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Purpose: Retinopathy of prematurity (ROP) is a leading cause of childhood blindness.
An accurate and timely diagnosis of the early stages of ROP allows ophthalmologists
to recommend appropriate treatment while blindness is still preventable. The purpose
of this study was to develop an automatic deep convolutional neural network–based
system that provided a diagnosis of stage I to III ROP with feature parameters.

Methods: We developed three data sets containing 18,827 retinal images of preterm
infants. These retinal images were obtained from the ophthalmology department of
JiaxingMaternal and Child Health Hospital in China. After segmenting images, we calcu-
lated the regionof interest (ROI).We trainedour systembasedon segmentedROI images
from the training data set, tested the performance of the classifier on the test data set,
and evaluated the widths of the demarcation lines or ridges extracted by the system, as
well as the ratios of vascular proliferation within the ROI on a comparison data set.

Results: The trained network achieved a sensitivity of 90.21% with 97.67% specificity
for the diagnosis of stage I ROP, 92.75% sensitivity with 98.74% specificity for stage II
ROP, and 91.84% sensitivity with 99.29% sensitivity for stage III ROP. When the system
diagnosed normal images, the sensitivity and specificity reached 95.93% and 96.41%,
respectively. The widths (in pixels) of the demarcation lines or ridges for normal, stage I,
stage II, and stage III were 15.22± 1.06, 26.35± 1.36, and 30.75± 1.55. The ratios of the
vascular proliferation within the ROI were 1.40 ± 0.29, 1.54 ± 0.26, and 1.81 ± 0.33. All
parameters were statistically different among the groups. When physicians integrated
quantitative parameters of the extracted features with their clinic diagnosis, the κ score
was significantly improved.

Conclusions: Our system achieved a high accuracy of diagnosis for stage I to III ROP. It
used the quantitative analysis of the extracted features to assist physicians in providing
classification decisions.

TranslationalRelevance: Thehighperformanceof the system suggests potential appli-
cations in ancillary diagnosis of the early stages of ROP.

Introduction

Retinopathy of prematurity (ROP) is a vasopro-
liferative disorder that occurs in premature infants
with lighter weights and shorter gestation periods.1
This disease is a leading cause of childhood blind-
ness. As the survival rate of preterm infants is increas-

ing, the number of children with ROP is also increas-
ing.2 In the 1980s, the International Classification of
Retinopathy of Prematurity was developed,3 which
was revised in 2005.4 In 2021, the third edition was
published.5 According to the guide, the diagnosis of
ROP involves three dimensions: stages I to V, zones
I to III, and the presence of pre-plus disease or plus
disease.

Copyright 2022 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:airrob@163.com
https://doi.org/10.1167/tvst.11.5.17
http://creativecommons.org/licenses/by-nc-nd/4.0/


Early Detection and Analysis of ROP Using DCNNs TVST | May 2022 | Vol. 11 | No. 5 | Article 17 | 2

It is important to diagnose ROP accurately and
timely, by clinical fundus examination or by reading
retinal images. However, since classification guidelines
provide only qualitative indications, this leads to a
diagnostic result that depends mainly on the ophthal-
mologists’ subjective decisions.6 In addition, diagnostic
differences also exist when different experts use differ-
ent hardware in different regions. All of these lead to
inconsistent diagnostic results for ROP.

To address this problem, many experts have devel-
oped semiautomated quantitative analysis tools to
diagnose ROP more objectively. Their results include
ROP Tool,7 principal spanning forests algorithms,8
computer-aided retinal image analysis,9 and so
on. However, these methods were not completely
automatic, and humans needed to determine features
and cut points. In general, the output did not correlate
well enough with clinical diagnoses to be widely used.10

Deep convolutional neural networks (DCNNs)11
have shown great advantages in many medical image
applications.12–15 DCNNs provide a fully automated,
end-to-end solution and do not need manual input,
which is a huge advantage.

Plus disease, which has been studied by many
experts, is an important feature in determining the need
for treatment for ROP. In 2016, Worrall et al.16 began
to apply DCNNs in the diagnosis of Plus disease for
premature infants. Brown et al.17 studied a completely
automatic system, which was able to classify retinal
images as normal, pre-plus disease, and plus disease
with great accuracy.

In another direction, the diagnosis of early stage
ROP has also been researched. This is not only because
the diagnosis of stages relies mainly on subjective inter-
pretations,6 but the diagnoses between stages I and
III are also crucial,4 which allow doctors to recom-
mend the appropriate treatment while blindness is still
preventable. In contrast, patients with stages IV to V
have already had irreversible damage to the retinas.

In 2018, Hu et al.18 applied DCNNs in the diagno-
sis of stage I to III ROP. Mulay et al.19 and Ding et
al.20 diagnosed stages of ROP using segmented images
based on DCNNs. This is not only because stages I to
III and normal retinas are more subtly classified by the
existence, size, and shape of the demarcation line or
ridge as well as vascular proliferation, but also these
features are well fitted to be obtained by segmenting
using DCNNs.

DCNNs have been found to have improved perfor-
mance in medical image fields.21 However, they also
have limitations in that the features on which DCNNs
rely are not transparent or explainable.22 The limitation
presents great challenges for the adoption of DCNNs
because medical accountability is important and may

lead to serious legal consequences. An ideal system
should be able to provide not only objective results but
also the reasons behind them. Many experts tried to
have more explainable DCNNs by combining DCNNs
with traditional feature extractions. Similar work had
been done by Mao et al.23 and Yildiz et al.24 in the
diagnosis of plus disease.

In this study, we developed an automated DCNN-
based system. Using segmented images, we trained
a classifier to categorize images into four categories:
normal, stage I ROP, stage II ROP, and stage III ROP.
By evaluating the feature parameters extracted by our
system, we showed significant differences among differ-
ent categories. In addition, we showed the role of these
parameters in improving the consistency of the manual
diagnosis. To the best of our knowledge, this was the
first attempt to quantitatively analyze the segmented
features for diagnosis of early stage ROP.

Methods

The study was approved by the Ethics Review
Committee of Jiaxing Maternal and Child Health
Hospital, China, and followed the principles of the
Declaration of Helsinki.

Data

All images of premature infants were collected
from January 2018 to December 2020 at the Ophthal-
mology Department of Jiaxing Maternal and Child
Health Hospital by the Retcam3 (Natsu Medical, Inc.,
Pleasanton, CA, USA) imaging system. These images
were collected from five standard fields of view (poste-
rior, nasal, temporal, superior, and inferior) and were
1600 × 1200 in size (in pixels).

After abandoning low-quality images, we selected
18,827 retinal images collected from preterm infants
with a gestational age of fewer than 37 weeks and
a weight less than 2000 g. We invited several experts
(more than three) to remove low-quality images by
consensus selections according to the following crite-
ria:

1. Less than 25% of the peripheral area of the retina
is unobservable due to artifacts, including the
presence of foreign bodies, out-of-focus imaging,
blurring, and extreme light conditions.25

2. Insufficient focus of the images with blood vessels
is the reference.

We constructed three data sets: a training data
set to train DCNNs, a test data set to test the
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Table 1. Characteristics of the Three Data Sets

Training Data Set Test Data Set Comparison Data Set

Characteristic Patients Eyes Images Patients Eyes Images Patients Eyes Images

Gestation (weeks) 31.31 ± 5.42 30.43 ± 5.80 30.82 ± 5.61
Birthweights (g) 1542.01 ± 435.02 1442.03 ± 517.03 1512 ± 467.00
Normal 1785 2203 11,544 447 552 2893 —
Stage Ⅰ 231 286 1499 58 72 378 —
Stage Ⅱ 157 194 1017 40 50 262 —
StageⅢ 87 108 566 22 28 147 —
Total 2260 2791 14,626 567 702 3680 73 97 521

performance of the network, and a comparison data set
to compare DCNN predictions with manual diagno-
sis. We assigned a reference diagnostic criterion (stage
I ROP, stage II ROP, stage III ROP, or normal) to
each image in training and test data sets. The refer-
ence diagnostic criteria were determined by the consen-
sus diagnosis provided by three ROP experts and
compared to the previous clinical diagnosis.

Table 1 describes the characteristics of the three data
sets, with 14,626, 3680, and 521 retinal images originat-
ing from 2260, 567, and 73 different preterm infants,
respectively.Multiple images of different standard view
fields were acquired for each eye, which led to a signif-
icant increase in the number of images.

To train the vessel segmentation network, we
selected 1825 (204 infants) retinal images from the
training data set and trained and tested the network
in a ratio of 1464 (162 infants) to 361 (42 infants).
An ophthalmologist annotated the retinal vessels using
the brush annotation tool in dedicated annotation
software. To train the segmentation network for the
demarcation line or ridge, we selected 2738 (306
infants) retinal images from the training data set and
trained and tested the network in a ratio of 2196 (243
infants) to 542 (63 infants). An ophthalmologist, using
dedicated standard software, drew a boundary polygon
around the demarcation line or ridge and labeled the
polygon regions.

The test data set consisted of 3680 images (567
infants), of which 2893 were normal (447 infants), 378
were stage I ROP (58 infants), 262 were stage II ROP
(40 infants), and 147 were stage III ROP (22 infants).
The timing of retinal screening, the time interval of
follow-up, and the time points for treatment of thresh-
old ROP and prethreshold ROP were performed in
strict accordance with the guidelines. Children were
treated as soon as they developed the threshold ROP
or prethreshold ROP. Therefore, there were no cases of
stage IV and V ROP in this study.

All images in the comparison data set were collected
from 73 infants. We extracted feature parameters to
analyze the differences among the groups and the corre-
lation between the features and stages. We invited two
ophthalmologists with different experience to perform
image diagnosis separately, to study the significance of
the system based on quantitative analysis in assisting
the clinic diagnosis of stages of ROP.

Network Architectures

The structure of our system is given in Figure 1.
Image inputs were segmented by two seep learning
networks (Fig. 1A). Then, we calculated the ROI (Fig.
1B) and extracted the feature parameters (Fig. 1C). We
trained the classifier (Fig. 1D) with the ROI segmented
images to diagnose normal and stage I to III ROP.

Segmentation

As shown in Figure 1, at the beginning of our
system, the input retinal images were segmented by
two deep learning networks. One segmented the retinal
blood vessels, and the other segmented the demarcation
lines or ride.

We used two open-source Retina U-Nets26 as
the segmentation networks. During the training,
we modified the number of convolution kernels
between different layers, applied the stochastic gradi-
ent optimizer, and set the momentum to 0.9, the learn-
ing rate to 0.001, the batch size to 32, and the gradi-
ent clipping to 5.0. The Retina U-Nets were initialized
from the Gaussian distribution N (0, 0.01). Through-
out the entire process of segmentation, the size (in
pixels) was always maintained at the original size (1600
× 1200). We used whole images instead of slicing or
cropping them.



Early Detection and Analysis of ROP Using DCNNs TVST | May 2022 | Vol. 11 | No. 5 | Article 17 | 4

Figure 1. Structure of the proposed system.

ROI Determination

After binarizing the segmented images using the
Otsu algorithm,27 we used the Canny edge detection
algorithm28 to detect the contours of the demarcation
lines or ridge. We also used the Sklansky algorithm29 to
find the convex packets, followed by the rotating caliper
algorithm30 to obtain the minimum outer rectangles.
Finally, we used nonmaximum suppression to remove
the redundant rectangles.

We used the cv2.logic_or function from
Opencv4.5.2 (Open-Source Computer Vision Library)
to integrate the segmented vessels with the segmented
demarcation lines or ridge. Since they were all 1600
× 1200 in size, we did not need to resize them. We
took the lengths and 1.5 times the widths of the
minimum external rectangles as parameters to draw a
new rectangle. To study the vascular proliferation near
the demarcation lines or ridge, we offset the rectangle
toward the vascular direction. Finally, we obtained this
rectangle region (ROI).

Feature Extraction

We performed a Euclidean distance transforma-
tion on the binarized segmented images. By calcu-
lating the distances to the nearest contour pixels,
we obtained the widths of the segmented demarca-
tion lines or ridges. We also used the Zhan-Suen fast
parallel refinement algorithm31 to extract centerlines
from the segmented vessels. After corner point detec-
tion using the Chord-to-Point Distance Accumulation
(CPDA) detection method,32 we obtained all candidate

nodes. We calculated the branching ratios based on the
bifurcation points distinguished from candidate points
using adaptive rectangular windows. We analyzed only
the bifurcation points within the ROI, and the param-
eters obtained were all averaged.

Classifier

We used the Dense Net33 to classify the images into
four categories: normal, stage I ROP, stage II ROP, and
stage III ROP. Dense Net is an excellent classification
network that has several compelling advantages: allevi-
ating the gradient disappearance problem, enhancing
feature propagation, encouraging feature reuse, and
greatly reducing the number of parameters. We set the
output of the final layer to 4 and the batch size to 20.
We also used migration learning from the ImageNet34
data set to initialize the weights of the model. By
flipping them horizontally, vertically, and rotating them
at six different angles, data augmentation was applied.

Statistical Analysis

Weused the area under the curve (AUC) score under
the receiver operating characteristic curve to measure
the performance of the classifier during training. To
avoid overfitting and underfitting, we divided the
training data set into five parts, randomly selected four
parts for training, and used the remaining for testing.
The cross-validations were repeated five times (fivefold
cross-validation) to obtain AUC scores, and 95% confi-
dence intervals were calculated using the formula of
Hanley and McNeil.35 We used the Scikit-Learn
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library tools (French Institute for Research in
Computer Science and Automation, Rocquencourt,
France) to calculate the AUC scores.

On the basis of the AUC scores, we selected the
best configuration and conducted performance tests.
To measure the performance of the classifier, we calcu-
lated the sensitivity and specificity of the results on the
test data set.

The guidelines4 tell us that stage I to III ROP
and normal retinas are more subtly classified by the
existence, size, and shape of the demarcation line or
ridge as well as vascular proliferation. Therefore, our
system evaluated the widths of the demarcation line or
ridge and the ratios of vessel proliferation within the
ROI.

A one-way analysis of variance (ANOVA) was
conducted on the extracted feature parameters from
images of the comparison data set to obtain the differ-
ences between groups of stages I to III. For ANOVA,
we performed a χ2 test and used S-N-K and Duncan’s
assumption of equal variance.

Due to the temporal sequential nature of the
stages, we conducted ordered logistic regression on
the extracted feature parameters. We performed a
parallel line test to make sure that the autoregressive
coefficients of the independent variables were always
constant. We also set 95% confidence intervals, as well
as the maximum stepwise quadratic score to 5 and
the maximum number of iterations to 100. Finally, we
chose the feature parameters of stage III as a reference.

We also invited two ophthalmologists with differ-
ent experience to perform manual diagnoses on the

comparison data set. We used the results of DCNN
predictions and manual diagnosis to calculate κ values
to investigate the role of our system in improving the
consistency of clinical diagnostic results.

Experiments

All networks were implemented in Tensorflow1.10
(NVIDIA, Santa Clara, CA, USA) and evaluated on a
computer with anNVIDIAGeForce TITANXPGPU.
All statistical analyses were performed using the statis-
tical software SPSS Statistics 26.0 (IBM, Armonk, NY,
USA).

Results

Automated Segmentation of Blood Vessels
and Demarcation Lines or Ridges

The segmentation results of blood vessels and
demarcation lines or ridges for four categories are
shown in Figure 2. For blood vessels, the sensitivity
was 0.82 and specificity was 0.98. To our knowledge,
there has been no study on the quantitative analysis
of stage I to III ROP using DCNNs. However, previ-
ous studies using DCNN methods for segmentation
of retinal vessels obtained a sensitivity and specificity
of 0.7 to 0.9 and 0.8 to 0.9, respectively.36 Mao et
al.23 used modified U-Net to segment vessels in retinal
images of preterm infants and obtained a sensitivity of
0.72 and a specificity of 0.99. In this work, the sensi-

Figure 2. Original images and segmented images.
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Figure 3. Images in the processing of ROI determination.

tivity of segmentation of the demarcation line or ridge
reached 0.93 and the specificity was 0.99.

Figure 2 shows the original images and their
segmented images. The images in the first row are
the input retinal images, the middle row shows the
segmented vessels, and the segmented demarcation
lines or ridges are in the last row. Starting from the
left column, the images are sorted by different stages
(normal, stage I, stage II, and stage III). No demarca-
tion lines or ridges were detected in normal images, so
the segmented image in the first columnwas completely
black (background).

Determination of ROI

As shown in Figure 3, original retinal images are
in the first row, segmented images of demarcation
lines or ridges with minimum external rectangles (red

rectangles) are in the third row, and the images in the
fourth row are the integrated segmented images with
red rectangles (ROI). The images in the last row are
black (background) except the ROI, and these images
are the inputs to the classifier.We also extracted feature
parameters from the segmented images to perform
statistical analysis, and the relevant data are in the
section on statistics regarding extracted features.

Training and Performance of the Classifier

We applied a convolutional neural network classi-
fier (Dense Net) to diagnose stage I to III ROP, and the
training results of the classifier on the training data set
are shown in Figure 4. Our classifier reached an average
AUC score of 0.9612 for normal (Fig. 4A), 0.9252
for stage I ROP (Fig. 4B), 0.9868 for stage II ROP
(Fig. 4C), and 0.9875 for stage III ROP (Fig. 4D).
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Figure 4. Fivefold cross-validations of the classifier on the training data set.

Table 2. DCNN Predictions and Reference Criteria on
the Test Data Set

Reference Criteria

DCNN Prediction Normal Stage I Stage II Stage III Total

Normal 2789 21 6 5 2821
Stage I 64 341 9 4 418
Stage II 23 12 243 3 281
Stage III 17 4 4 135 160
Total 2893 378 262 147 3680

Based on the results of fivefold cross-validations, we
selected the best-performing configuration (blue curve)
with an average AUC score of 0.9663 for all different
stages.

We tested the performance of the classifier on
the test data set, with the results shown in Table 2.
The network correctly diagnosed 3508 of 3680 images
(95.33%), as shown in Table 2, which achieved a sensi-
tivity of 90.21% and a specificity of 97.67% for the
diagnosis of stage I ROP, a sensitivity of 92.75% and
a specificity of 98.74% for stage II ROP, and a sensitiv-

ity of 91.84% and a specificity of 99.29% for stage III
ROP. When the system diagnosed normal images, the
sensitivity and specificity reached 95.93% and 96.41%,
respectively.

Statistics Regarding Extracted Features

On the basis of the segmented retinal images of
the comparison data set, we evaluated the widths of
the demarcation line or ridge and the ratios of vessel
proliferation within the ROI. We performed a one-way
ANOVA on feature data, and the results are shown
in Table 3.

The results of the one-way ANOVA test are shown
in Table 3 widths (in pixels) of the demarcation line
or ridge for stage I, stage II, and stage III ROP were
15.22 ± 1.06, 26.35 ± 1.36, and 30.75 ± 1.55, respec-
tively, while ratios of the vascular proliferation within
the ROI were 1.40 ± 0.29, 1.54 ± 0.26, and 1.81 ±
0.33, respectively. All values were statistically different
among the groups (P < 0.001, 95% confidence inter-
val). Note that inputs of segmented normal images
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Table 3. One-Way ANOVA for Feature Parameters

Features States n Mean ± SD F Significance

Width of the demarcation line (or ridge) I 45 15.2180 ± 1.0605a 1390.927 0.000
II 42 26.3475 ± 1.3552b

III 24 30.7455 ± 1.5462c

Vascular bifurcation ratio (ROI) I 45 1.3963 ± 0.2879a 16.703 0.000
II 42 1.5385 ± 0.2566b

III 24 1.8134 ± 0.3267c

Different superscripted letters indicate significant difference between groups.

Figure 5. Quantification parameters of extracted features.

Table 4. Ordered Logistic Regression for Feature Parameters

OR (95% CI)

Characteristic Wald df P OR Lower Upper

Stage 1 20.891 1 0.000 5.371E+24 32.525 81.361
Stage 2 23.972 1 0.000 2.097E+32 44.631 104.215
Widths 23.615 1 0.000 10.892 1.425 3.351
Bifurcation ratio 4.995 1 0.025 45.015 0.468 7.146

CI, confidence interval; OR, odds ratio.

were all black (background) and therefore not counted
in Table 3.

The mean parameters of the segmented features are
shown in Figure 5. All parameters increased signif-
icantly from stages I to III and reached the highest
values in stage III.

We also performed ordered logistic regression on
feature parameters. The parallel test met the require-
ments (P > 0.05), the model fit χ2 value was 429.112
(P < 0.001), and the Cox–Snell value was 0.882, which
indicated that the regression model explained up to
88.20% of the parameters.

We used the feature parameters of stage III ROP
as a reference to dividing the model into two binary
logistic models. The results are in Table 4. We found
that the classification of stage I to III ROP was related
to the widths of the demarcation line or crest and

the ratios of vessel proliferation within the ROI (P
< 0.001, 95% CIconfidence interval), and images with
larger widths were 10.89 times more likely to be classi-
fied as stage II or III. Meanwhile, images with larger
vascular bifurcation ratios were 45.02 times more likely
to be classified as stage II or III.

We invited two ophthalmologists, one with over 10
years of experience and the other with only 3 years of
standardized training, to diagnose retinal images of the
comparison data set.

In Table 5, we calculated the κ score for DCNN
predictions and the diagnosis from an ophthalmolo-
gist with 10 years of experience (κ = 0.9425), which
was close to perfect agreement. We also calculated
scores for an ophthalmologist with only 3 years of
training experience. When diagnosed with original
retinal images (Table 6), the score was 0.8385, and
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Table 5. DCNN Predictions and Manual Diagnosis
(with 10 Years of Experience)

Manual DiagnosisDCNN
Predictions Normal Stage I Stage II Stage III Total

Normal 406 3 1 0 410
Stage I 2 41 2 0 45
Stage II 0 1 40 1 42
Stage III 0 0 1 23 24
Total 408 45 44 24 521

Table 6. DCNN Predictions and Manual Diagnosis
(with 3 Years of Training)

Manual Diagnosis

DCNN
Predictions Normal Stage I Stage II Stage III Total

Normal 401 8 1 0 410
Stage I 5 38 2 0 45
Stage II 1 2 34 5 42
Stage III 0 1 6 17 24
Total 407 49 43 22 521

Table 7. DCNN Predictions and Manual Diagnosis
(images with quantitative parameters)

Manual Diagnosis (with 3 Years of Training)

DCNN
Predictions Normal Stage I Stage II Stage III Total

Normal 405 5 0 0 410
Stage I 3 41 1 0 45
Stage II 0 1 39 2 42
Stage III 0 0 2 22 24
Total 408 47 42 24 521

Note: Bold values were significant growth values.

when diagnosed with images with feature parameters,
the score was 0.9268 (Table 7). We found that the
ophthalmologists could use the quantitative segmen-
tation features as the basis for their clinic diagnostic
decisions, combining manual diagnosis with quantita-
tive parameters to improve the consistency of diagnos-
tic results for early stages of ROP.

Discussion

In this study, we developed an automatic diagnos-
tic system based on DCNNs. We trained the system
using segmented images within the ROI, which could
provide a diagnosis of stage I to III ROPwith extracted

parameters. We also performed a quantitative analysis
of these parameters.

Unlike theMask R-CNN architecture used by Ding
et al.,20 we used two Retina U-Nets and a Dense Net.
Retina U-Net combined the Retina Net,37 a one-stage
detector, and the structure of U-Net,38 which could
preserve the location information in images well. We
calculated the ROI to extract the features, and by this
method, we completed the data compression. Through-
out the whole process, the size of images was always
kept to the original, instead of resizing images to
299 × 299 (in pixels) and training the system after
randomly slicing images, as Ding et al.20 did. A study
done by Kim et al.39 showed that retinal appearance
assessment based on the whole image provided a more
accurate and reliable DCNN classification compared
to quadrant-based assessment.

With the Dense Net as a classifier, we achieved an
overall accuracy of 97.98% for all four categories of
the test data set, with a κ score of 0.9425. In a similar
work, Ding et al.20 obtained an overall accuracy of
67%. Of course, we cannot simply compare the perfor-
mance metrics because of the different data sets.

More important, we not only provided an automatic
classifier based onDCNNbut also performed a quanti-
tative analysis of the extracted feature parameters.
The results of the statistical analysis of the parame-
ters of the widths of the demarcation lines or ridges
and the ratios of the vascular proliferation within the
ROI showed that all quantitative parameters increased
significantly among different groups. This may help to
enhance the explainable DCNN predictions.

The results of the ordered logistic regression for
these parameters showed that ratios of the vascular
bifurcation within the ROI had a greater odds ratio
value (45.015 vs. 10.892), which suggests that ratios
played a greater role in the diagnosis of stages II and
III. Second, the quantitative parameters of the ratios
in Figure 5 showed a smaller difference between stages
I and II, suggesting that the system relied more on the
quantitative width parameters when diagnosing stage I,
which explained why we obtained only 90.21% sensitiv-
ity in stage I. Finally, the logistic model explained only
88.2% of all parameters, which indicates that DCNNs
learned more features than the two extracted ones. In
the future, the dissection and visualization of features
learned by DCNNs will be very interesting.

We also performed comparative tests on the
comparison data set. Physicians integrated quantitative
parameters of the extracted features with their clinic
diagnosis, and the κ score was improved from 0.8385 to
0.9268. This suggested that our study may help allevi-
ate the current situation of the insufficient number of
hospital ophthalmologists.40
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Limitations

The input images were a potential limitation for
our system. We used only retinal images of suffi-
cient quality, which were acquired at Jiaxing Mater-
nal and Child Health Hospital using Retcam3 from
preterm infants with lighter weights and shorter gesta-
tion periods. The Retcam3 imaging system is expen-
sive, so many hospitals use other alternative devices
such as PanoCam (Visunex Medical Systems, Suzhou,
Jiangsu, China), and the different devices introduce
differences in images. Second, during the screening of
newborns, the ROP has been detected in many heavier
and full-term infants. Therefore, it may not be suffi-
cient to extract features from images of preterm infants
alone. Finally, the sufficient quality images selected only
may not represent reality. We may lose features in the
suboptimal images.

Future Work

In future studies, we will try to collaborate with
different regions and hospitals to obtain more retinal
images of preterm infants using different devices. We
will expand data sets using newborn screening images
to extract features to diagnose ROP, rather than just
images from preterm infants. We will also investigate
more stringent, quantitative image screening criteria
and develop preprocessing modules to provide image
screening automatically and objectively, and it would
also be interesting to dissect and visualize the features
learned by the DCNNs in future studies.

Conclusion

The system we studied was capable of providing an
accurate diagnosis of stage I to III ROP. Ophthalmolo-
gists can integrate DCNN decisions with the quantita-
tive analysis of features to support them in making the
best judgments.
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