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Tourniquet is a well-established model of hind limb ischemia–reperfusion (HLI/R) in rats. Nevertheless,
measures should be taken to alleviate the expected injury from ischemia/ reperfusion (I/R). In the present
study, 30 adult male Sprague-Dawley rats were randomly divided into 5 groups (n = 6): control, HLI/R,
HLI/R given candesartan (1 mg/kg, P.O); HLI/R given Coenzyme Q10 (CoQ10) (10 mg/kg, P.O); HLI/R given
candesartan (0.5 mg/kg) and CoQ10 (5 mg/kg). The drugs were administered for 7 days starting one hour
after reperfusion. Candesartan and CoQ10 as well as their combination suppressed gastrocnemius con-
tent of angiotensin II while they raised angiotensin-converting enzyme 2 (ACE2) activity, angiotensin
(1–7) expression, and Mas receptor mRNA level. Consequently, candesartan and/or CoQ10 reversed the
oxidative stress and inflammatory changes that occurred following HLI/R as demonstrated by the rise
of SOD activity and the decline of MDA, TNF-a, and IL-6 skeletal muscle content. Additionally, candesar-
tan and/or CoQ10 diminished gastrocnemius active caspase-3 level and phospho-p38 MAPK protein
expression. Our study proved that CoQ10 enhanced the beneficial effect of candesartan in a model of
tourniquet-induced HLI/R by affecting classical and non-classical renin-angiotensin system (RAS) path-
way. To our knowledge, this is the first study showing the impact of CoQ10 on skeletal muscle RAS in rats.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The application of a tourniquet is considered a commonmethod
of hemostasis to prevent trauma fatalities in both battlefield and
civilian situations (Doyle and Taillac, 2008, Lee et al., 2007). How-
ever, tourniquet presence results in ischemia that is followed by
reperfusion upon its removal leading to I/R injury. Reactive oxygen
species (ROS) are formed due to poor tissue perfusion during the
ischemic phase. When reperfusion follows, an inflammatory
response is initiated which leads to an aggravation of muscle
damage and apoptosis (Granger and Kvietys, 2015). Similarly,
peripheral nerves (e.g. sciatic nerve) were found to be extremely
prone to I/R insult (Iida et al., 2007).

Previous studies have proved the presence of classical (ACE/
Ang II/ AT1 receptor) and non-classical (ACE 2/ Ang (1–7)/ Mas-1
receptor) RAS pathways in skeletal muscle with counteracting
effects to each other (Cabello-Verrugio et al., 2015, Fernandes
et al., 2010). Ang II exerts well-known pro-oxidant and pro-
inflammatory actions through the activation of AT1 receptors,
leading to mitochondrial dysfunction and upregulation of pro-
inflammatory genes (Kinugawa, 2017, Passos-Silva et al., 2015).
On the other hand, Ang (1–7) has shown favorable effects against
various skeletal muscle abnormalities through its action on Mas
receptors (Cabello-Verrugio et al., 2015, Cisternas et al., 2015).
Hence, blocking of Ang II action or enhancement of Ang 1–7 effect
could be beneficial in treating muscle disorders.

ARBs have many cardiovascular and pleiotropic effects making
them widely used in clinical practice (Chrysant and Chrysant,
2006). Candesartan, a potent ARB with a long duration of action,
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has shown to be effective in several models of ischemia–reperfu-
sion (Culman et al., 2017, Sheik Uduman et al., 2016, Takagi
et al., 2006). Interestingly, candesartan was found to exert a direct
modulatory effect on the ACE 2/ Ang (1–7)/ Mas-1 receptor axis in
addition to its well-known AT1 receptor blocking property
(Arumugam et al., 2012, Pernomian et al., 2015).

Gastrocnemius is a glycolytic muscle characterized by having
fewer mitochondria and antioxidant protection than oxidative
muscles; thus it is more vulnerable to I/R injury. Upkeeping of
mitochondrial and antioxidant function could afford a better
defense to the muscle exposed to traumatic conditions (Charles
et al., 2017).

CoQ10 is a nutraceutical with muscle supporting properties due
to its established mitochondrial antioxidant capacity. Indeed, the
helpful effects of CoQ10 in myopathies have been reported either
experimentally or clinically (Tran et al., 2012, Woodman et al.,
2016). However, to our knowledge, the impact of CoQ10 adminis-
tration on the RAS pathway has not been elucidated yet.

Therefore, it was interesting for us to investigate the possible
involvement of the RAS pathway in the effects exerted by CoQ10
in the skeletal muscle and elucidate its possible enhancement to
candesartan action on tourniquet-induced I/R injury in rats.
2. Materials and methods

2.1. Animals

Thirty adult male Sprague–Dawley rats aged 8 weeks (200–
220 g) were housed under a controlled temperature and humidity
atmosphere and allowed to access pelleted food and drinking
water ad libitum. The animal experiments described later were
approved by the Ethics Committee, Faculty of Pharmacy, Ahram
Canadian University, Egypt (approval number: 1/9/2020/9).

2.2. Drugs and chemicals

Candesartan and CoQ10 were supplied by Astra Zeneca and the
Arab Company for Pharmaceuticals & Medicinal Plants (Cairo,
Egypt), respectively. All the chemicals were of analytical grade
and purchased from Sigma-Aldrich Co. (St. Louis, MO, USA).

2.3. Induction of hind limb ischemia-reperfusion and animals
treatment

Rats were anesthetized using thiopental (85 mg/kg, i.p). The
animals were kept on heating pads to maintain body temperature
at 37� C.

Unilateral left hind limb ischemia was achieved by positioning a
tourniquet consisting of an orthodontic rubber band at the hip
joint (Crawford et al., 2007) for 90 min (Erkut et al., 2016). Reper-
fusion was initiated by removing the rubber bands. Control rats
were not subjected to tourniquet application.

The animals were randomly divided into five groups (n = 6) as
follows: Control group, HLI/R rats, HLI/R rats treated with can-
desartan (1 mg/kg) (Matsuo et al., 2002) for 7 days starting one
hour after reperfusion, HLI/R rats treated with CoQ10 (10 mg/kg)
(Kalayci et al., 2011) for 7 days starting one hour after reperfusion,
HLI/R rats treated with a combination of candesartan (0.5 mg/kg)
and CoQ10 (5 mg/kg) for 7 days starting one hour after reperfusion.

Both candesartan and CoQ10 were suspended in 10% tween 80
solution and administered orally by gavage. The same vehicle was
given to the control group.

On the eighth day of the experiment, rats were sacrificed.
Gastrocnemius muscles of the left limbs were harvested and
washed with ice-cold normal saline. A portion of gastrocnemius
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muscles was homogenized in phosphate buffer saline (0.1 M PBS,
pH 7.4) and centrifuged at 10000 rpm for 30 min at 4 �C and super-
natants were stored at � 80 �C till biochemical parameters were
measured. The second and third portions were put at 4 �C in RIPA
buffer for Western blotting analysis and TRIzol solution for real-
time PCR assay, respectively. The last portion of gastrocnemius
muscles was fixed in 10% neutral buffered formalin solution, dehy-
drated, and impregnated in Paraplast medium for histopathologi-
cal examination and immunohistochemistry experiment.
2.4. Biochemical parameters

2.4.1. Evaluation of ACE2 activity, angiotensin II and angiotensin (1–7)
levels

ACE2 activity was determined using an enzyme-linked
immunosorbent assay (Cusabio Technology, USA, Cat No.
CSB-E14308r) according to the manufacturer’s instructions. Angio-
tensin II and angiotensin (1–7) contents were determined using
quantitative sandwich enzyme immunoassay (Cusabio Technology,
USA, Cat. No. CSB-E04494r and CSB-E14241r, respectively) accord-
ing to the supplier’s protocol.
2.4.2. Determination of inflammatory biomarkers
TNF-a and IL-6 levels were determined by ELISA kits (Cat. No.

SEA133Ra and SEA079Ra, respectively) using sandwich enzyme
immunoassay principle (Cloud-Clone Corp., Houston, TX) and fol-
lowing the manufacturer’s instructions.
2.4.3. Measurement of oxidative stress parameters
MDA content, as well as SOD activity, were determined using

colorimetric methods as indicated by Biodiagnostic kits, Egypt
(Cat. No. MD 25 29 and SD 25 21, respectively).

For determination of MDA content, tissue homogenate super-
natants were mixed with chromogen containing thiobarbituric
acid (25 mmol/L) and heated in a boiling water bath for 30 min.
The absorbance of the samples was read at 534 nm according to
the manufacturer’s instructions.

SOD activity was determined in supernatants after the addition
of a working reagent containing nitroblue tetrazolium dye (1 mM/
L) and NADH (1 mM/L). The increase in absorbance at 560 nm was
measured for 5 min after the addition of phenazine methosulphate
(0.1 mM/L) according to the kit instructions.
2.4.4. Determination of active caspase-3
Active caspase-3 was determined by immunohistochemistry.

Deparaffinized 5 mm muscle sections were treated with 3% H2O2

for 20 min, then incubated with mouse anti-active caspase-3 anti-
body (SunLong Biotech Co., Cat. No. SLM33199M) overnight. After
washing, they were incubated with Envision detection system
(DAKO, Cat. No. K4065) for 30 min, washed by PBS, and incubated
with diaminobenzidine (DAB) for 15 min. After washing, they were
counterstained with hematoxylin, dehydrated, and cleared in
xylene then coverslipped for microscopic examination. Six repre-
sentative non-overlapping fields were randomly selected per tissue
section of each muscle sample for analyzing the mean area per-
centage of immunoexpression levels of active caspase- 3. Data
were obtained using a Full HD microscopic imaging system oper-
ated by Leica Application software for tissue section analysis (Leica
Microsystems GmbH, Germany).
2.4.5. Determination of total protein content
The protein content was measured according to the method

described by Lowry et al. (Lowry et al., 1951).



A.S. Awad, M. Nour El-Din and R. Kamel Saudi Pharmaceutical Journal 29 (2021) 724–733
2.5. Total RNA isolation and quantitative analysis of Mas receptor RT-
qPCR

Total RNA was extracted from gastrocnemius homogenate in
TRIzol (Invitrogen, USA, Cat. No. 15596026) following the manufac-
turer’s instruction (Promega, Madison, WI, USA). Then, cDNA syn-
thesis was performed as described by Invitrogen, USA, Cat. No.
18080051. Real-time PCR amplification followed by the analysis
was performed using Applied Biosystem with software version
3.1 (StepOneTM, USA) and data acquisition was made during exten-
sion step. Relative expression of studied gene mRNA was calcu-
lated using the comparative Ct method. GAPDH was considered
as the housekeeping gene to which all values were normalized. Pri-
mer sequences (sense and antisense) and GenBank Accession
Numbers for Mas receptor and GAPDH are shown in Table 1.
2.6. Detection of phospho-p38 MAPK protein by western blot

Proteins were extracted from gastrocnemius muscle homoge-
nates using ice-cold radioimmunoprecipitation assay (RIPA) buffer
supplemented with phosphatase and protease inhibitors. Follow-
ing centrifugation, proteins were separated by SDS/polyacrylamide
gel electrophoresis and transferred to polyvinylidene difluoride
membranes (Pierce, Rockford, IL, USA). After transfer, the mem-
branes were washed with PBS then blocked in blocking buffer, fol-
lowed by incubation overnight at pH 7.6 at 4 �C with antibodies
(1:1000, dilution) for p38 MAPK (Cat. No. PA5-17713), phospho-
p38 MAPK (Cat. No. 44-684G) and b-actin (Cat. No. PA1-46296)
(Thermo Scientific, Rockford, Illinois, USA). After washing, mem-
branes were incubated at 37 �C for 1 h with peroxidase-labeled
secondary antibodies (1:4000, dilution). Band intensity was ana-
lyzed by ChemiDocTM imaging systemwith Image LabTM software
version 5.1 (Bio-Rad Laboratories Inc., Hercules, CA, USA).
Phospho-p38 MAPK protein expression was represented relative
to p38 MAPK (as fold change from control).
2.7. Histopathological examination

Gastrocnemius muscle specimens were treated according to
Bancroft et al. (Bancroft D, 1996). Scoring of inflammatory cells
infiltration was performed according to Vizcaino-Castillo et al. as
following: 0 = normal, 1 = scarce cellular infiltrate, 2 = diffuse infil-
trate, 3 = abundant infiltrate (Vizcaino-Castillo et al., 2014). Tissue
sections were analyzed using a Full HD microscopic imaging sys-
tem operated by Leica Application software (Leica Microsystems
GmbH, Germany).
2.8. Statistical analysis

Data are expressed as mean ± S.D of 6 animals. Statistical com-
parisons between means were carried out with a one-way analysis
of variance (ANOVA), followed by a post-hoc Tukey-Kramer multi-
ple comparison test using GraphPad Prism software (version 6).
The statistical significance of difference was considered at P < 0.05.
Table 1
Genes and PCR primers.

Gene NCBI gene accession number Product size Primers sequence

Mas receptor NM_012757.2 2042 bp F: 50-CAGATGTCA
R: 50-GTGTTGCCA

GAPDH XM_017593963.1 1065 bp F: 50-GGTCGGTGT
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3. Results

3.1. Effect of candesartan, CoQ10 and their combination on ACE2/
angiotensin (1–7)/ Mas receptor axis in rat gastrocnemius muscle

Induction of HLI/R by tourniquet prompted a significant
decrease in gastrocnemius muscle ACE2 activity, angiotensin (1–
7) level and Mas receptor gene expression by 56%, 53%, and 80%,
respectively, as compared to the control group. Treatment with
either candesartan (1 mg/kg) or CoQ10 (10 mg/kg) increased sig-
nificantly ACE2 activity as well as angiotensin (1–7) content and
Mas receptor mRNA level compared to the HLI/R group. Interest-
ingly, the combination of candesartan (0.5 mg/kg) and CoQ10
(5 mg/kg) normalized ACE2 activity and angiotensin (1–7) level
while it augmented Mas receptor gene expression level by 3.8 folds
as compared to the HLI/R group (Fig. 1).
3.2. Effect of candesartan, CoQ10 and their combination on
angiotensin II level in rat gastrocnemius muscle

Angiotensin II level was found to be doubled in gastrocnemius
muscle after HLI/R when compared to the same muscle of control
rats. Treatment of rats after induction of HLI/R with either can-
desartan (1 mg/kg) or CoQ10 (10 mg/kg) reduced significantly
angiotensin II levels by 30% and 39%, respectively. Also, it was
found that the combination of lower doses of candesartan
(0.5 mg/kg) and CoQ10 (5 mg/kg) normalized angiotensin II level
(Fig. 2).
3.3. Effect of candesartan, CoQ10 and their combination on TNF-a and
IL-6 levels in rat gastrocnemius muscle

Compared with the control group, the gastrocnemius content of
TNF-a and IL-6 increased significantly after induction of HLI/R by
approximately 4 folds. Candesartan (1 mg/kg) or CoQ10 (10 mg/
kg) reduced significantly the levels of these inflammatory media-
tors in gastrocnemius of rats with HLI/R. Treatment with the com-
bination of half doses of candesartan and CoQ10 abated TNF-a and
IL-6 contents significantly when compared to the HLI/R group
(Fig. 3).
3.4. Effect of candesartan, CoQ10 and their combination on MDA
content and SOD activity in rat gastrocnemius muscle

HLI/R induced a significant rise in gastrocnemius MDA content
by 18.8 folds when compared to the control group. Treatment with
candesartan (1 mg/kg), CoQ10 (10 mg/kg) or their combination
(0.5 mg/kg of candesartan + 5 mg/kg of CoQ10) normalized MDA
content.

On the other hand, there was a significant decline of SOD activ-
ity by nearly 78% in gastrocnemius muscles subjected to HLI/R
when compared to control muscles. Treatment of injured rats with
either candesartan (1 mg/kg) or CoQ10 (10 mg/kg) raised signifi-
cantly gastrocnemius SOD activity by 3.5 and 3.4 folds, respec-
tively, as compared to the HLI/R group. The combination of lower
Reference

CCGCCCCAAGCA-30

TTGCCCTCCTGA-30
You et al., 2019

GAACGGATTTGG-30 R: 50- ATGTAGGCCATGAGGTCCACC-30 Fikry et al., 2019



Fig. 1. Effect of candesartan, CoQ10 and their combination on ACE2/angiotensin (1–7)/ Mas receptor axis in rat gastrocnemius muscle. (A) ACE 2 activity, (B) angiotensin (1–
7) content, (C) Mas receptor gene expression. Data are expressed as mean ± S.D (n = 6). a, b, c, d: significantly different from control, tourniquet, candesartan, CoQ10 groups,
respectively, at p < 0.05.

Fig. 2. Effect of candesartan, CoQ10 and their combination on rat gastrocnemius
angiotensin II content. Data are expressed as mean ± S.D (n = 6). a, b, c: significantly
different from control, tourniquet, candesartan groups, respectively, at p < 0.05.
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doses of candesartan (0.5 mg/kg) and CoQ10 (5 mg/kg) gave a sim-
ilar effect to the full dose of each drug alone (Fig. 4).
3.5. Effect of candesartan, CoQ10 and their combination on active
caspase-3 expression in rat gastrocnemius muscle

HLI/R provoked a significant increase in area percentage of
active caspase-3 immunoexpression in rat gastrocnemius muscle
in comparison to the control group. Treatment of rats after induc-
tion of HLI/R with either candesartan (1 mg/kg) or CoQ10 (10 mg/
kg) reduced active caspase-3 expression by almost 52% and 74%,
respectively. The combination of the half doses of both drugs fur-
ther reduced active caspase-3 expression to 80% (Fig. 5).
3.6. Effect of candesartan, CoQ10 and their combination on phospho-
p38 MAPK expression in rat gastrocnemius muscle

Induction of HLI/R caused an increase in the expression level of
gastrocnemius phospho-p38 MAPK by 2.5 folds. Treatment of rats
with either candesartan (1 mg/kg) or CoQ10 (10 mg/kg) dimin-
ished significantly phospho-p38 MAPK protein expression by 28%
and 19% when compared to rats subjected to HLI/R. Interestingly,
the combination of half doses of both drugs decreased normalized
phospho-p38 MAPK when it was administered to rats after expo-
sure to HLI/R (Fig. 6).



Fig. 3. Effect of candesartan, CoQ10 and their combination on rat gastrocnemius inflammatory markers. (A) TNF-a, (B) IL-6 levels. Data are expressed as mean ± S.D (n = 6). a,
b, c, d: significantly different from control, tourniquet, candesartan, CoQ10 groups, respectively, at p < 0.05.

Fig. 4. Effect of candesartan, CoQ10 and their combination on rat gastrocnemius oxidative stress markers. (A) MDA content, (B) SOD activity. Data are expressed as mean ± S.D
(n = 6). a, b: significantly different from control, tourniquet, respectively, at p < 0.05.
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3.7. Effect of candesartan, CoQ10, and their combination on
histopathological changes in rat gastrocnemius induced by HLI/R

Massive inflammatory cell infiltration was detected in the sar-
colemmal sheath of the gastrocnemius muscle of rats subjected
to HLI/R (Fig. 7 (b)). Treatment with either candesartan (1 mg/kg)
or CoQ10 (10 mg/kg) diminished significantly inflammatory cells
infiltration (Fig. 7 (c) and (d), respectively) while the combination
of half doses of both drugs results in a comparable histological
aspect with that of control gastrocnemius (Fig. 7 (a)), where no
histopathological alteration was recorded (Fig. 7 (e)).
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4. Discussion

Efforts to publicize awareness about tourniquet use between
civilians have increased in the last decades. Pre-hospital tourniquet
application to people exposed to peripheral exsanguination harm
was found to reduce the mortality rate in these patients
(Goodwin et al., 2019). However, measures to avoid the possible
deleterious effects resulting from I/R upon tourniquet application
must be taken into consideration. Skeletal muscles, especially gly-
colytic type, are considered from the organs prone to injury in such
situation.



Fig. 5. Effect of candesartan, CoQ10 and their combination on active caspase-3 expression in rat gastrocnemius. (A) Micrographs showing immunohistochemical staining of
active caspase-3: (a) control , (b) tourniquet, (c) candesartan, (d) CoQ10, (e) combination groups. (B) Quantification of area percentage of active caspase-3 expression. Data are
expressed as mean ± S.D (n = 6). a, b, c: significantly different from control, tourniquet, candesartan, respectively, at p < 0.05.
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AT1 receptor blockers (ARBs), represented by losartan, proved
experimental and clinical efficacy concerning skeletal muscle
regeneration (Bedair et al., 2008, Burks et al., 2011, Gharaibeh
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et al., 2012). Herein, we investigated the effect of the long-acting
ARB candesartan, alone and in combination with the promising
nutraceutical CoQ10, in a model of rat hind limb tourniquet appli-



Fig. 6. Effect of candesartan, CoQ10 and their combination on phospho-p38 MAPK expression in rat gastrocnemius. (A) Representative western blots for phospho-p38 MAPK,
p38 MAPK, and b-actin proteins expression (B) Quantification of phospho-p38 MAPK protein expression relative to p38 MAPK (presented as fold change from control). Data
are expressed as mean ± S.D (n = 6). a, b, c, d: significantly different from control, tourniquet, candesartan, CoQ10 groups, respectively, at p < 0.05.
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cation. Being an inverse agonist of AT1 receptors, candesartan was
shown to inhibit both Ang II-dependent activation of AT1 receptors
as well as mechanoactivation (considered as independent of Ang II)
(Hong et al., 2016, Zou et al., 2004). Ang II is a well-discriminated
mediator produced in tissues damaged by the incidence of I/R. AT1
receptors activation during I/R is well known to trigger NADPH oxi-
dase enzyme complex (NOX2) and subsequent ROS production.
This is followed by uncoupling of mitochondrial respiration and
further production of ROS by mitochondria. In parallel, inflamma-
tion is induced by ROS that initiates NF-jB activation leading to
an increase of inflammatory cytokines expression like IL-6 and
TNF-a (Powers et al., 2018, Rodriguez-Lara et al., 2018).

Previous studies showed that Ang II administration to mice
caused a decline of skeletal muscle mitochondrial content as well
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as dysfunction followed by muscle atrophy (Kadoguchi et al.,
2015, Mitsuishi et al., 2009). Characterization of functional human
and mouse mitochondrial angiotensin system by Abadir et al. sup-
ports the possible involvement of direct Ang II damaging effect on
mitochondria (Abadir et al., 2011).

In the present study, HLI/R induced by tourniquet application
caused the elevation of gastrocnemius Ang II, MDA, TNF-a, and
IL-6 contents while it decreased SOD activity. Administration of
1 mg/ kg of candesartan ameliorated the oxidative stress and
inflammatory deleterious changes affecting the muscle.

CoQ10 plays a crucial role in the mitochondrial respiratory
chain in addition to its potent free radicals scavenging properties.
CoQ10 deficiency leads to mitochondrial disorders and cellular
dysfunction especially in tissues with high energy requirements



Fig. 7. Representative hematoxylin and eosin staining of rat gastrocnemius showing the effect of candesartan, CoQ10 and their combination on histopathological changes
after tourniquet application (scale bar: 50 mm) (A): (a) Normal histological structure and striation of skeletal muscle fibers (arrow) were recorded in control group with
minimal inflammatory cells infiltrates (b) wide areas of degenerated and myofibrillar fragmentation of muscle fibers losing their striations (arrow) accompanied by
intramuscular as well as perivascular mononuclear inflammatory cells infiltrates (red arrow) with moderate congestion of blood vessels (star) after tourniquet application
(c) significant reduction of inflammatory cells infiltrates records with persistence of congested blood vessels (star) as well as mild degenerative muscular changes (arrow) of
rat gastrocnemius treated with candesartan (1 mg/kg) (d) mild congestion of intermuscular small blood vessels (bv) (star) were recorded in rat gastrocnemius treated with
CoQ10 (10 mg/kg) with few occasional degenerative changes of muscle fibers (arrow) and minimal inflammatory cells infiltrates records (e) almost intact morphological
features of skeletal muscle fibers (arrow) of rats receiving combination of candesartan (0.5 mg/kg) and CoQ10 (5 mg/kg). (B) Quantification of histopathological inflammatory
scores. Data are expressed as mean ± S.D (n = 6). a, b: significantly different from control and tourniquet groups, respectively, at p < 0.05.
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like skeletal muscles (Romero-Moya et al., 2017, Woodman et al.,
2016). Boroujeni et al. demonstrated the protective effect of
CoQ10 in a model of HLI/R through suppression of NFjB and
TNF-a (Boroujeni et al., 2017). While the action of CoQ10 as an
inhibitor of calcium influx and its favorable aspect on cellular dam-
age is well documented (Chang et al., 2012, Okamoto et al., 1995),
its effect on classical and non-classical RAS system is not revealed
yet.
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Herein, our findings show that administration of 10 mg/kg of
CoQ10 to rats with HLI/R decreased Ang II gastrocnemius level
and improved the subsequent oxidative and inflammatory dam-
ages comparably as candesartan.

In addition to the conventional RAS, the presence as well as the
anti-inflammatory and antiatrophic role of the non-conventional
RAS pathway, ACE2/ Ang(1–7)/ Mas, has been reported in skeletal
muscles (Cabello-Verrugio et al., 2015, Riquelme et al., 2014). Kin-



A.S. Awad, M. Nour El-Din and R. Kamel Saudi Pharmaceutical Journal 29 (2021) 724–733
ugawa suggested that the beneficial effects of ARBs in skeletal
muscle mitochondrial dysfunction are not only related to AT1R
blockade but may involve Ang (1–7) too (Kinugawa, 2017). Can-
desartan was shown to reduce cardiac damage via up-regulation
of non-conventional RAS pathway in the myocardium of rats with
dilated cardiomyopathy (Arumugam et al., 2012).

In this study, we demonstrate that HLI/R suppressed the
skeletal muscle level ACE2 activity, Ang (1–7) level in addition
to Mas receptors gene expression. Administration of either
1 mg/kg of candesartan or 10 mg/kg of CoQ10 reversed these
changes indicating that the non-classical RAS is involved in
the protective action of both drugs. Suppression of ACE2 activity
may be a reason for increased Ang II level and in parallel, a
decrease of Ang (1–7) level.

It is well recognized that p38 MAPK is activated in response to
different stressors including ischemia. Oxidative stress-induced
skeletal muscle catabolism was found to be mediated by p38 MAPK
phosphorylation (Kim et al., 2009, Meng and Yu, 2010, Rom et al.,
2015). Generation of AngII-dependant ROS and phosphorylation of
p38 MAPK downstream to NOX activation have been identified in
skeletal muscle fibrosis (Cabello-Verrugio et al., 2011, Morales
et al., 2012). Besides, it was reported that Ang (1–7) inhibits skele-
tal muscle wasting through the decrease of p38 MAPK phosphory-
lation via Mas receptor activation (Morales et al., 2015).

Our results are in line with these previous reports. Indeed, HLI/R
induced elevation of phospho-p38MAPK. Candesartan (1 mg/kg)
and CoQ10 (10 mg/kg) mitigated this elevation probably by dimin-
ishing the oxidative stress in gastrocnemius and enhancing ACE2/
Ang(1–7)/Mas axis.

Being not far from oxidative stress and inflammation scenario,
myonuclear apoptosis is also triggered by Ang II that activates both
intrinsic and extrinsic apoptotic pathways resulting in amassing
caspase-3 activity (Abrigo et al., 2018, Cabello-Verrugio et al.,
2017). On the other hand, Ang (1–7) diminished myonuclear apop-
tosis and caspase-3 activity in a model of mice skeletal muscle
atrophy induced by Ang II (Meneses et al., 2015). Our results are
following such findings since HLI/R induced gastrocnemius active
caspase-3 expression which was countered by administration of
either candesartan or CoQ10. These outcomes appear to be reason-
able since both drugs suppressed and enhanced the apoptotic and
anti-apoptotic arms of RAS, respectively.

As mentioned above, we didn’t only use candesartan (1 mg/kg)
or CoQ10 (10 mg/kg) individually in our study, but we combined
half doses of these drugs too, aiming to get the beneficial outcome
of both drugs while using lower doses. Definitely, the results
obtained clarify that 5 mg/kg of CoQ10 boosted candesartan low
dose effect on ACE2 activity and Ang (1–7) expression. Similarly,
anti-inflammatory and anti-apoptotic actions of candesartan were
enhanced.
5. Conclusion

To recapitulate, our study pointed to the benefit of candesartan
in a model of tourniquet-induced HLI/R in rats. We demonstrated
that in addition to being an ARB, candesartan enhances the non-
traditional RAS arm. For the first time, we showed that CoQ10
stimulates also the same pathway in skeletal muscle and magnifies
the candesartan effect. However how CoQ10 influences the RAS
needs further mechanistic investigations.
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