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Abstract
Handling missing data in clinical prognostic studies is an essential yet challenging task. This study aimed to provide 
a comprehensive assessment of the effectiveness and reliability of different machine learning (ML) imputation 
methods across various analytical perspectives. Specifically, it focused on three distinct classes of performance 
metrics used to evaluate ML imputation methods: post-imputation bias of regression estimates, post-imputation 
predictive accuracy, and substantive model-free metrics. As an illustration, we applied data from a real-world 
breast cancer survival study. This comprehensive approach aimed to provide a thorough assessment of the 
effectiveness and reliability of ML imputation methods across various analytical perspectives. A simulated dataset 
with 30% Missing At Random (MAR) values was used. A number of single imputation (SI) methods - specifically 
KNN, missMDA, CART, missForest, missRanger, missCforest - and multiple imputation (MI) methods - specifically 
miceCART and miceRF - were evaluated. The performance metrics used were Gower’s distance, estimation bias, 
empirical standard error, coverage rate, length of confidence interval, predictive accuracy, proportion of falsely 
classified (PFC), normalized root mean squared error (NRMSE), AUC, and C-index scores. The analysis revealed that 
in terms of Gower’s distance, CART and missForest were the most accurate, while missMDA and CART excelled 
for binary covariates; missForest and miceCART were superior for continuous covariates. When assessing bias and 
accuracy in regression estimates, miceCART and miceRF exhibited the least bias. Overall, the various imputation 
methods demonstrated greater efficiency than complete-case analysis (CCA), with MICE methods providing 
optimal confidence interval coverage. In terms of predictive accuracy for Cox models, missMDA and missForest 
had superior AUC and C-index scores. Despite offering better predictive accuracy, the study found that SI methods 
introduced more bias into the regression coefficients compared to MI methods. This study underlines the 
importance of selecting appropriate imputation methods based on study goals and data types in time-to-event 
research. The varying effectiveness of methods across the different performance metrics studied highlights the 
value of using advanced machine learning algorithms within a multiple imputation framework to enhance research 
integrity and the robustness of findings.
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Background
Models built using clinical, histological, biological, and 
radiological variables often face the challenge of missing 
data, as clinical databases may not have complete records 
for every patient. Understanding the nature of miss-
ing data and choosing the most appropriate imputation 
method is crucial to ensure reliable and accurate results. 
This is especially true in prognostic studies, where the 
presence of missing data poses significant challenges. 
Missing values in certain covariates for a subset of 
patients can lead to a substantial reduction in the sample 
size available for analysis. This data insufficiency can pro-
duce biases in parameter estimates, impacting the valid-
ity of the subsequent analytical conclusions.

Rubin’s taxonomy provides a framework for under-
standing the nature of missing data, classifying them into 
three distinct mechanisms: Missing Completely At Ran-
dom (MCAR), Missing At Random (MAR), and Missing 
Not At Random (MNAR) [1, 2]. In the MCAR mecha-
nism, the probability of missingness does not depend 
on either observed or unobserved data. In contrast, for 
MAR, the probability of missingness depends only on 
the observed data; it is independent of the unobserved 
data. Finally, in the MNAR mechanism, which is the 
most complex of the three, the probability of missingness 
relies on unobserved data, even when conditioning on 
observed data.

At its core, a missing data imputation method seeks 
to replace missing values using a specific model or algo-
rithm to provide the most accurate representation of the 
original data. One frequent approach to handle missing 
data is complete-case analysis (CCA). This method limits 
the analysis to individuals who have complete data (i.e., 
all values for all the included variables). Consequently, 
the sample size may be dramatically reduced. CCA may 
not always be the optimal strategy to use due to the 
potential for biases and a reduction in statistical power 
[3].

Two alternative strategies have been suggested to over-
come the limitations of CCA: single imputation (SI) and 
multiple imputation (MI). SI is a straightforward method 
that replaces a missing value with just one value, such as 
the mean or mode, resulting in a single dataset. There-
fore, no post-imputation operations are necessary. In 
contrast, MI creates multiple copies of the dataset, with 
each missing value in each dataset copy replaced with 
independent random draws from the imputation model 
[4].The analysis model processes each of these datas-
ets for the primary analysis, with results later pooled to 
account for imputation uncertainty. The subsequent step 
in MI is the application of the analysis model to each of 
the imputed datasets. After this step, Rubin’s rules are 
employed to pool the results from all these analyses into 
a singular inference [5].

In order to eliminate potential biases in MI, it is essen-
tial to include all variables used in the analysis model as 
well as any interactions between variables in the impu-
tation model [6]. Moreover, the imputation model can 
incorporate auxiliary variables, which are not included 
in the analysis model. These variables serve to make the 
MAR assumption more plausible and to provide addi-
tional information on missing values [7].

Given the increasing prevalence of machine learning 
(ML) imputation algorithms, a variety of strategies based 
on ML have emerged to tackle the challenge of missing 
data. However, the performance of these strategies varies 
greatly depending on the specific context of the problem 
at hand; this complicates the identification of a gold stan-
dard ML approach for handling missing data.

Numerous studies have sought to statistically compare 
the performance of these different ML-based imputation 
algorithms using a variety of performance metrics. These 
range from metrics related to the quantities estimated by 
the analysis model (post-imputation), to metrics assess-
ing the predictive accuracy of the analysis model, and 
those assessing the imputation accuracy regarding the 
variables imputed. Depending on the purpose of the spe-
cific statistical analysis, one method may be preferable to 
another. However, it is often difficult to determine which 
method produces the most accurate results [8]. For 
example, the method with the highest predictive power 
does not necessarily produce the least biased estimates. 
Conversely, a method that minimizes bias does not nec-
essarily guarantee the best predictive performance.

ML imputation algorithms are based on constructing 
a predictive model to predict missing values using the 
available data. Popular ML algorithms, such as Random-
Forest and KNN, have been extensively used as imputa-
tion methods in various prognostic studies in both SI and 
MI settings. Results from a wealth of comparative studies 
on these methods highlight the controversy surrounding 
their relative performance [9–12].

For instance, KNN, which imputes missing values by 
considering subjects with similar outcome patterns, 
exhibits the lowest imputation error when compared 
with other imputation approaches [13]. Another example 
is missForest, which is based on Random-Forest, an algo-
rithm praised for consistently low imputation error and 
superiority when variables have high inter-correlations 
[14, 15]. While the performance of missForest tends to 
improve with increasing correlation levels, it does not 
always perform better than other methods when the 
missing data mechanism is MCAR [16].

Another interesting approach to use ML imputation 
algorithms is their integration into the MICE (Multiple 
Imputation by Chained Equations) framework. The mice-
CART algorithm, a nonparametric approach for imple-
menting MICE, uses sequential regression trees as the 
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conditional models. It is recognized for its adeptness in 
capturing complex relationships with minimal tuning by 
the data analyst, as conditional models do not need to be 
explicitly specified [10]. However, studies measuring its 
performance have observed that while its imputations for 
continuous values generated via recursive partitioning 
may preserve interactions, the miceCART algorithm may 
underestimate main effects [17].

Despite the numerous comparative studies on the per-
formance of different ML imputation algorithms, their 
study designs tend to lack consistency; moreover, they 
often solely focus on either the precision of imputed data 
or the bias following imputation (the latter being tied to 
parameter estimates) [18]. Additionally, in health-related 
studies, discussions about how one imputation method 
might influence epidemiological interpretation, espe-
cially within the context of survival analysis, are rare.

The present study aimed to investigate whether the use 
of various metrics to assess the performance of machine 
learning-based algorithms can lead to significant dif-
ferences in the interpretation of results. To this end, 
we compared eight ML algorithms adapted to missing 
data imputation. Specifically, we performed a simula-
tion analysis to identify the most effective imputation 
method according to different performance metrics. Sub-
sequently, we applied the chosen method to real-world 
breast cancer survival data. This comprehensive analysis 
provides insights into how different performance met-
rics can influence the understanding and effectiveness of 
machine learning algorithms in practical health-related 
applications.

Methods
Motivating example: breast cancer case study
To apply our most effective method to a real-world situ-
ation, we used data from a retrospective cancer survival 
study of women with breast cancer was conducted in 
Morocco, involving 711 incident cancers diagnosed in 
2009 and followed until December 2014 [19]. That study 
aimed to identify prognostic variables, including epi-
demiological, clinical, pathological, biomarker expres-
sion, and treatment characteristics. Additionally, other 
risk factors such as oral contraceptive use, a family his-
tory of breast cancer, and obesity were evaluated. The 
outcome of interest was event-free survival, calculated 
from the date of surgery or initiation of chemotherapy 
to the earliest date for either locoregional recurrence 
or distant metastasis. Thirteen baseline covariates were 
included in the cancer study’s dataset : age, body mass 
index (BMI), radiotherapy, mammographic size, Scarff-
Bloom-Richardson (SBR) grade, nulliparity, lymph nodes 
(N0, N1, N2, N3), oral contraception, PgR, vascular inva-
sion, trastuzumab, hormone therapy, HER2, and ER. Age 
refers to the patient’s age in years. BMI is a measure of 

body fat based on height and weight. Radiotherapy indi-
cates whether the patient received radiation treatment. 
Mammographic size measures the size of the tumor in 
centimeters. The Scarff-Bloom-Richardson (SBR) grade 
categorizes tumor aggressiveness into three grades: I, 
II, and III. Nulliparity refers to whether a woman has 
never given birth. Lymph nodes are classified into four 
stages (N0, N1, N2, N3) based on the extent of cancer 
spread, following the TNM classification system. Oral 
contraception indicates the use of birth control pills. 
PgR (Progesterone Receptor) indicates hormone therapy 
responsiveness. Vascular invasion refers to the presence 
of cancer cells in blood vessels. Trastuzumab is a targeted 
therapy drug. Hormone therapy involves treatments that 
block hormones to slow down or stop cancer growth. 
HER2 (Human Epidermal Growth Factor Receptor 2) 
identifies a protein that can promote cancer growth. ER 
(Estrogen Receptor) status helps determine the cancer’s 
growth sensitivity to estrogen, guiding hormone therapy 
choices. Table  1 presents the distribution of the vari-
ables for the dataset along with the percentage of missing 
values for each variable. The proportion of missing val-
ues varied between covariates, ranging from 0.6 to 43%. 
Missing values were observed in 607 women, resulting in 
an almost 85% reduction in sample size in CCA, leaving 
a study sample of only 105 cases. This example highlights 
the need to appropriately handle missing data in order to 
optimally analyse the study data, while both minimizing 
the risks of loss of efficacy and reducing potential bias.

Machine learning imputation algorithms
Using various performance metrics, our analysis con-
sisted in comparing the performances of eight different 
ML-based imputation methods using SI and MI (Table 2).

A comprehensive presentation follows for each of the 
eight algorithms investigated. We will explore SI strate-
gies for KNN, missMDA, CART, missForest, missRanger, 
and missCforest, and MI strategies for miceCART and 
miceRandomForest.

K-nearest neighbours (KNN)
The KNN imputation method, which is similar to the 
hot-deck method, uses donor observations. The value 
imputed is an aggregation of the values of the k  closest 
neighbors. The method of aggregation depends on the 
type of variable. For continuous variables, the default 
aggregation is the median, while for categorical variables 
it is the most frequent category among the k  values.

This method computes a distance to determine the 
nearest neighbours using a version of Gower’s distance 
that can handle different types of variables, specifically 
binary, categorical, ordered, continuous, and semi-con-
tinuous variables [20]. The distance between two obser-
vations is a weighted average of the contributions of each 
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Variables Overall (N = 711)
Time
Mean (SD) 28.0 (22.0)
Median [Min, Max] 23.0 [0, 87.0]
Missing 0 (0%)
Status
No event 603 (84.8%)
Event 108 (15.2%)
Missing 0 (0%)
Age
Mean (SD) 48.9 (11.6)
Median [Min, Max] 48.0 [23.0, 89.0]
Missing 0 (0%)
BMI
Mean (SD) 27.1 (5.18)
Median [Min, Max] 26.4 [16.3, 46.6]
Missing 310 (43.6%)
Radiotherapy
No 338 (47.5%)
Ues 368 (51.8%)
Missing 5 (0.7%)
Mammographic size
Mean (SD) 3.50 (2.44)
Median [Min, Max] 3.00 [0, 25.0]
Missing 290 (40.8%)
SBR grade
SBR I 46 (6.5%)
SBR II 370 (52.0%)
SBR III 191 (26.9%)
Missing 104 (14.6%)
Nulliparity
No 486 (68.4%)
Yes 157 (22.1%)
Missing 68 (9.6%)
Lymph nodes
N0 216 (30.4%)
N1 173 (24.3%)
N2 89 (12.5%)
N3 61 (8.6%)
Missing 172 (24.2%)
Oral contraception
No 280 (39.4%)
Yes 186 (26.2%)
Missing 245 (34.5%)
PgR
Negative 168 (23.6%)
Positive 432 (60.8%)
Missing 111 (15.6%)
Vascular invasion
No 366 (51.5%)
Yes 227 (31.9%)
Missing 118 (16.6%)
Trastuzumab
No 648 (91.1%)

Table 1 Summary of clinical characteristics for breast cancer patients
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variable, with the weights reflecting the importance of 
each variable.

For continuous variables, KNN calculates the absolute 
distance between two observations and then divides it 
by the total range of that variable. The same approach is 
used for ordinal variables, after converting them to inte-
ger variables. For nominal and binary variables, a binary 
distance of 0/1 is used [21]. KNN imputation preserves 
the inherent structure and relationships within the data 
during the imputation process. As a non-parametric 
method, it refrains from making assumptions about data 
distribution, and consequently offers a non-parametric 
solution ideal for datasets with unknown or non-normal 
distributions. However, its effectiveness is closely tied 
to the critical choice of k . Additionally, its reliance on 
a distance metric that accommodates diverse variables 
introduces sensitivity to this choice, necessitating careful 
weighting.

Classification and regression trees (CART)
CART, often referred to as decision trees, is a versatile 
class of ML algorithms. The core distinction between 
classification and regression trees lies in the criteria 
used for data splitting and tree pruning; a more detailed 
discussion on these aspects can be found in [22, 23]. A 
key feature of the CART algorithm is its inherent abil-
ity to preserve interactions between the data in the same 
dataset.

CART identifies predictors and cut-off points within 
these predictors that can be used to divide the sample. 
These partitions split the sample into sub-samples of 
greater homogeneity. The splitting procedure is repeated 
on the sub-samples, producing a binary tree structure. 
The target variable in these models can either be discrete 
(classification trees) or continuous (regression trees).

When employing CART for imputation of missing 
data, the algorithm treats the variable with missing values 

Table 2 Missing data imputation algorithms and their 
associated
Imputation 
Approach

Algorithm Description R 
package

Single 
imputation

KNN k-Nearest Neighbour 
Imputation based 
on a variation of the 
Gower Distance for 
numerical, categori-
cal, and ordered 
variables

VIM

missMDA Imputation with 
principal com-
ponent analysis 
(PCA), multiple 
correspondence 
analysis (MCA) 
model or multiple 
factor analysis (MFA) 
model

missMDA

CART Imputation based 
on CART algorithm

simputa-
tion

missForest Nonparametric 
Imputation using 
Random Forest

missFor-
est

missRanger Alternative imple-
mentation of miss-
Forest algorithm 
using predictive 
mean matching

miss-
Ranger

missCforest Imputation based 
on Ensemble Condi-
tional Trees

missCfor-
est

Multiple 
Imputation

MICE CART Multiple Imputa-
tion based on CART 
algorithm

mice

MICE RandomForest Multiple Imputation 
based on Random-
Forest algorithm

mice

Variables Overall (N = 711)
yes 58 (8.2%)
Missing 5 (0.7%)
Hormone therapy
No 366 (51.5%)
Yes 341 (48.0%)
Missing 4 (0.6%)
HER2
Negative 385 (54.1%)
Positive 116 (16.3%)
Missing 210 (29.5%)
ER
Negative 191 (26.9%)
Positive 409 (57.5%)
Missing 111 (15.6%)

Table 1 (continued) 
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as the dependent variable (target), and the remaining 
variables as predictors. The procedure involves building 
a decision tree where the splits are based on the predic-
tors, the aim being to predict the missing values of the 
target variable. For continuous variables, regression trees 
are employed, predicting a value that minimizes the vari-
ance within nodes. For categorical variables, classifica-
tion trees are used, where the prediction corresponds to 
the most frequent class within a node.

Decision trees possess properties that make them par-
ticularly appealing for imputation tasks [24]. They are 
robust against outliers, can handle multicollinearity and 
skewed distributions, and are flexible enough to accom-
modate interactions and non-linear relationships. More-
over, many aspects of model fitting have been automated, 
meaning minimal tuning by the imputer [10].

Imputation with multivariate data analysis (missMDA)
missMDA is based on the Factor Analysis of Mixed Data 
(FAMD) method. It handles missing values in mixed data 
types, including both continuous and categorical vari-
ables. This method considers the similarities between 
individuals and the associations between variables. It 
performs a Principal Component Analysis (PCA) for 
continuous variables and a Multiple Correspondence 
Analysis (MCA) for categorical variables.

The imputation process begins with initial estimates for 
missing values, using the mean for continuous variables 
and modes for categorical variables. For mixed data, the 
Factor Analysis of Mixed Data (FAMD) method, which 
integrates the principles of PCA and MCA, is utilized to 
handle both data types cohesively. The algorithm itera-
tively updates these estimates as follows: in each cycle, 
FAMD predicts missing values based on observed data; 
these predictions replace previous estimates, and a new 
model incorporating these updates is then fitted. The 
process continues until a convergence criterion is met, 
typically when changes in imputed values between itera-
tions fall below a set threshold. This ensures that the final 
imputed values are both statistically robust and contextu-
ally aligned with the dataset’s structure [25].

Nonparametric imputation using RandomForest 
(missForest)
The missForest algorithm, a non-parametric imputation 
technique, utilizes a Random Forest model to iteratively 
predict missing data values. Initially, it estimates the 
missing values, typically using the mean or mode, and 
then employs a Random Forest model to impute missing 
values for each variable based on observed values from 
the other variables. The process is iterative, with predic-
tions being updated in each cycle. A key component of 
this process is the utilization of Out-Of-Bag (OOB) error 
estimates to assess the accuracy of imputations after each 

iteration. The algorithm replaces missing values with new 
predictions and refits the Random Forest models to these 
updated data, continuing until the OOB error suggests 
that further iterations would not result in more accurate 
imputations. This method is adept at handling mixed-
type data and provides an estimate of the imputation 
error, thereby offering an indication of the reliability of 
the imputed values.

Random Forests differ from the CART methodology by 
generating multiple trees instead of just one. By averag-
ing numerous trees, the variance of unstable trees is sig-
nificantly reduced, leading to a more reliable and robust 
model [23]. The introduction of variability in individual 
trees yields a more resilient solution, which subsequently 
enhances the method’s accuracy. This variability can be 
generated through different processes, including boot-
strapping and random input selection [22].

Alternative implementation of missForest algorithm using 
predictive mean matching (missRanger)
An alternative to missForest is the implementation of 
missRanger, which incorporates in the imputation pro-
cess the Predictive Mean Matching (PMM) option [26]. 
Missing values for a variable are imputed using predic-
tions made by a Random Forest, which employs all 
remaining variables as covariates. The algorithm per-
forms repeated iterations across all variables. This pro-
cess continues until there is no further improvement 
observed in the average OOB prediction error of the 
models; this serves as the stopping criterion for the itera-
tions. An option within this algorithm is the use of the 
PMM method [27]. For each missing value, PMM creates 
a donor pool, which consists of complete cases that have 
predicted values of the outcome closest to the predicted 
value of the missing entry. From this donor pool, PMM 
then randomly selects one donor case, and the actual 
observed value of this selected case is used to replace 
the missing value. This way, the PMM aims to restore the 
variance of resulting conditional distributions to a real-
istic level and preserves the original distribution of the 
data.

The missRanger imputation method provides a robust 
alternative to the widely-used missForest algorithm. In 
particular, the intergrated PMM option ensures the cred-
ibility of imputed values [27].

Imputation based on ensemble conditional trees 
(missCforest)
The missCforest can be utilized for the imputation 
of numerical, categorical, and mixed-type data [28]. 
Through ensemble prediction using Conditional Infer-
ence Trees (Ctree) as base learners, missing values are 
imputed [29]. Ctree is a non-parametric class of regres-
sion and classification trees that combines recursive 
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partitioning with conditional inference theory [30]. miss-
Cforest redefines the imputation problem as a predic-
tion problem using a single imputation approach. The 
missing values are predicted iteratively based on the set 
of complete cases, which is updated at each iteration. 
There is no predefined stopping criterion, and the impu-
tation procedure stops when all missing data have been 
imputed. Since the recursive partitioning of Conditional 
Trees is based on numerous test procedures, this algo-
rithm is resistant to outliers and pays special attention to 
the statistical relationship between covariates (i.e., vari-
ables used for imputation) and the outcome (i.e., variable 
to be imputed).

Multiple imputation based on CART algorithm (miceCART)
The MICE (Multivariate Imputation by Chained Equa-
tions) algorithm is an iterative method for handling miss-
ing data. It operates in a variable-by-variable manner, 
using the observed data to generate initial random impu-
tations for the missing data [31].

miceCART is a variation of the CART algorithm, 
designed to work within the framework of MI [24]. Ini-
tial missing values are estimated by drawing a random 
distribution from the observed values of each associated 
variable. A tree is then fitted to the first variable with at 
least one missing value, using the remaining variables as 
predictors.

Only individuals with observed values for the outcome 
are considered. This produces a tree with multiple leaves, 
each containing a subset of the data. An individual with 
a missing value for the outcome is placed inside one of 
these leaves. A random value from this leaf ’s subset is 
then selected and used for imputation. This procedure 
is carried out for each variable with missing data and is 
ultimately repeated multiple times, resulting in multiple 
imputed datasets.

Multiple imputation based on RandomForest algorithm 
(miceRF)
MICE RandomForest uses the Random-Forest algorithm 
to predict missing values based on observed data, updat-
ing imputations until convergence is reached. By combin-
ing Random-Forest with MI, a degree of uncertainty can 
be introduced into the imputation model, which makes 
it more suitable for generating parameter estimates with 
desirable characteristics [24].

The miceRFt approach can yield more accurate and 
reliable imputations when the data exhibits complex pat-
terns that standard regression models (used in traditional 
MICE) might fail to capture [32].

However, as with any imputation method, the result-
ing imputations should be validated through methods 
such as sensitivity analyses or comparisons with CCA to 
ensure the robustness of the imputation procedure.

Simulation study
In this simulation study, we aimed to evaluate the perfor-
mance of different ML methods for missing data imputa-
tion using different types of performance metrics.

Our simulation design was tailored to incorporate 
mixed-type covariates (i.e., both continuous and cat-
egorical), include non-linear interdependencies between 
variables, and address the key issue of missing data. The 
approach used for this comprehensive assessment was as 
follows:

(1) Generate survival data for all cases.
(2) Estimate the Cox Proportional Hazards (PH) model 

using complete data.
(3) Introduce missing values into covariates.
(4) Impute missing data using different methods.
(5) Re-estimate the Cox PH model using imputed data.
(6) Compare the performance of the imputation 

methods using several performance metrics.

Data generation
We generated a total of 500 all-case datasets, each con-
taining 700 observations (no missing values). The datas-
ets included three covariates X1, X2 and X3- in addition 
to status and observed survival times - which were simu-
lated as follows:

(i) X1 a continuous covariate, drawn from a standard 
normal distribution (mean = 0, sd = 1)

(ii) X2 a continuous covariate non-linearly 
dependent on X1, with the following distribution: 
X2 = X2

1 +X1 + U  where U ∼ Uniform (0, 1)
(iii) X3 a binary covariate, generated from a binomial 

distribution with p = 0.5

To generate individual survival times, we employed the 
cumulative hazard inversion method, as described by 
[33]. The method initiates with the specification of log-
hazards ratios for covariates X1, X2, and X3, which were 
set at 0.1, 0.3, and 0.6, respectively.

This technique is based on inverting the survival func-
tion, formulated as S−1

i (u) = H−1
0 (−log (u) exp (−Xiβ ))

, where S−1
i (u) denotes the inverted survival function 

for the i th individual, H−1
0 (u) represents the inverted 

cumulative baseline hazard function, Xi  is the vector of 
covariates for the individual, and β  comprises the cor-
responding effect parameters on survival.

To generate individual simulated event times Ti , we 
applied this formula: Ti = S−1

i (Ui), where Ui  is a random 
variable drawn from a uniform U (0, 1) distribution.

For our analysis, we adopted a generalized Weibull 
distribution to model the baseline hazard, chosen for 
its clinically plausible risk shape which closely follows 
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the pattern observed for the risk of certain cancers. This 
parametric framework is particularly suitable for repre-
senting the aggressive nature of cancer risks in the early 
observation stages, with a notable decrease in risk fol-
lowing treatment. The generalized Weibull distribution is 
therefore an ideal fit for scenarios that require a realistic 
depiction of baseline hazards, as it effectively captures 
the dynamic risk pattern over time, a trend that aligns 
with observations highlighted in the present work [34].

The individual censoring times Ci  were drawn from 
an exponential distribution. We calibrated the param-
eter of exponential distribution to obtain a censor-
ing rate of approximately 30%. The individual observed 
survival times were then determined as the minimum 
of the uncensored (T *

i ) and censored survival times 
Ti = min

(
T *
i , Ci

)
, with the event status adjusted accord-

ingly. We applied administrative censoring at seven years.

Missing values
All complete datasets were subjected to the generation 
of missingness in variables X2 and X3. Specifically, we 
introduced missing values under the MAR mechanism, 
which resulted in 30% of the observations in the datas-
ets exhibiting missing values. The probability of missing-
ness in variables X2 and X3 was determined by the linear 
predictor of a logistic model, which comprised the fully 
observed X1, the event status indicator, and the observed 
time [9].

 lpi = 0.1× X1i + 0.1× Eventi + 0.1× Ti

Imputation models
All imputation models included the fully observed 
covariate X1, event status, survival times, and marginal 
Nelson-Aalen cumulative hazard, in accordance with the 
approach detailed in [35].

Estimation models
Irrespective of the method used for imputation, the sub-
stantive model, which is the model used in the estimation 
step (post-imputation), was a multivariate Cox Propor-
tional Hazards [36]. In the case of SI methods, a single 
model per dataset was estimated; for MI methods, we 
created ten imputed datasets (m = 10), and combined 
the log-hazard ratios from the Cox model using Rubin’s 
rules [1].

Performance metrics
To compare the performance of the imputation methods, 
we considered three distinct types of performance met-
rics, each based on different criteria. We describe the dif-
ferent metrics of all three in the following sections.

Substantive model-free performance metrics
This set of metrics assesses the performance of imputa-
tion methods independently of any estimation model. 
They provide a direct measure of the quality of the 
imputed data.

Gower’s distance
Gower’s Distance serves as a measure to quantify the 
dissimilarity between datasets, as outlined by [20]. Spe-
cifically, it is adept at handling datasets composed of 
mixed variable types (i.e., including both categorical and 
continuous variables). In our study, Gower’s Distance 
was employed to evaluate the discrepancy between two 
distinct datasets: one with complete cases and the other 
with imputed data. The calculation of Gower’s Distance, 
denoted as D , between any two data points i  and j  is 
given as:

 
D (i, j) =

1

p

∑ p

k=1
δ ijk · dijk

Where p  is the total number of variables within the data-
set; δ ijk  is a binary variable that is assigned a value of 1 
when both data points i  and j  possess a non-missing 
value for variable k , and 0 when either data point has 
a missing value for that variable; finally, dijk  represents 
the normalized distance between data points i  and j  for 
variable k .

For continuous variables, dijk  is often calculated as the 
absolute difference between the values for i  and j , nor-
malized by the range of variable across all data points. 
For categorical variables, dijk  is typically 0 if i  and j  
have the same category for variable k , and 1 otherwise.

To obtain the overall Gower’s distance for the data-
set, we calculate D (i, j) for all pairs of data points. The 
overall Gower’s distance is then computed by averaging 
the pairwise dissimilarities across all pairs of data points, 
which can be expressed as:

 

Overall Gowers distance =
2

n (n− 1)

∑ n−1

i=1

∑ n

j=i+1
D (i, j)

where n  is the total number of data points in the dataset. 
The factor of 2

n(n−1) ensures that the average is computed 
correctly by considering all unique pairs without redun-
dancy. This provides a comprehensive measure of the dis-
similarity between the complete (original) and imputed 
datasets.

Normalized root mean squared error (NRMSE)
For continuous variables, the NRMSE is utilized to quan-
tify the divergence of imputed values from their actual 
counterparts [37]. This metric serves as an indicator of 



Page 9 of 17El Badisy et al. BMC Medical Research Methodology          (2024) 24:191 

imputation accuracy, with a lower NRMSE signifying 
greater precision in imputation.

 
NRMSE =

√√√√mean
(
(Xtrue −Ximp)

2
)

var (Xtrue)

Here, Xtrue represents the actual values of the covariate, 
and Ximp denotes the corresponding imputed values. 
This normalized measure offers a standardized assess-
ment of the deviation between original and the imputed 
values.

Proportion of false classified (PFC)
For categorical covariates, the PFC is a metric designed 
to evaluate the accuracy of imputation. It metrics the 
proportion of instances in which the imputed binary val-
ues deviate from their original counterparts.

 
PFC =

1

n

∑ n

i=1
I (Xtrue,i �= Ximp,i)

Where n  represents the total number observations; 
Xtrue,i  and Ximp,i  denote the actual and imputed values 
for the i -th observation, respectively; I (· ) is an indica-
tor function, equaling 1 when actual and imputed values 
differ, and 0 otherwise.

The PFC metric therefore provides a straightforward 
and intuitive measure of imputation accuracy specifically 
tailored to categorical data, quantifying the frequency 
of misclassification introduced through the imputation 
process.

Post-imputation bias, accuracy, and reliability of regression 
estimates
This set of metrics evaluates the impact of imputation 
on the bias, accuracy, and precision of regression model 
estimates.

Post-imputation bias
The post-imputation Bias is a metric used to evaluate 
the extent to which the imputation process influences 
the estimation of regression coefficients. It is computed 
by comparing the estimated coefficients derived from 
imputed data with those obtained from all cases data.

 Post-imputation bias = βtrue − β̂imp

Where β true  is the coefficient estimated from the all 
cases data; and β̂imp is the average estimated coefficient 
for a given covariate obtained from the imputed data.

This measure quantifies the deviation in the regres-
sion coefficients due to the imputation of missing data, 
thereby assessing the impact of the imputation technique 

on the regression analysis. A smaller value of post-impu-
tation bias indicates that the imputation process has min-
imal distortion on the regression estimates, suggesting a 
more accurate and reliable imputation methodology.

Empirical standard error (empirical SE)
The empirical SE is a statistical metric that quantifies the 
variability of estimated regression coefficients derived 
from imputed data. It serves as an indicator of the pre-
cision of these estimates, with a smaller SE suggesting 
greater precision.

 
Empirical SE =

√√√√ 1

m− 1

m∑

k=1

(
βimp,k − β̂imp

)2

Where m  represents the number of imputed datasets; 
βimp,k  is the estimated coefficient from the k -th imputed 
dataset; and β̂imp is the average of the estimated coeffi-
cients across all m  imputed datasets.

This measure essentially calculates the standard 
deviation of the regression coefficients across multiple 
imputed datasets, providing insight into the spread or 
dispersion of the coefficient estimates. A lower Empiri-
cal Standard Error implies that the coefficient estimates 
across different imputed datasets are more consistent, 
indicating a higher level of reliability and stability in the 
imputation process.

Empirical coverage rate (ECR)
The ECR is a metric used to evaluate the accuracy of 
imputed data in terms of statistical inference. It measures 
how often the 95% CI, calculated from the imputed data, 
encompasses the true regression coefficients.

 
ECR =

1

p

∑ p

i=1
I
(
β true,k ∈ CI95%,k

)

Where p  is the total number of coefficients being esti-
mated; β true,k  represents the true value of the k -th coef-
ficient; CI95%,k  is the 95% confidence interval for the k
-th coefficient, as calculated from the imputed data; 
finally, I (· ) is an indicator function that equals 1 if the 
true coefficient β true,k  falls within the corresponding 
95% confidence interval CI95%,k , and 0 otherwise.

The ECR quantifies the proportion of times these con-
fidence intervals accurately capture the true parameter 
values. A value close to 95% indicates that the confidence 
intervals derived from the imputed data are reliable and 
effectively represent the uncertainty surrounding the 
parameter estimates. This metric is crucial for assessing 
the validity of statistical inferences made from imputed 
datasets.
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Post-imputation predictive accuracy
This set of metrics assesses how well a predictive model 
performs when trained on imputed data, compared to its 
performance on all cases.

Time-dependent area under the ROC curve (AUC)
The AUC is a metric used to assess the discriminatory 
power of a predictive model in a time-dependent context, 
which is particularly relevant in cancer survival analysis. 
This measure evaluates the ability of the model to cor-
rectly distinguish between different outcome classes (e.g., 
event vs. no event) at various time points [38]. The time-
dependent AUC is calculated as follows.

 
AUC(t) =

∫ t

0

Sensitivity(u)× Specificity(u) du

Where AUC (t) is the area under the ROC curve up to 
time t ; Sensitivity (u) is the true positive rate (sensitivity) 
at time u ; and Specificity(u) is the derivative of the true 
negative rate (specificity) with respect to time at u .

In practical terms, this metric integrates the sensitivity 
and the rate of change of specificity over time, providing 
a comprehensive measure of the model’s performance in 
accurately classifying individuals at risk over the entire 
follow-up period. A higher Time-Dependent AUC indi-
cates better discriminative ability of the model at different 
time points, which is crucial for the accurate prediction 
of cancer survival outcomes in clinical research.

C-index
The C-index, or Concordance index, is a widely used 
metric in cancer survival analysis to evaluate the con-
cordance between predicted and observed outcomes. It 
provides a measure of the predictive accuracy of a model, 
particularly in the context of censored survival data [39]. 
The C-index is computed as follows.

 
C-index =

∑
i<j I(Ti < Tj) · I(Hi > Hj) + 0.5 · I(Hi = Hj)∑

i<j I(Ti < Tj)

Where Ti  and Tj  are the observed survival times for 
pairs of individuals i  and j , respectively; Hi  and Hj  are 
the predicted instant hazards (or risks) for individuals 
i  and j , respectively; and I (· ) is an indicator function 
that equals 1 if the condition is true and 0 otherwise.

The C-index quantifies the proportion of all usable 
patient pairs in which the predictions and outcomes are 
concordant. A pair is considered usable if one of the pair’s 
members experiences the event of interest and the other 
is either censored or experiences the event at a later time. 
A C-index of 0.5 suggests no predictive discrimination 
(random chance), while a C-index of 1.0 indicates per-
fect discrimination. In practice, a high C-index indicates 

that the model has good predictive accuracy, successfully 
ranking individuals in the order of their observed times 
to the event, which is particularly important in the analy-
sis of imputed datasets in survival studies.

Importantly, in our evaluation approach, each of these 
metrics offers a unique perspective on the performance 
of imputation methods, covering aspects from the pre-
cision of imputed data to the impact on subsequent 
statistical analyses and predictive modeling. This com-
prehensive evaluation ensures a robust understanding of 
the strengths and limitations of the different imputation 
methods studied here.

Results
Simulation study: performance metrics
Substantive model-free performance metrics
Gower’s distance The evaluation of imputed versus fully 
observed datasets revealed that CART and missCforest 
yielded the most accurate results. In other words, they 
exhibited the smallest Gower’s distance values, at 0.0128 
and 0.013, respectively, indicating high fidelity of their 
imputations to the fully observed datasets (Fig. 1).

NRMSE In the context of the continuous covariate (X2

), missForest and miceCART outperformed the other six 
methods, with the smallest NRMSE values at 0.2964 and 
0.3065, respectively, demonstrating their effectiveness at 
imputing continuous data (Fig. 1).

PFC For the binary covariate (X3), missMDA and CART 
were the most effective methods, achieving the lowest 
PFC values at 0.4231 and 0.4328, respectively, suggesting 
superior performance in accurately classifying binary data 
(Fig. 1).

Post-imputation Bias and Accuracy of Regression estimates
Bias For the continuous covariate (X2), CART and 
miceRF showed minimal bias towards the null, with bias 
metrics of -0.0012 and − 0.0042, respectively, and rela-
tive biases of -0.3931% and − 1.4110%, respectively. Con-
versely, missMDA exhibited the highest bias at 0.0455 
with a relative bias of 15.1613% (Table 3). For the binary 
covariate (X3), miceRF and miceCART were the least 
biased methods, with bias metrics of 0.005 and − 0.0077, 
respectively, and relative biases of 0.8383% and − 1.29%, 
respectively, while missMDA showed the highest bias at 
0.1780 with a relative bias of 29.6638% (Table 4).

Efficacy The empirical SE indicated that all imputation 
methods offered more efficient estimates than the CCA, 
the latter yielding the lowest average efficiency estimates 
(Tables 3 and 4).
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ECR Except for miceCART and miceRF, all six other 
imputation methods provided suboptimal ECR for both 
covariate types. miceCART achieved 95.6% and 96% cov-
erage for continuous (X3) and binary covariates (X3), 
respectively, while miceRF ensured 97% and 94.8% cover-
age, respectively (Tables 3 and 4).

Post-imputation Predictive Accuracy of Cox Models
AUC and C-index In predictive accuracy, missMDA 
and missCforest provided the best results. The missMDA 
attained an AUC of 0.734 and a C-index of 0.675, show-
casing high predictive power, while the missCforest had 
an AUC of 0.726 and a C-index of 0.667. In contrast, 
missRanger scored lowest for both the AUC (0.704) and 
C-index (0.652) metrics (Fig. 2).

Overview of the three type of performances metrics
For the continuous covariate, the plot (Fig.  3) visual-
izes the trade-offs between bias and the NRMSE for 
each imputation method, with the size of the points 
proportional to the C-index. The SI methods CART 
and missForest managed to maintain a delicate equilib-
rium, highlighting low bias and NRMSE, while achiev-
ing a moderate to high C-index. Conversely, although 
missMDA presented a higher bias and NMRSE, it 
achieved a high C-index, as indicated by its larger point 
size. Additionally, of the eight MI methods, miceCART 
and miceRF stood out by providing the least biased esti-
mates. Nevertheless, miceRF exhibited a relatively high 
NRMSE.

For the binary covariate, the plot (Fig. 4) visualizes the 
trade-offs between bias and the PFC for each imputation 

Table 3 Comparative analysis of imputation methods on 
regression estimates for variable X2 (continuous) using bias, 
empirical SE, relative bias, ECR
Method Bias Empirical SE Relative bias ECR
miceRF -0.0042 0.0353 -1.4110 0.970
miceCART -0.0055 0.0334 -1.8466 0.956
missRanger 0.0056 0.0315 1.8605 0.930
missCforest 0.0173 0.0321 5.7782 0.882
missForest 0.0181 0.0320 6.0396 0.890
missMDA 0.0455 0.0324 15.1613 0.686
KNN 0.0212 0.0315 7.0813 0.882
CART -0.0012 0.0313 -0.3931 0.918
complete cases -0.0046 0.0376 -1.5364 0.932
all cases 0.0024 0.0313 0.7850 0.962

Table 4 Comparative analysis of imputation methods on 
regression estimates for variable X3 (binary) using bias, empirical 
SE, relative bias, ECR
Method Bias Empirical SE Relative bias ECR
miceRF 0.0050 0.1034 0.8383 0.948
miceCART -0.0077 0.1018 -1.2900 0.960
missRanger -0.1118 0.0936 -18.6250 0.718
missCforest 0.1263 0.0949 21.0544 0.690
missForest 0.0744 0.0946 12.4073 0.816
missMDA 0.1780 0.0965 29.6638 0.532
KNN 0.0715 0.0948 11.9212 0.818
CART 0.1365 0.0951 22.7439 0.662
complete cases -0.0224 0.1130 -3.7395 0.954
all cases -0.0106 0.0940 -1.7727 0.962

Fig. 1 Box plot of imputation methods across multiple datasets, evaluating Gower distance for all variable types, NRMSE for continuous variables, and 
PFC for binary variables. Each box represents the interquartile range of the corresponding performance metric, with the red point indicating the mean 
performance for each method
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method, with the size of the points reflecting the C-index 
value. Notably, the SI methods missForest and KNN 
exhibited a balanced performance with relatively low bias 
and moderate PFC, while maintaining a moderate to high 
C-index. At the other end of the spectrum, missMDA 
demonstrated stronger bias but compensated with a low 
PFC, and a high C-index (reflected by its larger point 
size). Moreover, the MI methods miceCART and miceRF 
provided the less biased estimates but relatively high 
PFC.

Application to the motivating example: Cox PH model with 
imputed dataset
In this section we describe the application of our work 
to real-world breast cancer study. We used the Cox PH 
model to estimate the effect of one or several variables on 
the time to event occurrence without requiring the speci-
fication of the underlying hazard function. This model is 
defined as:

 h (t) = h0 (t) exp
(
β TX

)

Fig. 3 : Overview comparison of ML imputation methods: Bias vs. NRMSE trade-off weighted by C-index metric for continuous covariates

 

Fig. 2 Box plots comparing post-imputation predictive accuracy of various imputation methods using time-dependent AUC and Concordance Index 
(Cindex) metrics. Each box represents the interquartile range of the corresponding performance metric, with the red point indicating the mean perfor-
mance for each method
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where h (t) is the instantaneous hazard function at time 
t , h0 (t)  the baseline hazard at time t , β  is a column vec-
tor of coefficients 

(
β 1, β 2, ., β p

)T , and X  is a column 
vector of covariates (X1, X2, ., Xp)

T . These coefficients, 
estimated from the beta coefficients, describe how the 
risk of the event changes per one-unit increase in covari-
ates. A positive β  reflects a higher risk, while a negative 
reflects a lower risk. The model assumes proportional 
hazards and log linearity, indicating constant covariate 
effects over time and linear relationships on the log-haz-
ard scale. In our application, we used a simple Cox model 
without interaction terms and assumed a proportional 
hazard similar to that reported in the original article [19].

Our objective in this application was to highlight the 
variability in outcomes produced by CCA (i.e., with no 
imputation) and miceRF, as any variability could lead to 
contradictory epidemiological and clinical interpreta-
tions. We focused on five prognostic factors widely rec-
ognized in existing literature as follows: Radiotherapy, 
Lymph nodes, PgR, Hormone therapy, and ER status (see 
above) [40, 41].

To handle missing data in our motivating example, we 
used the miceRF algorithm for imputation. This method, 
when investigated by [9], demonstrated that it produced 
unbiased estimates with better ECR. Our simulation 
results comfirmed this. Moreover, they indicated that 
thanks to the algorithm’s tendency to yield less biased 
estimation coefficients with the most credible coverage 
rates, it is very effective, particularly in contexts where 
the impact on estimation coefficients implies significant 
consequences for the validity and reliability of research 
findings.

With no imputation (i.e., CCA), a positive ER status 
was associated with a favorable prognosis (HR = 0.09, 95% 
CI: 0.02–0.38, p = 0.001), indicating a potential protec-
tive effect. Similarly, hormone therapy was also linked 
to a positive prognosis (HR = 0.11, 95% CI: 0.02–0.64, 
p = 0.015), acting as a protective factor. Furthermore, a 
negative PgR had a significant protective effect (HR = 0.01, 
95% CI: 0.00-0.21, p = 0.003). In contrast, radiotherapy 
did not exhibit a significant impact on event-free survival 
(HR = 2.91, 95% CI: 0.48–17.50, p = 0.244) (Table 5).

Interestingly, pre-imputation results (i.e., CCA) 
diverged significantly from post-imputation findings 
after imputing with miceRF. For example, after imputa-
tion, radiotherapy was significantly associated with bet-
ter event-free survival (HR = 0.49, 95% CI: 0.31–0.78, 
p = 0.003), suggesting a protective role. Moreover, unlike 
the CCA results, ER after imputation no longer had a sig-
nificant prognostic effect (HR = 0.82, 95% CI: 0.47–1.47, 
p = 0.493). This was also true for PgR status (HR = 0.79, 
95% CI: 0.40–1.59, p = 0.509), indicating no clear impact 
on event-free survival. Similarly, hormone therapy no 
longer showed a significant prognostic effect after impu-
tation (HR = 0.88, 95%CI: 0.51–1.51, p = 0.635). However, 
a significant effect on event-free survival was observed 
in the case of N3 lymph node status (HR = 2.64, 95% CI: 
1.27–5.5, p = 0.011) (Table 5).

Discussion
Missing data imputation methods that are easy to imple-
ment but which are potentially biased, such as CCA, are 
still commonly used, even if they rely on strong assump-
tions and despite the availability of potentially more 
appropriate techniques [42]. In order to investigate this 

Fig. 4 Overview comparison of ML imputation methods: Bias vs. PFC trade-off weighted by C-index metric for the binary covariate
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issue, in the present study, we evaluated the perfor-
mance of eight ML imputation methods for missing data 
through simulations using several performance metrics.

An imputation method is typically deemed supe-
rior when it demonstrates certain key characteristics: 
minimal bias and relative bias in regression coefficient 
estimates, coverage rates closely aligning with the nomi-
nal coverage probability, and lower values of PFC and 
NRMSE. However, an important distinction arises in the 
performance of SI versus MI methods. The former often 
result in more biased regression coefficients compared 
to the latter. On the other hand, they tend to outperform 
the latter in terms of predictive accuracy. Therefore, it is 
essential to carefully consider the specific performance 
metrics being used to evaluate imputation methods. 
These metrics can range from the precision of regression 
estimates and the predictive accuracy of the model to the 
accuracy of variable imputation itself [8]. The choice of 
one metric over another can significantly influence the 
perceived performance of an imputation method.

Our study revealed that for binary covariate imputa-
tion, the algorithms missMDA and CART were the most 
precise, whereas missForest and miceCART excelled 
in imputing continuous covariates. Concerning the 

regression estimates, while the lowest bias in imputation 
of continuous covariates was observed with CART and 
miceRF; for binary covariates, the lowest bias was found 
with miceRF and miceCART. Additionally, miceCART 
and miceRF were superior in achieving optimal ECR. 
With regard to predictive accuracy, missMDA and miss-
Forest stood out for their high accuracy.

Overall, our findings underline that Random Forest 
within an MI framework is superior to SI techniques and 
CCA. This finding justifies the choice of applying this 
method to breast cancer in a context where the prognos-
tic effect of factors is of great importance.

The discrepancy found in the prognostic effects of the 
four covariates examined before and after imputation 
is striking. Indeed, this discrepancy could potentially 
lead to misleading clinical conclusions, if not properly 
accounted for. Accordingly, we strongly recommend 
choosing robust imputation methods when handling 
missing data in clinical prognostic studies. Of course this 
choice depends on whether the objective of the study 
itself is predictive or inferential in nature. Moreover, 
this discrepancy demonstrates the importance of explic-
itly indicating whether the analysis is based on complete 

Table 5 Multivariate analysis results for breast cancer: comparison between complete cases and miceRF imputed data
Label Levels All HR (Complete Cases) HR (mice RF)
Age Mean (SD) 48.9 (11.6) 0.94 (0.88-1.00, p = 0.051) 0.99 (0.97–1.01, p = 0.289)
BMI Mean (SD) 27.1 (5.2) 1.01 (0.87–1.17, p = 0.944) 0.99 (0.94–1.05, p = 0.775)
Radiotherapy no 338 (47.9) - -

yes 368 (52.1) 2.91 (0.48–17.50, p = 0.244) 0.49 (0.31–0.78, p = 0.003)
Mammographic size Mean (SD) 3.5 (2.4) 1.07 (0.85–1.35, p = 0.550) 1.06 (0.98–1.15, p = 0.154)
SBR grade SBR I 46 (7.6) - -

SBR II 370 (61.0) 0.62 (0.09–4.22, p = 0.628) 0.95 (0.40–2.28, p = 0.909)
SBR III 191 (31.5) 1.35 (0.21–8.87, p = 0.755) 1.30 (0.52–3.28, p = 0.574)

Nulliparity no 486 (75.6) - -
yes 157 (24.4) 1.24 (0.22–7.01, p = 0.808) 1.03 (0.60–1.75, p = 0.922)

Lymph nodes N0 216 (40.1) - -
N1 173 (32.1) 0.69 (0.16–3.05, p = 0.624) 0.98 (0.53–1.83, p = 0.951)
N2 89 (16.5) 0.70 (0.09–5.31, p = 0.731) 1.68 (0.78–3.59, p = 0.175)
N3 61 (11.3) 1.68 (0.28–9.95, p = 0.568) 2.64 (1.27–5.50, p = 0.011)

Oral contraception no 280 (60.1) - -
yes 186 (39.9) 0.74 (0.19–2.87, p = 0.659) 0.88 (0.52–1.49, p = 0.630)

PgR positive 432 (72.0) - -
negative 168 (28.0) 0.01 (0.00-0.21, p = 0.003) 0.79 (0.40–1.59, p = 0.509)

Vascular invasion no 366 (61.7) - -
yes 227 (38.3) 1.98 (0.51–7.66, p = 0.324) 1.10 (0.65–1.87, p = 0.703)

Trastuzumab no 648 (91.8) - -
yes 58 (8.2) 0.21 (0.02–2.02, p = 0.177) 0.66 (0.26–1.63, p = 0.358)

Hormone therapy no 366 (51.8) - -
yes 341 (48.2) 0.11 (0.02–0.64, p = 0.015) 0.88 (0.51–1.51, p = 0.635)

HER2 negative 385 (76.8) - -
positive 116 (23.2) 2.85 (0.46–17.69, p = 0.260) 1.63 (0.90–2.95, p = 0.103)

ER negative 191 (31.8) - -
positive 409 (68.2) 0.09 (0.02–0.38, p = 0.001) 0.82 (0.47–1.45, p = 0.493)
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cases or whether imputation methods were used, and if 
so, which one.

Although the impact of missing data on a study’s final 
results can be quite significant, many studies do not suf-
ficiently address it. A review of time-to-event studies in 
oncology highlighted this issue [43]. Specifically, out of 
148 studies reviewed, 79 (53%) reported using complete 
cases, compared to 33 (22%) for MI. Importantly, of all 
the studies, 128 (86%) did not specify the assumptions 
their chosen analysis method made regarding missing 
data. These findings would suggest that while missing 
data are a common issue in many studies, there seems to 
be a lack of transparency as to how they were addressed 
or what assumptions were made.

Surprisingly, empirical studies investigating the perfor-
mance of different imputation methods use inherently 
different metrics. For instance, missForest was reported 
as a effective tool for handling missing values, providing 
highly accurate imputations, and outperforming other 
common imputation methods. Yet these evaluations of 
missForest were based on its predictive accuracy [14, 44]. 
This approach may be insufficient, especially in epidemi-
ological studies which aim to identify factors significantly 
associated with the outcome. An imputation method that 
merely minimizes the prediction error can be problem-
atic, as it does not attempt to preserve the joint distribu-
tion of the data. Such an approach could lead to biased 
parameter estimates [8, 9], as found in our simulation 
study. Therefore, studies comparing imputation methods 
should systematically report post-imputation bias and its 
coverage rate, and not just post-imputation predictive 
accuracy.

Our comparative study provides a succinct summary of 
the performance metrics associated with the eight evalu-
ated imputation methods. It focuses on minimizing bias 
and imputation errors while simultaneously aiming to 
maximize predictive accuracy. Indeed, the choice of met-
rics to use when an imputation method is selected greatly 
depends on the analytical goal, be it estimation or predic-
tion. Accordingly, the appropriateness of using a metric 
in an imputation method is intrinsically tied to the spe-
cific objectives of the analysis.

SI methods are typically discouraged for handling cases 
where more than 10% of data is missing, as they tend to 
underestimate the variability in the data, which leads to 
inaccuracies in coverage rates [13]. However, when incor-
porated into a MI framework - such as CART combined 
with MICE (Multiple Imputation by Chained Equations) 
- the application of SI methods becomes more feasible 
and straightforward. MICE works by iteratively fitting 
a predictive model to each variable with missing values, 
while using other variables as predictors. In this context, 
any predictive model can be employed to estimate miss-
ing values. This flexibility is evident in the use of various 

MICE models, including miceCART and miceRF.This 
demostrates that even methods which are not tradition-
ally recommended in situations where there is a high 
level of missingness can be effectively adapted in MI.

Moreover, in the face of model specification difficul-
ties and/or the presence of complex interactions among 
variables, non-parametric algorithms like tree-based 
algorithms (CART, Cforest, Random Forest) present an 
excellent alternative. These types of algorithms do not 
require the same assumptions as conventional paramet-
ric models; this makes them more flexible and more able 
to capture complex relationships in the data [8, 9, 17].

Furthermore, a promising approach to the challenge of 
misspecification in an imputation model is the heteroge-
neous ensemble imputation strategy. One such approach 
is Super Learning, a method grounded in heterogeneous 
ensemble learning that integrates multiple algorithms 
within a single meta-algorithm. This strategy might effec-
tively tackle the issue of imputation model miss-specifi-
cation. Imputers such as MISL (Multiple Imputation by 
Super Learning) and SuperMICE exemplify the applica-
tion of the Super Learner algorithm, a meta-algorithm 
that aggregates predictions from an array of base algo-
rithms, thereby offering compelling properties [45, 46]. 
A more in-depth exploration is required to evaluate its 
potential advantages over the methodologies currently in 
use.

It is worth noting that our analyses and conclusions are 
based on the assumption that the data are MAR. If the 
missing data mechanism deviates from MAR, especially 
in the case of MNAR, the effectiveness of the imputa-
tion methods and the applicability of our conclusions 
may differ. While our results would not significantly 
change under an MCAR assumption, the generalizability 
of our findings could be limited under different missing-
ness conditions, particularly MNAR, which is difficult to 
check in practice.

Future extensions of this research could focus on 
exploring the imputation performance of MLO meth-
ods, especially in contexts where covariates exhibit time-
varying and non-linear effects. These complex scenarios, 
which pose considerable challenges for traditional statis-
tical methods, might significantly benefit from the adapt-
ability and sophistication offered by ML algorithms.

Conclusion
Addressing missing data in observational time-to-event 
studies is crucial for preserving the integrity and accu-
racy of findings. Different performance metrics can eval-
uate imputation methods from various perspectives; this 
highlights the importance of method selection based on 
the study’s final objective. Whether the goal is inference, 
predictive performance, or minimizing original data dis-
tortion independent of any analysis model, the choice 
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of a particular imputation method should be carefully 
considered.

When a significant predictor has a high proportion 
of missing values, the results should be interpreted as 
a foundation for hypothesis generation rather than as 
definitive conclusions. This nuanced approach highlights 
the necessity of a robust strategy for handling missing 
data in cancer survival studies.

Although CCA remains a common strategy, we encour-
age researchers to explore modern techniques, including 
ML algorithms like Random Forest within an MI frame-
work. These advanced methods offer advantages over SI 
techniques and CCA by adeptly managing complex miss-
ing data scenarios. Adopting a consistent methodology 
for managing missing data can significantly reduce bias 
in parameter estimates, thereby enhancing the credibility, 
reliability, and robustness of research findings.
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