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ABSTRACT

Comparative genome hybridization (CGH) to DNA
microarrays (array CGH) is a technique capable of
detecting deletions and duplications in genomes at
high resolution. However, array CGH studies of the
human genome noting false negative and false posi-
tive results using large insert clones as probes have
raised important concerns regarding the suitability
of this approach for clinical diagnostic applications.
Here, we adapt the Smith-Waterman dynamic-
programming algorithm to provide a sensitive and
robust analytic approach (SW-ARRAY) for detect-
ing copy-number changes in array CGH data. In a
blind series of hybridizations to arrays consisting
of the entire tiling path for the terminal 2 Mb of
human chromosome 16p, the method identified all
monosomies between 267 and 1567 kb with a high
degree of statistical significance and accurately
located the boundaries of deletions in the range
267-1052 kb. The approach is unique in offering
both a nonparametric segmentation procedure and
a nonparametric test of significance. It is scalable
and well-suited to high resolution whole genome
array CGH studies that use array probes derived

from large insert clones as well as PCR products
and oligonucleotides.

INTRODUCTION

Cytogenetically visible segmental aneusomies have long been
recognized as a common cause of human genetic disease,
but less readily detectable chromosomal rearrangements can
also be clinically important. For example, small genomic
rearrangements may account for 14-15% of idiopathic learn-
ing disability, a common condition for which most investi-
gations have a very low diagnostic yield (1-3). Methods to
screen the genome for DNA copy-number changes are there-
fore likely to have important clinical applications. One such
method, comparative genome hybridization (CGH) to DNA
microarrays (array CGH), has attracted much attention, but
reliable detection of single-copy gains or losses remains
challenging.

Array CGH can reveal single-copy changes (4-6), but it is
also clear that such changes can pass undetected, suggesting
that the method may not be sufficiently sensitive and/or
specific to be useful as a routine diagnostic tool. In a study
of telomeric regions of the genome, it has been found that one
false positive result would be expected for every patient ana-
lysed (7). Indeed, for some arrayed probes, 15% of the ana-
lyses would be scored as abnormal. In an array CGH study of
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the 1p36 region, single copy deletions were correctly identified
in all patients with 1p monosomy, but the analysis failed to
identify known copy-number changes using 1p probes that
map to the most terminal associated repeat region of 1p36 (8).
Furthermore, a whole genome study, using probes spaced
every 1 Mb across the genome, reported a 10% false positive
rate and 10-15% polymorphisms (1). Thus, although whole
genome array CGH has the potential to be extremely effective,
there are concerns regarding the suitability of the approach
in a clinical diagnostic environment where a reliable assay,
providing clear, high quality results of measurable significance
is required.

We set out to determine whether a method for analysing
array CGH data sets could be developed that would be suffi-
ciently robust and reliable for clinical applications. To do so,
we required a series of DNA samples from individuals with
previously characterized copy-number changes, the boundar-
ies of which had been mapped accurately. We used a series of
DNA samples from patients with monosomies that varied in
size from 223 to 1567 kb and which had been accurately
mapped onto the terminal 2 Mb of chromosome 16p. Not
only has this 2 Mb region been fully sequenced, annotated
and well characterized, but it is also fully represented by a
tiling path of cosmid and PAC clones that have been accur-
ately placed with respect to the sequence, thereby allowing us
to generate array probes (9).

We developed a computational method that makes no dis-
tributional assumptions about the data to identify putative
copy-number changes and determine their statistical signific-
ance. Since analysing probe signals independently has been
shown to be error-prone (in terms of false positives and false
negatives) and complicated by polymorphisms/benign vari-
ants, we adapted the Smith—Waterman algorithm (10) to
identify genomic regions with copy-number changes that
span multiple probes. This algorithm has been used previously
to identify genomic regions with unusual properties (11).
This method, which we have termed SW-ARRAY (Smith—
Waterman algorithm adapted for Array CGH) represents a
new approach towards optimizing array CGH analyses so
that copy-number changes can be detected more accurately,
thus making array CGH more suitable for a clinical diagnostic
environment.

MATERIALS AND METHODS
Subjects

DNA samples from a total of 12 control subjects and 16 test
subjects were used for the array CGH studies. All test sub-
jects had well-characterized monosomies that ranged from
223 to 1567 kb and were located within the terminal 2 Mb
of chromosome 16 (Table 1).

Generation of array probes

A list of the clones used in these studies is at http://www.well.
ox.ac.uk/~sknight/NAR. Both the chromosome 16p tiling
clones and the telomere-specific clones (used for normaliza-
tion calculations) have been reported previously (9,12,13).
Within the 16p tiling path, there are only five sequence
gaps of <100, 600, 850, 1250 bp and 8 kb (9). DNA was

Table 1. Known map positions of monosomies in test samples

Case ID Position of References
monosomy
(kb from 16p)
1 0-223 (26)
2 33-300 (26)
3 0-300 D.R. Higgs and Dr V. Buckle,
personal communication
4 0-700 (26)
5 0-775 9,27)
6 0-900 (28)
7 0-999 (28)
8 0-1052 (29)
9 0-1100 (30)
10 0-1159 @31)
11 0-1159 (28)
12 0-1183 (28)
13 0-1400 D.R. Higgs and Dr V. Buckle,
personal communication
14 0-1567 31
15 0-1000 9)
16 0-1160 D.R. Higgs and Dr V. Buckle,

personal communication

extracted from the cosmid, BAC and PAC clones using a
standard alkaline-lysis protocol (14). DNAs representative
of these clone inserts were obtained by PCR amplification
using an adaptation of the method of Fiegler ez al. (15) des-
cribed as follows. For each DNA, two 100 pl PCR reactions
were performed (i) containing ~100 ng DNA, 2 mM DOP-2
primer (5-CCGACTCGAGNNNNNNTAGGAG-3")(MWG),
1.7x polymerization mix (85 uM each of dCTP, dGTP,
dTTP and dATP), 1.7x Buffer (17mM Tris—HCI, pH 8.3
and 85 mM KCl), 4.25 mM MgCl,, 6 U Amplitaq Gold (Perkin
Elmer Cetus Inc) and (ii) containing the same reagents
except the substitution of DOP-2 primer with DOP-3 primer
(5'-CCGACTCGAGNNNNNNTTCTAG-3)(MWG). The
cycling conditions were 1x cycle of 94°C for 3 min, 9% cycles
of 94°C for 1 min and 30 s, 30°C for 2 min 30 s and 0.1°C/s
ramp to 72°C followed by 29 cycles of 94°C for 1 min, 62°C
for 1 min 30 s and 72°C for 2 min, and finally a single cycle of
72°C for 5 min. The products were checked by agarose gel
electrophoresis, the DOP2 and DOP3 products for each clone
combined and the DNA precipitated in 1/10th volume 3 M
sodium acetate and 2 volumes ethanol for >48 h at —70°C. The
precipitated DNAs were pelleted, washed in 70% ethanol and
resuspended overnight at 4°C in 21 ul dH,O. Following a
further agarose gel electrophoresis check, dimethyl sulfoxide
(DMSO) was mixed with each sample to give a final arraying
solution containing 50% dH,0:50% DMSO. The samples
were then transferred to 384 well microtitre plates (Amersham
Biosciences) prior to arraying.

Array fabrication and processing

Prepared probes were spotted in quadruplicate on to CMT-
GAPs slides (Corning Ltd) using a Gen III Microarray spotter
(Amersham Pharmacia Biotech). The spotted microarrays
were subjected to 650 x 100 uJ UV irradiation in a Stratalinker
(Stratagene) and then baked for 2 hrs at 80°C. Prior to hybrid-
ization, the microarrays were immersed in boiling water for
2 min, passed through an ethanol series consisting of 70, 95
and 100% EtOH and dried by centrifugation at 160 g in a
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bench top centrifuge (Beckmann). The slides were then
immersed in 3.5%x SSC, 0.1% SDS, 1% BSA (Fraction V,
Sigma) at 50°C for 45 min, washed by shaking in dH,O at
room temperature (RT) for 2 min followed by dehydration
through an ethanol series and drying by centrifugation as
above. The processed microarrays were stored in a plastic
slide container at RT until ready to hybridize.

Preparation and random primed labelling of
target DNAs

Target DNAs consisted of (i) control DNAs, comprising
anonymous DNAs from phenotypically normal individuals
of known sex, and (ii) test DNAs comprising DNAs from
patients of known sex and with known 16p subtelomeric
rearrangements. For each CGH experiment, control and test
DNAs were digested with SaulllA, and subsequently purified
using the Wizard DNA Clean-Up System (Promega) accord-
ing to manufacturer’s instructions. A 5 ug sample of each
purified DNA was differentially labelled with Cy3-dCTP
and Cy5-dCTP (NEN) using the BioPrime Labelling Kit
(Invitrogen) following The Brown Lab protocol web-
page (http://cmgm.stanford.edu/pbrown/protocols/), with the
exception that mixed, labelled target DNAs were made up
to a final volume of 55 pl containing filtered 3.4x SSC and
0.3% SDS.

Array CGH

Each labelled target mixture was denatured at 97°C for 5 min
and immediately transferred to a 37°C hotblock for 55 min to
allow repetitive sequences to be blocked. The hybridization
mix was then applied to a coverslip (pre-warmed at 37°C) and
a pre-warmed array slide lowered on to the mix, thereby sand-
wiching the mix between the coverslip and the microarray
spots. Hybridization was carried out in a Corning Ltd hybrid-
ization chamber submerged in a 65°C shaking waterbath for
36-48 h. Following hybridization, the coverslip was removed
from the microarray slide by 10 min immersion in a Coplin Jar
containing 2x SSC, 0.03% SDS at RT. The microarray slide
was then passed through a series of washes on a shaking
platform. The wash series was 2x SSC, 0.03% SDS for 5 min
at 65°C followed by 6x 15 min washes in 0.2x SSC at RT. The
slide was then dried by centrifugation at 50 g for 3 min at RT
and stored in a light-proof container prior to image acquisition.

Image acquisition

Cy3 and Cy5 fluorescence intensity data were collected by
scanning the hybridized microarrays in a PackardBell Biochip
(formerly GSI Lumonics, Inc) machine using the application
ScanArray (PackardBell Biochip). The data were collected at a
10 w resolution with the laser set at 95% and the scanning rate
at 100%. The Photomultiplier tube gains were typically set at
65 for Cy3 images and 55 for Cy5 images. The images were
stored as TIFF files ready for analysis.

Subject data set

The data set comprised the measurements from a total of 27
array CGH experiments, of which six were generated from
control versus control hybridizations (12 unrelated subjects)
against the 16p arrays. Of the remaining 21 experiments,
seven used test subject DNAs selected to represent a range of
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well-characterized 16p deletions ranging from 223 to 1567 kb
in length. These subjects were investigated with prior know-
ledge of the deletion boundaries, to allow calibration of our
analysis. During calibration experiments, the results were
compared with those of single probe by probe data analyses
obtained using the technique outlined by Veltman et al. (7).
Following the calibration, 14 blind array CGH experiments
were performed with anonymized samples later revealed to
be made up of nine new test subjects with well-characterized
16p deletions and five of the test subjects with 16p deletions
tested previously. The study of subject samples was approved
by the appropriate institutional review board.

Data extraction

The fluorescence intensity of each spot (measured as the
median of the pixel intensities), together with the local back-
ground (measured as the median of the pixel intensities in the
region immediately surrounding the spot), were extracted from
the image files using the Quantarray software and exported
for further analyses (see below). Spots of poor quality were
identified by eye and flagged.

Data preprocessing and normalization

The results from the 16p probes were analysed initially on a
probe by probe basis using the method of Veltman ez al. (7),
with the exception that quadruplicate (rather than triplicate)
spot data were available for each probe. First, the net intens-
ities of each of the Cy3 and Cy5 channels were calculated as
the raw spot intensity minus the local background. Second,
control:test intensity ratios were calculated and the data edited
by excluding flagged spots, excluding spots with an intensity
<600 (based on the intensity values from blank spots) in the
control sample and, if necessary, removing the replicate data
from probes yielding SD = 0.2 until SD =< 0.2 for the remain-
ing replicates. The minimum number of spots accepted for
analysis was two; if it was not possible to decide which
two of the four spots should be included then all four spots
were excluded. For the seven subjects tested with prior know-
ledge of the deletion boundaries, the data were normalized by
multiplying all Cy3 intensities by the value needed to give
a median ratio of 1:1 for 16p probes known to lie in disomic
regions. For the 14 blind control versus test array CGH data
sets (generated using anonymized test DNAs for which only
the sex was known), the subjects tested were likely to have
deletions involving the terminal 2 Mb of chromosome 16p
and therefore the use of 16p probes for normalization was
avoided. Instead, the data were normalized so that the median
ratio value for arrayed telomere-specific probes (representing
disomic regions of the genome) was 1:1. Control versus con-
trol array CGH data from arrays that included both probe sets
showed that the multiplication factors required for normal-
ization were consistent regardless of whether 16p probes
or telomere probes were used for the calculations. Follow-
ing normalization, the mean test:control intensity ratios
were calculated for each probe by averaging the ratios of
accepted spots.

Analysis of array CGH data

The data from the initial seven array CGH experiments, using
samples from patients with a range of single copy deletions


http://cmgm.stanford.edu/pbrown/protocols/

3458 Nucleic Acids Research, 2005, Vol. 33, No. 11

of chromosome 16p, were analysed in two ways, described
in detail below. First, the global thresholding approach of
Veltman et al. (7) was used. Second, the Smith—Waterman
algorithm was applied, trying various formulae for the thresh-
old parameter in order to calibrate this parameter for the ana-
lyses to follow. Subsequently, we applied our SW-ARRAY
analysis using 14 ‘blind’ test versus control array CGH data
sets newly generated using anonymous test DNAs for which
only the sex was known. The identities of the patients’ chro-
mosomal rearrangements were only revealed after the analyses
had been performed.

Probe by probe global thresholding analysis. Data were first
analysed one probe at a time, using the global thresholding
method (7) to determine whether or not individual probes
could detect a region of copy-number change in the seven
patients with known regions of monosomy. Using the meth-
odology of Veltman et al. (7), normalized data from the six
control versus control hybridizations were used to calculate
the overall mean of the fluorescence ratios and the SD from
this mean for each arrayed 16p probe (in this way, the variation
for each probe between different control hybridizations is
considered). To correct for the intrinsic variability between
probes, the mean intensity ratio yielded by each probe in the
control versus test hybridizations was divided by the mean
intensity ratio of that particular clone as calculated from the six
control versus control hybridizations. This correction was also
applied to the mean intensity ratios of each of the clones from
the control versus control hybridizations, resulting in a ratio
value of 1.0 for all clones. In this way, the corrected ratio
obtained for every probe of the control versus patient hybrid-
izations could be easily plotted and compared on the same
plot with the corrected control versus control ratio (always a
value of 1.0) together with the calculated SD for each clone
ratio. As previously described, lower and upper threshold
values of 0.8 and 1.2 were used as evidence of deletion and
polysomy, respectively (7).

Multiple probe SW-ARRAY (Smith—-Waterman algorithm
adapted for Array CGH) analysis. The array CGH data
were first corrected for the intrinsic variability between probes
as described above. Next, isolated outlying probes were
removed from the analysis if the logarithm of their intensity
ratio fell by >2.5 rescaled MAD (= MAD/0.6745, the rescaled
for normal consistency; a robust measure of SD) from the
median for the other probes on the array.

The data were then analysed using an adaptation of the
Smith—Waterman algorithm, a technique originally applied
in bioinformatics for the local alignment of DNA and protein
sequences (10), and for the identification of sequence seg-
ments with unusual properties (11). The justification for this
method is that microarray CGH intensity log ratios, considered
sequentially along the genome, represent a one-dimensional
series of continuously distributed scores. Contiguous sequen-
ces of predominantly high values in this series may indicate
polysomic regions. Conversely, sequences of predominantly
low values may indicate deletions, and can be found in the
same way by changing the sign of the data. The method pro-
ceeds as follows. First, a threshold value 7, is subtracted from
the log ratios, ensuring that the mean of the adjusted scores is
negative. The score of a segment of consecutive probes is the

sum of the corresponding adjusted log ratios. Next, high-
scoring ‘islands’ are identified using the Smith—Waterman
algorithm. A locally high-scoring segment or island is defined
to be a positive-scoring segment whose score cannot be
increased by shrinking or expanding the segment boundaries;
the Smith—Waterman algorithm is an efficient method to
identify all such islands in the data set.

More formally, let X(p) be the adjusted score for the pth
probe ordered along the genome. Let us define the score of the
segment from p to ¢ inclusive as

q
T(p.q) = » X(i).

i=p
Define S(p) to be the score of the island ending at coordinate p,
and B(p) to be the coordinate of the beginning of the island.
Then it can be shown that the following Smith—Waterman
recursion will find the islands. Let S(0) = 0, and for p > 0

S(p) = {S(p—l) +X(p) if S(p—1) +X(p)

0 otherwise

B(p) = {B(p—l) if S(p) >0

p otherwise.

The boundaries {B(Pmax), Pmax} and score S(Pma,) of the
overall maximum-scoring island are output by the algorithm.
Note that negative-scoring loci can occur inside an island, thus
allowing for occasional false positive or negative signals. In
order to identify all islands, the segment corresponding to the
maximum-scoring island is replaced by a sequence of zeroes
and the algorithm repeated until no positive-scoring islands are
detected.

The statistical significance of an island was estimated by
permutation, as the proportion of times that a higher-scoring
island was found in 1000 runs in which the adjusted log ratios
were permuted between the probes and the highest-scoring
island in the shuffled data recorded in each run. This method
was based on the premise that successive scores from the
permuted data approximate the null distribution of scores.
When testing for a copy-number increase that does actually
exist, this is in fact a conservative assumption, since the per-
muted data will be drawn from a mixture of the real null
distribution and the distribution of scores in the polysomic
region. Since the sequences analysed were only 2 Mb long,
only the highest-scoring island in each sequence was tested for
statistical significance. The R scripts used for pre-processing
and analysing the data are available from http://www.well.
ox.ac.uk/~tprice/cgh.

The optimal threshold value was found using a set of non-
blind data. A sequence of 100 7, values between the median
and (median + 0.4 X MAD) were tried, and the proportion of
times that a position fell within the highest-scoring island was
taken as a heuristic indicator of robustness. If this quantity
takes a value near 1 at any particular position, it means that a
copy-number change is indicated, and that this indication is
not sensitive to the value of the threshold. Values near 0 mean
that copy-number changes are not indicated, regardless of the
value of the threshold. Intermediate values between O and 1
mean that the detection of copy-number changes is to some
degree sensitive to the choice of threshold value.
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RESULTS

Probe by probe global thresholding analysis of
DOP-amplified 16p clone data

Control versus control hybridization for 16p probes. We first
investigated the variation between probes that occurs across
the 2 Mb tiling path in control versus control hybridizations
(i.e. where there are no aneusomies present). Figure la—c
shows the normalized fluorescence ratios for three normal
versus normal hybridizations. The ratios vary from probe to
probe, but the ratio profile for individual probes is remarkably
consistent. Figure 1d shows the mean ratios and SD values
obtained from these and three additional normal versus normal
hybridizations. It can be seen that some probe results varied
very little between hybridizations (minimum SD = 0.048)
whereas others showed a larger level of variation (maximum
SD = 0.202). The mean SD over all probes was 0.108.

Control versus test hybridizations for 16p probes. The case
IDs of the test subjects and the known map positions of their
monosomies are given in Table 1. Figure 2 shows the normal-
ized fluorescence ratios, corrected for probe to probe variation,
for two of the patients monosomic for different portions of
16p, one with a 1 Mb terminal deletion (Figure 2a) and one
with a larger 1.567 Mb deletion (Figure 2b). These are com-
pared with the normalized, corrected mean ratios (which give a
reference value of 1.0) and SD values obtained from the six
control hybridizations. Using this method, reduced ratios are
clearly visible when compared with the control ratios for both
patients, but it is also clear that not all probes lying in mono-
somic regions yield control versus test ratios below a threshold
ratio of 0.8 (see Materials and Methods for choice of threshold
ratio) and that some of these clones do not show any difference
at all, falling within or close to, the SD of the corresponding
mean control versus control ratios. In one case, a probe lying in
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the disomic region gives a ratio above the threshold ratio of
1.2, indicating a false positive result (Figure 2a).

The results from these and the additional eight data sets are
summarized in Table 2. Analysing each probe independently,
78.1% (95% CI 72.5-83.8) of the 16p probes identified the
known monosomic regions correctly and 21.9% (95% CI
16.6-28.0) were false negatives using the threshold ratio of
0.8. The overall percentage of false positives across mono-
somic and disomic regions and including the control hybrid-
izations was 8.9% (95% CI 7.0-11.1). The error rates in our
data are broadly consistent with those reported in earlier
studies.

Multiple probe analysis with SW-ARRAY

To deal with the problem of the error rates encountered when
considering the probes individually, we analysed the data from
array CGH experiments using SW-ARRAY. We first trained
the algorithm by optimizing the choice of the threshold para-
meter, fo, on a set of non-blind data (i.e. where the locations
of aneusomies were known) and then validated the method
on a blind data set.

Training SW-ARRAY on non-blind data. Using the known
position of the rearrangements from seven initial test samples,
the most useful threshold #, for identifying monosomy was
found to be the median of the log ratios plus 0.2 times their
MAD when rescaled for normal consistency (i.e. median +
0.2 x MAD). We tested thresholds over a range of plausible
values to assess the sensitivity of the copy-number change
identifications to different values of this parameter and
found that the algorithm’s performance is relatively insensit-
ive to the threshold value. Figure 2¢ shows an example of the
graphical output obtained by applying the algorithm to one of
the data sets analysed above using probe by probe global
thresholding (Figure 2a). In this example, the method correctly
identified the known 0-1000 kb region of monosomy as a
monosomy of 27-1055 kb. This region gave robustness values
of >0.5 (predominantly 1.0) indicating insensitivity to the

Table 2. Summary of 16p array CGH results analysed probe by probe

threshold parameter, and a permutation-based statistical sig-
nificance of P < 0.00001. Table 3 summarizes the results
obtained in this way from all seven control versus test data
sets and all six control versus control data sets. For all except
the smallest and the largest monosomy, the identified regions
coincide closely with the true extent of the copy-number
change in the subjects, indicating that the regions of mono-
somy are accurately located. The smallest region of mono-
somy (location 33-300 kb) was not detected (P = 0.0578)
whereas for the largest monosomy (location 0-1567 kb),
the location of the deletion was identified as the region
from 356 to 1358 kb (P < 0.0008). Importantly, the range
of P-values obtained from the control normal versus normal
hybridizations was P = 0.0840-0.9688 (mean P = 0.4321) i.e.
none gave a P-value <0.05, indicating that no false positives
were found.

Validation of SW-ARRAY on blind data. Figure 3 shows the
results obtained when the Smith—Waterman analytical method
was applied to 14 data sets obtained from blind array CGH
experiments. Following analysis, the decoded data sets were
found to include five of the test samples used previously for
the global thresholding and training analyses and nine new test
samples. However, the blind data sets from the five test sam-
ples used previously had been newly generated and therefore
were independent of the non-blind data sets used for the probe
by probe global thresholding and training analyses. Of the
14 deletions, only the smallest terminal monosomy (Case 1,
0-223 kb) was not detected using the algorithm. All 13 of the
remaining monosomies were identified with a high degree of
statistical significance. The smallest of these was an interstitial
monosomy from 33-300 kb (Case 2, accurately located as
27-356 kb, P =0.00086). Of the six largest monosomies,
one, Case 11 (0-1159 kb monosomy) was detected with
high statistical significance and was accurately located
whereas five were detected with high statistical significance
and were predicted to lie in regions that nested within and
covered most of the length of the known corresponding

Location of
monosomy

Correct monosomy
result probe (%)

Correct disomy
result probe (%)

Overall false
positive results®

False positive
in monosomic

False negative
in monosomic

(kb from 16p telomere) region” probe (%) region probe (%) probe (%)

Test samples
34-300 86 59 0 14 37
0-775 63 68 0 37 20
0-1000 61 82 0 39 9
0-1052 97 91 0 3 5
0-1160 86 96 0 14 2
0-1183 70 82 0 30 8
0-1567 83 100 0 17 0

Control samples
0 NA 95 NA NA 5
0 NA 100 NA NA 0
0 NA 100 NA NA 0
0 NA 98 NA NA 2
0 NA 88 NA NA 12
0 NA 98 NA NA 2

“Copy-number increases rather than decreases.
®Includes false positives in disomic regions.
NA = Not applicable.



Table 3. Non-blind array CGH results obtained using SW-ARRAY

Known location Overall significance Algorithm location

of monosomy (P-value) with robustness
(kb from 16p telomere) >0.5 (kb from
16p telomere)

Test samples

33-300 0.0578 NA

0-775 0.0042 27-775

0-1000 0.0000 27-1055

0-1052 0.0000 27-1055

0-1160 0.0000 <27-1026

0-1183 0.0000 27-1121

0-1567 0.0008 356-1358
Control samples

0 0.9688 NA

0 0.3915 NA

0 0.0840 NA

0 0.1459 NA

0 0.8497 NA

0 0.1529 NA

NA = Not applicable.

monosomies. Importantly, for the seven cases of monosomy in
the range 267-1052 kb, all were accurately located and cor-
rectly identified with a high degree of statistical significance.

DISCUSSION

We have devised a dynamic programming algorithm, SW-
ARRAY, to classify regional variations in array CGH
fluorescence ratios as copy-number changes. We have imple-
mented a permutation test to assign statistical significance to
these classifications and measured the robustness of the co-
ordinates of the regions predicted to contain a copy-number
change. Our approach can be applied to high-resolution array
CGH data irrespective of the arrayed probe type. Importantly,
it is scalable and so can be applied to the analysis of data from
high resolution arrays such as the newly emerging whole gen-
ome large insert tiling path arrays (16) and whole genome
oligonucleotide arrays (17). This method is well-suited for
high resolution array CGH applications in a clinical diagnostic
environment, where reliable, robust assays, providing clear,
high quality results of measurable significance are required.

The method achieves optimal performance when an array
comprises numerous probes that border as well as bridge a
region of copy-number change. This is because SW-ARRAY
works by locating the boundaries of regions of copy-number
change, and is most effective for long sequences for which
edge effects are minimized. When these conditions are met,
we were able to detect all rearrangements. Thus, all mono-
somies ranging from 700 to 1052 kb in length were identified
at P < 0.0001, and their boundaries accurately located. Of the
14 blind tests, only the 0-223 kb terminal monosomy was not
detected. The smallest monosomy detected was the 33—300 kb
interstitial deletion (P = 0.00086) and the largest monosomy
detected was the 0—1567 kb deletion (P = 0.01344). In five
blind tests from subjects with monosomies in the range 1100-
1567 kb, the analysis correctly identified monosomies that
were highly statistically significant, but the predicted bound-
aries of the regions were more sensitive to the threshold value
used in the Smith—Waterman procedure (as indicated by
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robustness values exceeding 0.5 only for the majority rather
than the whole of the region known to be deleted). Import-
antly, the predicted boundaries of monosomies of this size will
be less sensitive to the threshold value when larger contiguous
chromosomal segments are represented (as in high resolution
whole genome tiling path arrays) or when there are many more
data points to consider (as in high resolution oligonucleotide
arrays).

Using previously published probe by probe global
thresholding analysis criteria (7), we found an overall false
positive rate of 8.9%. For known monosomic regions, only
78.1% of the 16p probes identified copy-number changes
correctly, with 21.9% being false negatives. We also observed
a wide range in the SD values when the mean control versus
control hybridization ratio SD values for each probe were
compared with those of all the probes on the array, suggesting
that information may be lost by applying the same threshold
values to all probes.

The level of resolution that may be achieved using SW-
ARRAY theoretically depends on the sequence length and
spatial density of the arrayed probes. However, increased res-
olution brings with it the increased likelihood of identifying
imbalances that are due to very small regions representing
phenotypically benign variants or polymorphisms. No single
analytical approach will be able to distinguish between these
versus pathogenic copy-number changes until such variants/
polymorphisms have been well documented and annotated
throughout the genome. In the meantime, it will be necessary
to follow up all imbalances identified by array CGH in an
attempt to determine whether they are likely to be clinically
significant.

Other array CGH analytic approaches include the use of
smoothing (18), 3-means clustering (19), estimating mixtures
of Gaussian distributions (20,21) and hidden Markov models
(HMMs) (22,23). Smoothing improves the specificity of glo-
bal thresholding methods, but needs special tuning to work
with different data sources. Clustering procedures, including
estimating mixtures of Gaussian distributions, suffer in their
performance from not taking into account the spatial depend-
encies in the data. HMMs have a learning algorithm, but tend
to be used to analyse specific classes of data (e.g. from specific
cancer cell lines) because of the algorithm’s sensitivity to the
topology of the HMM. Our approach, like HMM-based and
Bayesian algorithms leads to a dynamic programming solu-
tion. It bears similarities to the HMM approach, but it has the
advantage that it does not rely on the assumption that the data
take a parametric (Gaussian) form. In contrast, the Bayesian
segmentation algorithm recently put forward by Daruwala
et al. (24) does make this assumption, though could be con-
verted into a nonparametric algorithm under a mild assump-
tion of bounded variance. Of all the published methods to date,
only that of Olshen et al. (25) offers a nonparametric seg-
mentation procedure. SW-ARRAY depends only on a single
threshold parameter, and makes no other assumptions about
the distribution of aneusomic segments. The results we
obtained were highly robust to different choices of the thresh-
old. Our statistical analysis is unique in offering not only a
nonparametric segmentation procedure, but also a nonpara-
metric test of significance, i.e. once a single threshold
parameter has been set, the method identifies regions of
copy-number change without assuming that the data follow



3462 Nucleic Acids Research, 2005, Vol. 33, No. 11

Case 1: 0-223kb monosomy Case 2: 33-300kb monosomy Case 3: 0-300kb monosomy
1.2 1.00 12 1.00 12 1.00
T e p=0.08697 e p=0.00086 s p=0.00989
E o8 08 B
£ o0s o7s £ 06 075 208 078
§ 04 04 o E 04 o
02 § 02 % 5y it g éoz s "
- -
00 € oo . .". o 050 00 w ":.’0.' ".*“.:.:‘, 050
02 g.u_g.. "' 2% 5 221 "'. " P L
0.4 3 ‘o‘ * .’ -0.4 L .‘ -
2 08 2 951 * 025 08 025
g 08 08 08
1.0 A0 =110
12 a2 0 a2 0
02040608 1012 14 16 18 20 02040608 101214 16 18 20 02040608 10 1214 16 18 20
Distance from 16p telomere (Mb) Distance from 16p telomere (Mb) Distance from 16p telomere (Mb)
Case 5: 0-775kb monosomy Case 6: 0-900kb monosomy
12 1.00 12— —w
Sk p<0.00001 § th|——= P<0.00001
.E 08 g o8
£ o8 075 Z o8 o7s
g 0.4 L - g :.:
§ 02 R o i : o
0.0 o lomt® .10 om0 00 ST
g 020" . P | i 'O 02 PO
04 .0 - - & '04 - - - - ‘...
§ T ey Fes o . -
08 025 08 :'Q'v.. % 0.25
g 0.8 g 08, A S
3 a0 S| *e £%
] 1.2 0 12 o
02 04 0508 10 12 14 16 18 20 “0 02040808 101214 16 18 20 02 04 0608 1.0 12 14 16 18 20
Distance from 16p telomere (Mb) Distance from 16p telomere (Mb) Distance from 16p telomere (Mb)
12 1.00 12 1.00 12 100
3 D p=0.00005 = p<0.00001 210 p=0.00025
2 08 § 08 g 08
.
£ os 075 £ o6 . v Jors £ 0s 075
E 0.4 . e s 5 04 .‘l’ao’ .y = 7
£ 02 . % 2 fo w2 £
3 . i, E g O - %
oof . Sl P Ty 050§ 0OF L. b 050
s .
alieda TN felat i
3 p .
208 4 025 2 08 P J 025 = .08
%-M g{a.s g
10 S0 - S :
12 0 12 0 12 9
0 02040608 101214 16 18 20 0 020408608 101214 1618 20 02040608 101214 1618 20
Distance from 16p telomare (Mb) Distance from 16p telomere (Mb) Distance from 16p telomere (Mb)
12 1.00 12 1.00 12 1.00
o 10 P<0.00001 - p=0.00000
= g U
Eos B o8 -
£os o7s £ 08 ' fors
= - L)
04 04 .
s,
£ 0z b g o E o2 p f" o, e E:
ool * _" .3" osog g oof . i | P * loso
ol .Tfe o* P ™ 2 3 1 o SR S SN
B L NP 4 o - @ @ 04 ” .°‘ b
. . .
doalr 17, S 025 é-o.a' . . 025
gos ~f 2% g,o.a *
= -1.0 2 . a0 k
A2 L] a2 0 1.2 ]
02040608 101214 16 18 20 2 02040608 101214 1618 20 0 02040808 101214 16 1820
Distance from 16p telomere (Mb) Distance from 16p telomere (Mb) Distancedsam:1 6p telomere (Mb)
12 100 2 100
& e p=0.04678 > p=0.01344
g g 10 —_—
Eoos € o8
E (/13 0.75 £ 08 0.75
[ =4
g o4 . % E 04
02 * #hee 2 £ 42 2
L e e oot e (MR g 00 w ¢ [050
b D G4 02 o e .
P A g, R . Giles & [ * ol
2 08 * 025 o081 o - i e +] * o8
08 o8yt ot 1
= -10 30 Lk
2 T 04 06 08 TO T2 T4 TE B 20 2, 0
4 6 1.0 1.2 1.4 1 . 02040608 10 1214 16 18 20
Distance from 16p telomere (Mb) Distance from 16p telomere (Mb)

Figure 3. Results of applying SW-ARRAY on data sets with 14 blind control versus test hybridizations. Each black data point indicates the mean, normalized
LOG?2 fluorescence ratio for a single 16p probe. The significance values are given in the top right of each chart. The robustness values are plotted as blue lines, the
threshold values as green lines. Genomic regions identified as monosomic with robustness values >0.5 are indicated by the black double-ended arrows. The known
region of monosomy for each patient is indicated by the red box in the ideogram of the terminal 2 Mb of chromosome 16p above the relevant chart. The black box on
the ideograms represent disomic regions.



a normal distribution and furthermore, tests the significance of
these regions without making any other assumptions.

In summary, the SW-ARRAY method of data analysis
represents a way to overcome the problems of low sensitivity
and specificity associated with array CGH. The method can
be adopted for data from any type of array probe and for all
regions of the genome where there is accurate positional
information across a contiguous section of chromosome. Its
use makes array CGH significantly more suited to clinical
diagnostic purposes.
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