by the Institutional Animal Care and Use Committee (IACUC-CUK) at
The Catholic University of Korea (Approval No. 2019-021, approved 31 May 2019). The procedures
used for housing and handling were previously reported [18]. Before administration, rats were fasted
for 12 h with free access to water. The carotid arteries of each rat were cannulated with a polyethylene
tube (Clay Adams, Franklin Lakes, NJ, USA) for blood sampling. Each rat was individually housed
in a rat metabolic cage and allowed to recover from anesthesia for 4–5 h prior to the start of the
experiment. The rats were divided into two groups: (1) diclofenac alone (n = 6) and (2) SPN and
diclofenac co-administration (n = 6). SPN was suspended in dimethylsulfoxide:PEG400:distilled water
(5:60:35, v/v/v) and administered by oral gavage at a dose of 75 mg/kg in a volume of 5 mL/kg. Fifteen
minutes after oral administration of SPN, 2 mg/kg diclofenac was dissolved in normal saline and
administered by oral gavage. Approximately 0.25 mL of blood from each rat was collected into an
Eppendorf tube before diclofenac dosing (0 min), and at 3, 5, 10, 15, 30, 45, 60, 90, 120, 180, 240, 360,
and 480 min post-dosing. The blood samples were immediately centrifuged at 13,000× g for 5 min at
4 ◦C. The plasma samples were divided into two Eppendorf tubes by 50 µL and stored at −80 ◦C until
LC-MS/MS analysis. After the experiments, the rats were euthanized with CO2.

2.7. Determination of the Unbound Fraction of (-)-Sophoranone in Plasma and Human Liver Microsomes

The plasma or liver microsomal protein bindings were performed using a rapid equilibrium
dialysis device and cellulose membranes with a molecular weight cutoff of 8000 (Thermo Scientific,
Rockford, IL, USA) [17]. The rat and human plasma samples (200 µL) containing SPN at 10 and 50 µM,
respectively, were dialyzed against a dialysis buffer, phosphate-buffered saline (PBS, 400 µL). The
loaded dialysis plate was covered with sealing tape, placed on an orbital shaker at approximately
200 rpm, and incubated at 37 ◦C for 4 h. Thereafter, samples (100 µL) from both PBS and plasma
chambers were collected and mixed with an equal volume of blank plasma and PBS, respectively. All
samples were stored at −80 ◦C until LC-MS/MS analysis. The unbound fraction of SPN in human (or
rat) plasma was calculated by dividing the SPN concentration in PBS by that in plasma.

The human liver microsomal incubation mixtures (final concentration 0.1 mg/mL) without NADPH
generating system were used to determine the unbound fraction of SPN. Other procedures were similar
to those of plasma protein binding assay.

2.8. LC-MS/MS Analysis

2.8.1. In Vitro Samples

Metabolites of nine P450-selective substrates were analyzed using a Shimadzu Nexera X2 UPLC
system coupled to an LCMS-8050 triple quadruple mass spectrometer (Shimadzu Corporation, Kyoto,
Japan) equipped with an electrospray ionization interface as previously described with a slight
modification [17,18]. Separation was performed on a reversed-phase column (Luna C18, 50 mm × 2.0
mm i.d.; 3 µm particle size; Phenomenex, Torrance, CA, USA) maintained at 40 ◦C. The mobile phase
consisted of distilled water containing 0.1% formic acid (A) and acetonitrile containing 0.1% formic
acid (B), with a flow rate of 0.5 mL/min. The gradient elution program used was as follows: (1) Mobile
phase A was set to 95% at 0 min, (2) a linear gradient was run to 5% in 2.6 min, and (3) a linear
gradient was run to 95% in 3.0 min and re-equilibrated for 2 min. The total run time was 5 min. The
optimized compound-dependent parameters of the metabolites of the nine P450-selective substrates
and the internal standard are listed in Table 1. Three-day validations were performed to confirm
the effectiveness of the LC-MS/MS system for simultaneous determination of the nine P450-selective
substrate metabolites at the respective ranges of 0.01–10 µM in blank microsomal incubation mixtures.
We found that the precision (≤12.1%) and accuracy (95.4–110.2%) values were within acceptable
ranges. Supplemental Figure S1 shows the representative LC-MS/MS chromatograms of a human liver
microsomal incubation sample containing nine P450-selective metabolites and an internal standard.
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The auto-optimized mass transitions were m/z 312 > 231 and m/z 437 > 207.1 for quantification of
4′-hydroxydiclofenac and losartan carboxylic acid, respectively. HPLC conditions were the same as
those in the cocktail assay.

2.8.2. In Vivo Samples

The plasma concentrations of diclofenac and 4′-hydroxydiclofenac were determined by a
previously reported LC-MS/MS method [26] with some modifications. Briefly, 50 µL aliquots of plasma
were extracted with 300 µL aliquots of acetonitrile containing chlorpropamide (internal standard),
followed by LC-MS/MS (Shimadzu Corporation). Chromatographic separation was performed on
a Phenomenex Luna C18 column (100 × 2.00 mm; 3.0 µm). The isocratic mobile phase consisted of
0.1% formic acid in distilled water (A) and 0.1% formic acid in acetonitrile (B) (45:55, v/v), with a
flow rate of 0.3 mL/min. The transitions were m/z 296.0 > 214.0 for diclofenac, m/z 312 > 231 for
4′-hydroxydiclofenac, and m/z 277 > 111 for the internal standard. The data acquisition was computed
using LabSolutions LCMS Ver.5.6 (Shimadzu Corporation). The calibration curves for diclofenac and
4′-hydroxydiclofenac were linear (r ≥ 0.996) over the concentration range of 20–5000 ng/mL.

The LC-MS/MS condition for the determination of SPN in plasma was the same with a previously
reported method [27]. The calibration curve for SPN was linear (r ≥ 0.995) over the concentration
range of 1–250 ng/mL.

2.9. Analysis of Inhibition Kinetics and Pharmacokinetic Parameters

The IC50 values were calculated via nonlinear least-squares regression analysis from logarithmic
plots of inhibitor concentration versus percentage of activity remaining after inhibition, using SigmaPlot
(ver. 14.0; Systat Software Inc, Chicago, IL, USA). The Ki values were determined from the equations for
a single substrate single inhibitor model and the software available in the SigmaPlot Enzyme Kinetics
module. Competitive, non-competitive, uncompetitive, or mixed inhibition models were evaluated
and ranked according to the best fit based on Akaike Information Criterion (AIC) values. For visual
inspection, the data were presented as Dixon plots.

Pharmacokinetic parameters were calculated by a non-compartmental analysis using WinNonlin
Professional software (version 5.2, Pharsight Corp., Mountain View, CA, USA) that used the total area
under the plasma concentration–time curve from time zero to infinity (AUC∞) or the last measured
time (AUCt). The logarithmic trapezoidal rule was used during the declining plasma level phase and
the linear trapezoidal rule was used for the rising plasma-level phase. The peak plasma concentration
(Cmax) and time to reach Cmax (Tmax) were read directly from the experimental data. Statistically
significant differences were recognized at p < 0.05.

3. Results

3.1. Reversible Inhibition of (-)-Sophoranone toward the Nine CYP Isoforms in Human Liver Microsomes

The inhibitory effects of SPN on the activities of nine CYP isozymes (CYP1A2, CYP2A6, CYP2B6,
CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) in human liver microsomes are shown
in Figure 2, and the IC50 values are listed in Table 2. The IC50 values for the positive controls
used in the reversible inhibition studies were in an acceptable degree of accuracy with published
values [12,19–21]. Of the P450 isoforms tested, SPN exerted the strongest inhibitory effect on
CYP2C9-catalyzed tolbutamide hydroxylation, with an IC50 value of 0.966 ± 0.149 µM (Table 2). SPN
showed weak inhibitory effects toward CYP2C8 and CYP2C19, with IC50 values of 13.6 ± 3.15 µM and
16.8 ± 3.21 µM, respectively. However, SPN had no apparent inhibitory effects toward the other CYPs
tested (Table 2); the residual enzyme activities at the highest tested concentration (50 µM) were greater
than 80%, except for CYP2D6 (53.9 ± 3.53%) and CYP3A4 (53.3 ± 4.00%) (Figure 2).
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Figure 2. Inhibition curves of SPN on the nine major P450 activities in human liver microsomes using 

substrate cocktails including CYP1A2 for phenacetin O-deethylase (A), CYP2A6 for coumarin 7-

hydroxylase (B), CYP2B6 for bupropion hydroxylase (C), CYP2C8 for rosiglitazone p-hydroxylase (D), 

CYP2C9 for tolbutamide 4-hydroxylase (E), CYP2C19 for omeprazole 5-hydroxylase (F), CYP2D6 for 

dextromethorphan O-demethylase (G), CYP2E1 for chlorzoxazone 6-hydroxylase (H), and CYP3A4 

for midazolam 1′-hydroxylase (I). The activity is expressed as a percentage of remaining activity 

compared with the control, no containing SPN. Data are the mean ± standard deviation of triplicate 

incubations. The dashed lines represent the best fit to the data with non-linear regression. 

Figure 2. Inhibition curves of SPN on the nine major P450 activities in human liver microsomes
using substrate cocktails including CYP1A2 for phenacetin O-deethylase (A), CYP2A6 for coumarin
7-hydroxylase (B), CYP2B6 for bupropion hydroxylase (C), CYP2C8 for rosiglitazone p-hydroxylase (D),
CYP2C9 for tolbutamide 4-hydroxylase (E), CYP2C19 for omeprazole 5-hydroxylase (F), CYP2D6 for
dextromethorphan O-demethylase (G), CYP2E1 for chlorzoxazone 6-hydroxylase (H), and CYP3A4 for
midazolam 1′-hydroxylase (I). The activity is expressed as a percentage of remaining activity compared
with the control, no containing SPN. Data are the mean ± standard deviation of triplicate incubations.
The dashed lines represent the best fit to the data with non-linear regression.

To determine whether the inhibitory effects of SPN on CYP2C9 was substrate specific, we
examined the inhibitory effects on other CYP2C9-specific biotransformation pathways (i.e., diclofenac
4′-hydroxylation and losartan oxidation) and found that SPN also markedly inhibited their activities,
with IC50 values of 0.879 ± 0.0888 µM and 0.455 ± 0.0486 µM, respectively, (Figure 3).
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Figure 4. Dixon plots to determine Ki values of SPN on the CYP2C9 enzyme activity, using 

tolbutamide (A) or diclofenac (B) as substrates. The well-known inhibitor of CYP2C9, sulfaphenazole, 

is used as a positive control (C) using tolbutamide as a substrate. The concentrations of tolbutamide 

were determined 50 (●), 100 (○), and 150 (▼) μM, respectively; diclofenac was used at 2 (●), 5 (○), and 

10 (▼) μM, respectively. v represents formation rate of 4-hydroxytolbutamide (nmol/min/mg protein) 

or 4′-hydroxydiclofenac (pmol/min/mg protein). Data are the mean ± standard deviation of triplicate 

incubations. The dashed lines of SPN (A,B) and sulfaphenazole (C) all fit well to competitive 

inhibition types. 

  

Figure 3. Inhibition curves of SPN on the CYP2C9-catalyzed diclofenac 4′-hydroxylation (A) and
losartan oxidation (B) activities in human liver microsomes. Data are the mean ± standard deviation of
triplicate incubations. The dashed lines represent the best fit to the data with non-linear regression.

3.2. Determination of the Ki of (-)-Sophoranone for CYP2C9 Activity

Based on the lowest IC50 value for CYP2C9, to characterize the type of reversible inhibition of
CYP2C9 by SPN, enzyme kinetic experiments were performed in the presence of various concentrations
of SPN and tolbutamide, or diclofenac. Otherwise, identical samples containing a known potent
CYP2C9 inhibitor (sulfaphenazole), were included in the analysis. Representative Dixon plots of
CYP2C9 inhibition by SPN and sulfaphenazole in human liver microsomes are shown in Figure 4,
and the Ki values are summarized in Supplemental Table S1. Using a nonlinear regression analysis,
SPN demonstrated competitive inhibition against CYP2C9-catalyzed tolbutamide hydroxylation or
diclofenac hydroxylation, with calculated Ki values of 0.503 ± 0.0383 µM and 0.587 ± 0.0470 µM
(Figure 4A,B). Sulphafenazole competitively inhibited CYP2C9 with a Ki value of 0.267 ± 0.0170 µM
(Figure 4C), which was similar to a previously reported value [28].
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Figure 4. Dixon plots to determine Ki values of SPN on the CYP2C9 enzyme activity, using tolbutamide
(A) or diclofenac (B) as substrates. The well-known inhibitor of CYP2C9, sulfaphenazole, is used
as a positive control (C) using tolbutamide as a substrate. The concentrations of tolbutamide were
determined 50 (•), 100 (#), and 150 (H) µM, respectively; diclofenac was used at 2 (•), 5 (#), and 10
(H) µM, respectively. v represents formation rate of 4-hydroxytolbutamide (nmol/min/mg protein) or
4′-hydroxydiclofenac (pmol/min/mg protein). Data are the mean ± standard deviation of triplicate
incubations. The dashed lines of SPN (A,B) and sulfaphenazole (C) all fit well to competitive
inhibition types.
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3.3. Time-Dependent Inactivation of (-)-Sophoranone towards the Nine CYP Isoforms in Human
Liver Microsomes

The IC50 shift method incorporating a dilution is one of the most efficient and convenient methods
for evaluating time-dependent inhibitory effects. A shift in IC50 to a lower value (“shift”) with
pre-incubation indicates time-dependent inactivation [29–31]. After 30 min pre-incubation of SPN
with human liver microsomes in the presence of NADPH, no obvious shift in IC50 was observed for
inhibition of the nine CYPs (Figure 5), suggesting that SPN is not a time-dependent inactivator for the
nine CYPs.
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Figure 5. Time-dependent inhibition curves of SPN on the nine major P450 activities in human liver
microsomes using substrate cocktails after 30 min pre-incubation with the presence (•) or absence (#)
of an NADPH-generating system. Data are the mean ± standard deviation of triplicate incubations.

3.4. Caco-2 Cell Permeability of (-)-Sophoranone

A bi-directional permeability assay using Caco-2 monolayer cells was performed to predict the
intestinal absorption of SPN. SPN showed very low permeability in both directions (from A-to-B and
B-to-A). The calculated Papp values of SPN from A-to-B were (0.115 ± 0.0369) × 10−6 cm/s and (0.172
± 0.0488) × 10–6 cm/s at 10 µM and 50 µM, respectively, (n = 3, each). These results indicated that
SPN is poorly absorbed in vivo. The Papp values from B-to-A were (0.101 ± 0.00444) × 10−6 cm/s at
10 µM (n = 3) and (0.152 ± 0.0353) × 10−6 cm/s at 50 µM (n = 3). SPN was not a substrate for efflux
transporters, that is, P-gp and BCRP, as the efflux ratio (B-to-A/A-to-B) is less than 2. The Papp of
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propranolol, a reference high permeable compound, from A-to-B and B-to-A were (26.8 ± 3.31) × 10−6

cm/s and (21.5 ± 2.19) × 10−6 cm/s, respectively, (n = 3, each), similar to the reported values [24,25].

3.5. Effects of (-)-Sophoranone on the Pharmacokinetics of Diclofenac in Rats

We conducted pharmacokinetic studies to investigate the effects of SPN on the pharmacokinetics
of diclofenac in rats. Findings in the literature on the dried S. tonkinensis herbs indicate that a
recommended daily dose for an adult human with the body weight of 60 kg were to be 6–10 g [32],
which correlated to the equivalent dose ranges in rats, 0.620–1.03 g/kg [33]. He et al. [2] reported
that the average contents of SPN in various S. tonkinensis samples were found to be approximately
2.53 mg/g (0.0253%). Reflecting this content, the dosage in rats, 0.620–1.03 g/kg of the dried herb, might
be consistent with 15.7–26.1 mg/kg in terms of SPN. Thus, in this study, the SPN dose of 75 mg/kg was
used in rats, which is approximately 2.87- to 4.87-fold greater than the recommended human dose.

The mean plasma concentration-time profiles of diclofenac and 4-hydroxydiclofenac after oral
administration of diclofenac (2 mg/kg) in the absence or presence of oral co-administration of SPN
(75 mg/kg) in rats are illustrated in Figure 6, and the relevant pharmacokinetic parameters are shown
in Table 3. The plasma levels of diclofenac and 4-hydroxydiclofenac were similar in both groups
(Figure 6A,B). Likewise, no significant differences were observed in any other pharmacokinetic
parameter of diclofenac and 4′-hydroxydiclofenac (Table 3). The in vivo marker for CYP2C9 activity,
expressed as the molar AUC ratio of 4′-hydroxydiclofenac to diclofenac, was not significant (0.799
± 0.167 versus 0.904 ± 0.0534; p value of 0.215) in the presence or absence of SPN (Table 3). In the
treatment group with co-administration of SPN, the Cmax of SPN was found to be 33.7 ± 14.8 ng/mL
(0.0732 ± 0.0321 µM) at approximately 60–75 min post-dose (Figure 6C). Given the Ki values of SPN on
CYP2C9 activity (0.503± 0.0383 µM for tolbutamide hydroxylation and 0.587± 0.0470 µM for diclofenac
hydroxylation), the plasma concentrations of SPN are too low to inhibit CYP2C9-mediated metabolism
of diclofenac in vivo. Overall, the co-administration of SPN did not alter the pharmacokinetics of
diclofenac and 4′-hydroxydiclofenac.
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Figure 6. Mean plasma concentrations of diclofenac (A) and 4′-hydroxydiclofenac (B) after oral 
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Figure 6. Mean plasma concentrations of diclofenac (A) and 4′-hydroxydiclofenac (B) after oral
administration of diclofenac at a dose of 2 mg/kg without (•, n = 6) or with (#, n = 6) oral dosing of SPN
(75 mg/kg) to rats. Mean plasma concentrations of SPN (C) after co-administration of SPN (75 mg/kg)
and diclofenac (2 mg/kg) to rats (N, n = 6). Vertical bars mean standard deviation.
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Table 3. Mean (± standard deviations) pharmacokinetic parameters of diclofenac and 4′-hydroxydiclofenac
after oral administration of diclofenac at a dose of 2 mg/kg without or with oral administration of SPN
(75 mg/kg) to rats.

Parameters Without SPN (n = 6) With SPN (n = 6)

Diclofenac

AUCt (µg min/mL) a 63.8 ± 6.28 69.4 ± 2.98
AUC∞ (µg min/mL) b 71.7 ± 9.16 80.8 ± 7.78

t1/2 (min) c 153 ± 60.1 173 ± 41.5
Cmax (ng/mL) d 882 ± 245 787 ± 104

Tmax (min) e 5 (3–5) 5 (3–5)

4′-hydroxydiclofenac

AUCt (µg min/mL) 44.8 ± 6.38 44.5 ± 7.24
AUC∞ (µg min/mL) 68.6 ± 12.1 67.6 ± 12.9

t1/2 (min) 278 ± 70.0 296 ± 59.7
Cmax (ng/mL) 180 ± 55.2 173 ± 40.8

Tmax (min) 10 (10–30) 15 (10–30)

Metabolic conversion ratio f

AUC∞, 4′-hydroxydiclofenac/AUC∞, diclofenac 0.904 ± 0.0534 0.799 ± 0.167

No significant differences were observed in all pharmacokinetic parameters of diclofenac and 4′-hydroxydiclofenac.
a Total area under the plasma concentration–time curve from time zero to time last sampling time; b total area under
the plasma concentration–time curve from time zero to infinity; c terminal half-life; d peak plasma concentration;
e time to reach Cmax. Median (ranges); f the metabolic conversion ratio, AUC∞,4′-hydroxydiclofenac/AUC∞,diclofenac, was
calculated based on a molar basis.

3.6. Determination of the Unbound Fraction of (-)-Sophoranone in Plasma and Human Liver Microsomes

SPN was extensively bound to plasma proteins, regardless of species. The free fractions (%) of
SPN at 10 and 50 µM in human plasma were 0.0457 ± 0.00612% and 0.0927 ± 0.0400%, respectively,
(n = 3, each). Similarly, when 10 and 50 µM SPN were added to the rat plasma, the free fractions were
0.0380 ± 0.0102% and 0.0531 ± 0.0149%, respectively, (n = 3, each). After adding 10 and 50 µM SPN
to rat and human plasma, free fractions remained relatively unchanged, suggesting that SPN has no
binding saturation in plasma.

SPN also exhibited marked non-specific bindings to human liver microsomes, although to a lesser
extent than those in human plasma. The unbound fractions of SPN at 10 and 50 µM were calculated to
be 0.621 ± 0.0405% and 0.724 ± 0.170%, respectively (n = 3, each), at a microsomal protein concentration
of 0.1 mg/mL.

4. Discussion

This study focused on the in vitro and in vivo inhibitory effects of SPN on human CYPs, especially
CYP2C9. We screened the inhibitory effects of SPN on the major human CYP isoforms (CYP1A2,
CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) in human liver
microsomes. Of the nine tested CYP isoforms, SPN exerted the strongest inhibitory effect on CYP2C9
activity, with the lowest IC50 value of 0.966 ± 0.149 µM (Table 2; Figure 2). In addition to CYP2C9, SPN
mildly inhibited several CYP enzymes, with potency ranked in the order CYP2C8 > CYP2C19; the
IC50 values were 13.6 ± 3.15 µM and 16.8 ± 3.21 µM, respectively (Table 2; Figure 2). Although the
IC50 values could not been calculated, SPN also appears to weakly inhibit CYP2D6 and CYP3A4; the
residual enzyme activities at the highest tested concentration (50 µM) were 53.9 ± 3.53% and 53.3 ±
4.00%, respectively (Figure 2). No apparent inhibition of the other CYPs (CYP1A2, CYP2A6, CYP2B6,
and CYP2E1) was observed (Figure 2). SPN also strongly inhibited other CYP2C9-catalyzed diclofenac
4′-hydroxylation and losartan oxidation activities (Figure 3). The inhibition mechanisms of SPN on
CYP2C9-catalyzed tolbutamide 4-hydroxylation and diclofenac 4′-hydroxylation activities were both
competitive, with Ki values of 0.503 ± 0.0383 µM and 0.587 ± 0.0470 µM, respectively. Pre-incubation
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of SPN for 30 min with human liver microsomes and an NADPH-generating system did not alter the
inhibition potencies against the nine CYPs, suggesting that SPN is not a time-dependent inactivator.

The reversible inhibition of SPN-mediated CYP3A4 activity was less consistent with the published
literature. Li et al. [16] reported that among 44 tested flavonoids, SPN inhibited CYP3A4-catalyzed
bufalin 5′-hydroxylation activity with a Ki value of 2.17 ± 0.29 µM. They only focused on the in vitro
inhibitory potentials of several flavonoids against CYP3A4 activity. To the best of our knowledge,
to date, bufalin has not been used as the in vitro probe substrate for the CYP3A4 activity, and the
reference material of 5′-hydroxybufalin is not commercially available. Because of the presence of
several binding regions within the CYP3A4 active site, multiple probe substrates are often used
for in vitro CYP3A4-mediated drug–drug interaction studies, including midazolam, nifedipine, and
testosterone [34]. In that study, when other CYP3A4 substrates were tested, the ranges of IC50 values by
SPN were reported to be 5.62–38.4 µM [16]. Additionally, we examined the inhibitory effect on another
CYP3A4-catalyzed testosterone 6β-hydroxylation and found that SPN also inhibited the activity with
an IC50 value of 31.5 ± 4.79 µM, which showed a higher percentage inhibition compared to midazolam
(data not shown). Altogether, the in vitro CYP3A4 inhibition by SPN seemed to be substrate-specific.

Generally, alterations in the activities of hepatic CYPs through in vitro inhibition or induction
represent the major mechanisms underlying pharmacokinetic drug–drug interactions [11–13]. It has
been estimated that CYP2C9 is responsible for the metabolic clearance of up to 15–20% of all drugs
undergoing phase I metabolism, including clinically important drugs such as S-warfarin, phenytoin,
tolbutamide, losartan, and several anti-inflammatory drugs [23,35]. Considering that SPN is a potent
CYP2C9 inhibitor in vitro, there may be potential for herb–drug interactions between SPN and CYP2C9
substrates after concomitant oral administration.

Using the in vitro reversible inhibition results, a clinical drug–drug interaction risk was initially
predicted by the basic static model approach, as recommended by the EMA [36] and US FDA [37] with
calculating the R1 value (R1 = 1 + [Imax,u/Ki,u]), which representing the predicted AUC ratio in the
presence or absence of inhibitor. Where, Imax,u (Cmax,u) is maximal free plasma concentration of the
inhibitor and Ki,u is the unbound in vitro inhibition constant. However, little information is yet to be
reported on the Cmax values of SPN after oral administration of SPN. As stated in the Introduction, from
our previous study, the Cmax of SPN was reported to be 13.1 ng/mL in rats after oral dosing of 12.9 mg/kg
SPN in rats [8]. Thus, we investigated whether SPN affects the pharmacokinetics of diclofenac and
4′-hydroxydiclofenac, produced by hepatic CYP2C9 enzyme, in rats. In the group that received
co-administration of SPN (75 mg/kg), the Cmax of SPN was found to be 33.7 ± 14.8 ng/mL (0.0732
± 0.0321 µM) at 60–75 min (Figure 6C). These results suggest that SPN has low oral bioavailability.
The calculated values of Imax, u and Ki,u for SPN used in this study were 0.0420 ± 0.0184 nM and
3.39 ± 0.258 nM (3.95 ± 0.316 nM for diclofenac 4′-hydroxylation), respectively. Considering these
values, the R1 value of SPN for the inhibition of CYP2C9 in vitro was calculated as 1.0124 (Ki, u for
tolbutamide 4-hydroxylation) or 1.0106 (Ki, u for diclofenac 4′-hydroxylation) which are both below
the EMA and US FDA cut-off criteria of R1, 1.02 [36,37], indicating that the potential for clinically
relevant drug interaction-mediated CYP2C9 inhibition by SPN may be low and no clinical interaction
studies are warranted. In our results, also no significant differences were observed in any of the other
pharmacokinetic parameters of diclofenac and 4′-hydroxydiclofenac in rats in the absence or presence
of oral co-administration of SPN at a dose of 75 mg/kg (Table 3). Furthermore, the molar metabolic
conversion ratio, expressed as AUC4′-hydroxydiclofenac/AUCdiclofenac, which indicated a causal factor for
the evaluation of the capacities of CYP2C9 activity in vivo, did not show significant differences (0.799
± 0.167 versus 0.904 ± 0.0534) in both groups (Table 3).

To explain the lack of in vitro–in vivo correlation, we assessed two factors that could limit the
accuracy of in vitro models in predicting metabolic drug interactions in vivo, which were SPN’s degree
of plasma protein binding and its permeability in Caco-2 cells. We found that SPN was extensively
bound in both human and rat plasma proteins (>99.9%) with a mean unbound fraction value of 0.0574%
in the range of 10 and 50 µM. Thus, taking the plasma protein binding of SPN into account, the unbound
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maximum concentrations of SPN in plasma might be 0.0420 ± 0.0184 nM, which is much lower than
the unbound Ki values of SPN in vitro. Some drugs that indicate in vitro–in vivo discrepancy because
of high plasma protein bindings have been reported [38–40]. Tolfenamic acid strongly inhibited
CYP1A2 in vitro but not in vivo because of high plasma protein binding (99.7%) [38]. Montelukast
is a very potent inhibitor of CYP2C8 in vitro with Ki values ranging from 0.0092–0.15 µM [41].
However, in humans, montelukast has had no effect on the pharmacokinetics of the CYP2C8 substrates,
pioglitazone [39] and rosiglitazone [40]. The high degree of protein binding of montelukast in plasma
(>99.7%) is similar to that of tolfenamic acid and explicitly explains the lack of its in vivo interaction,
irrespective of its strong inhibitor potency in vitro. The Caco-2 cell model is widely used to predict the
absorption across the intestinal barrier, and a good correlation between its oral absorption in humans
and its apparent permeability (Papp) across the Caco-2 cell barrier has been shown [24,25]. A recent
study has provided some updated guidelines on how permeability values might correlate with human
oral absorption: Low permeability (0–20% absorbed) is correlated to Papp values < 1–2 × 10−6 cm/s;
moderate permeability (20–80% absorbed) to Papp values < 2–10 × 10−6 cm/s; and high permeability
(80–100% absorbed) to Papp values > 10 × 10−6 cm/s [42]. Propranolol had >90% human absorption and
exhibited high permeability with a Papp value of (26.8 ± 3.31) × 10−6 cm/s in our assay. SPN exhibited
a very low permeability with mean Papp values of 0.115 × 10−6 cm/s (0.429% of propranolol Papp) and
0.172 × 10−6 cm/s (0.642% of propranolol Papp) at 10 and 50 µM, respectively, indicating that it is poorly
absorbed in vivo. SPN was not a substrate for efflux transporters, that is, P-gp and BCRP, as the efflux
ratio (B-to-A/A-to-B) is less than 2.

Overall, SPN is a potent inhibitor of CYP2C9 in vitro but not in vivo. This apparent discrepancy is
due to the extensive plasma protein binding and very low permeability of SPN, which resulted in poor
oral absorption. These approaches could help in making more reliable in vitro–in vivo extrapolations
about the risk of in vivo inhibition potential. In conclusion, these findings have provided useful
information on the safe and effective use of SPN in clinical practice.

Supplementary Materials: The following is available online at http://www.mdpi.com/1999-4923/12/4/328/s1,
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inhibition types for CYP2C9 by SPN and sulfaphenazole in human liver microsomes (n = 3).
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