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ABSTRACT

Mitochondrial metabolic reprogramming is a hallmark of tumorigenesis. Although 
mitochondrial function can impact cell cycle regulation it has been an understudied 
area in cancer research. Our study highlights a specific involvement of mitochondria 
in cell cycle regulation across cancer types. The mitochondrial fission process, which 
is regulated at the core by Drp1, impacts various cellular functions. Drp1 has been 
implicated in various cancer types with no common mechanism reported. Our Drp1-
directed large-scale analyses of the publically available cancer genomes reveal a 
robust correlation of Drp1 with cell-cycle genes in 29 of the 31 cancer types examined. 
Hypothesis driven investigation on epithelial ovarian cancer (EOC) revealed that 
Drp1 co-expresses specifically with the cell-cycle module responsible for mitotic 
transition. Repression of Drp1 in EOC cells can specifically attenuate mitotic transition, 
establishing a potential casual role of Drp1 in mitotic transition. Interestingly, Drp1-
Cell-Cycle co-expression module is specifically detected in primary epithelial ovarian 
tumors that robustly responded to chemotherapy, suggesting that Drp1 driven mitosis 
may underlie chemo-sensitivity of the primary tumors. Analyses of matched primary 
and relapsed EOC samples revealed a Drp1-based-gene-expression-signature that 
could identify patients with poor survival probabilities from their primary tumors. 
Our results imply that around 60% of platinum-sensitive EOC patients undergoing 
relapse show poor survival, potentially due to further activation of a mitochondria 
driven cell-cycle regime in their recurrent disease. We speculate that this patient 
group could possibly benefit from mitochondria directed therapies that are being 
currently evaluated at various levels, thus enabling targeted or personalized therapy 
based cancer management.

INTRODUCTION

Specific alteration of mitochondrial and cellular 
metabolism is one of the hallmarks of tumorigenicity [1], 
with certain driver mutations identified in mitochondrial 
metabolic components [2]. Currently, efforts are underway 
to develop mitochondria based cancer therapeutics, with 
some at the level of clinical trials [3]. Mitochondria are 
multifaceted organelles that are at the center stage of 

energetics/metabolism but can also take part in cellular 
redox and calcium balance, lipid modification, and cell 
death [4]. Mitochondria can also take part in active control 
of cell cycle, which has been hypothesized to maintain 
deregulated cell proliferation in tumors [5]. Part of the 
cell cycle control by mitochondria is mediated by proteins 
that promote either fission or fusion between individual 
mitochondria that impact their functionality [6]. The 
crosstalk between the mitochondrial fission/fusion proteins 
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and oncogenic regulators is recently being appreciated 
[7]. Dynamin Related Protein 1 (Drp1) constitutes the 
core component of the mitochondrial fission machinery 
and thus regulates mitochondrial structure-function 
relationship [8]. To be able to cause mitochondrial fission 
Drp1 gets recruited to mitochondria from the cytosol by 
either Fis1 or MFF1, two mitochondrial proteins [6]. 
The Drp1 activity can also be modulated by Mid49/51 to 
govern mitochondrial fission [9]. On the other hand, Drp1 
driven mitochondrial fission is opposed by mitochondrial 
fusion governed primarily by MFN1/2 and Opa1 [6].

The gene coding for Drp1, DNM1L, can be 
regulated at the level of transcription [10–13], while the 
function of the Drp1 protein can be regulated by various 
post-translational modifications [14]. Loss of Drp1 is 
embryonic lethal in various model organisms [8] and Drp1 
has been found to be critical for proper functioning of 
tissues like brain [15], heart [16] and ovary [17] in mouse 
models. At the cellular level, Drp1 has been implicated 
in various processes like apoptosis [18], mitophagy [19], 
metabolism/energetics [20], immune response [21, 22], 
cell proliferation and differentiation [23, 24] as well as 
cell transformation [25]. Drp1 activity has been found to 
be integrated into cell cycle control; cell cycle regulators 
modulate Drp1 which in turn regulates other cell cycle 
molecules [5]. The existing model suggests that Drp1 
activity is elevated during active mitosis and is lowered 
before DNA synthesis. Drp1 has been functionally or 
molecularly linked to the major cyclins, Cyclin B [26, 
27], Cyclin E [24–28] and Cyclin D [29]. Previous studies 
from our laboratory and others demonstrate that Drp1 
driven mitochondrial fission is critical for regulation of 
cell proliferation in a Drosophila model system, as well as 
in mammalian cells [5]. Nonetheless, the involvement of 
Drp1 as well as other mitochondrial fission/fusion proteins 
in cell cycle remains an understudied area. Based on the 
current limited findings, we speculated that regulation 
of cell cycle by Drp1 may be critical in maintaining 
tumorigenic cell proliferation.

Drp1 has already been implicated in the development 
of cancer of the breast, lung, skin and brain, but no common 
underlying mechanism has been reported in these findings: 
Drp1 has been proposed to alter mitochondrial energetics 
and cellular metabolism to sustain tumor development 
in melanoma [25], regulate stem cell maintenance in 
glioblastoma [30], promote metastasis in breast cancer [31] 
while maintain cell proliferation in lung cancer cells [32]. 
Given that Drp1 has been shown to be involved in myriad 
of cellular processes (mentioned before), investigation of 
the common or unique cellular modules affected by Drp1 
driven mitochondrial fission is pertinent in the context of 
tumorigenesis. Here, we undertook an exploratory approach 
to identify the Drp1 related cellular functional modules 
across various cancer types. We performed large-scale 
genomic analyses from publically available cancer genome 
data and found that Drp1 expression is robustly associated 

with the expression of cell cycle genes in almost all the 
cancer types examined. We have previously demonstrated 
a role of Drp1 in regulating cell proliferation of the ovarian 
epithelial cell layer in Drosophila [23]. Thus, here we 
focused on more detailed and stringent investigation of the 
role of Drp1 in epithelial ovarian cancer (EOC) that is the 
most prevalent form of ovarian cancer [33], where specific 
cell cycle regulation is perturbed in more than 80% of the 
patients [34]. Our results demonstrate for the first time that 
Drp1 driven regulation of mitosis potentially supports cell 
proliferation in the development of primary and relapsed 
EOC in distinct groups of patients. Moreover, we found that 
a Drp1-based-gene-expression-signature when employed on  
the primary tumors can identify a specific group of EOC 
patients with poor survival. We speculate that this patient 
group could possibly benefit from mitochondria directed 
chemotherapeutics [3].

RESULTS

“Cell-Cycle” identified as a major Drp1  
co-expression module across tumor types

Mitochondria are multifunctional organelles and are 
programmed to perform different roles depending on the 
tissue and cell type [4]. Therefore, the various reported 
roles of Drp1 driven mitochondrial fission can be alluded 
to distinct involvement of Drp1 driven mitochondrial 
fission in various tissues. However, no large-scale 
studies have been performed to assess the role of Drp1 
across various normal or cancer tissues. The availability 
of genomic data from 31 different cancer types in The 
Cancer Genome Atlas (TCGA) provides the opportunity 
to analyze and predict any common or unique role of 
Drp1 driven mitochondrial fission in various tumor types. 
Therefore, we aimed to identify any Drp1 gene co/anti-
expression modules in the primary tumors of TCGA (see 
Supplementary Table 1A for the description of the TCGA 
cancer types). We began with analyses of normalized 
Drp1 expression (RNAseq) across the TCGA primary 
tumor types. Drp1 expression varies across the various 
TCGA cancer types, with median Drp1 expression being 
maximum in TGCT and minimum in LIHC (Figure 1A, 
Supplementary Table 1A). To investigate if elevated 
Drp1 expression is a result of somatic copy number 
amplification (SCNA) we correlated Drp1 expression with 
the GISTIC scores (Genomic Identification of Significant 
Targets in Cancer [35]) of the Drp1 gene, DNM1L, across 
the cancer types. Various levels of SCNA were noted for 
the DNM1L gene in various cancer types, with almost 
100% of TGCT patients presenting with DNM1L gene 
amplification (Figure 1B). Linear regression analyses 
between DNM1L GISTIC scores and Drp1 expression at 
the corresponding GISTIC levels revealed a significant 
correlation between the two parameters (Supplementary 
Figure 1A). Next, we performed Pearson’s correlation 
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analyses to identify the Drp1 correlated genes, and then 
employed the functional class scoring method called Gene 
Set Enrichment Analyses (GSEA) on the significant Drp1 
correlated genes (p≤0.05) to identify the Drp1 correlated 
pathways from the hand curated REACTOME pathways 
in the MsigDB database (Supplementary Table 2). 
Expectedly, the number of statistically significant Drp1 
correlated genes was proportional to the sample size 
(N) of the cancer types (Supplementary Figure 1B). 
Nonetheless, Drp1 correlated pathways (GSEA p and 
q≤0.05) were identified in each of the 31 cancer types: 
some cancer types exhibit greater abundance (indicated 
by converted p values) of pathways positively correlating 
with Drp1 (ex: LUSC, LUAD, CESC, READ) while others 
exhibit abundance of pathways negatively correlating with 
Drp1 (ex: ACC, THYM, GBM, PCPG, SARC, PRAD, 

THCA) (Figure 1C). Next we mapped the identified Drp1 
correlated REACTOME pathways to their corresponding 
top level REACTOME categories using the pathway 
relationship and obtained the median GSEA Normalized 
Enrichment Score (NES) for each top level REACTOME 
category. We found that Drp1 positively correlates with 
“Gene Expression”, “Cell Cycle” and “Metabolism” and 
negatively with “Signal Transduction”, “Immune System”, 
“Metabolism”, “Metabolism of Proteins” in majority of 
the cancer types (Figure 1D. Supplementary Figure 2). 
In majority of the cancer types Drp1 also negatively 
correlated strongly with ribosomal genes that led to the 
identification of various REACTOME pathways that we 
reassigned to a new top level category called “Ribosome” 
(see methods). Notably, Drp1 uniquely correlated with the 
“Neuronal System” pathway in the gliomas (GBM and 

Figure 1: Identification of Drp1 co/anti-expression modules across TCGA tumor types. A. Box plot of Drp1 expression 
(RNA-seq) in tumor tissues across the TCGA cancer types. B. Bar plot representing patient frequency with more than one copy of DNM1L 
gene (based on GISTIC scores) in tumor tissues across the TCGA cancer types. C. Heat map of the functional REACTOME pathways 
correlating positively (left) or negatively (right) with Drp1 expression (X axes) in 31 TCGA cancer types (Y axes), as identified by GSEA 
analyses of the Drp1 correlating genes. Heat map represents negative log converted p values of the individual REACTOME pathways 
(within the cut of p and q ≤0.05). D. Heat map of the top level REACTOME pathways (X axes) depicted in C. Heat map represents median 
NES scores of the identified pathways (see Supplementary Figure 2). Top-level pathways present in REACTOME but not in MsigDB are 
boxed. * depicts re-assigned “Ribosome” pathway. Arrows indicate the pathways common in majority of the cancer types.
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LGG) and “Muscle Contraction” in sacrcoma (SARC) and 
mesothelioma (MESO). Also, Drp1 correlated with “DNA 
Repair” pathways in distinct cancer types (BRCA, UCEC, 
LUAD, OV etc). Importantly, Drp1 correlated positively 
or negatively with “Programmed Cell Death” pathway 
in distinct cancer types, consistent with its reported 
involvement in apoptosis [18]. The top-level pathways 
where Drp1 correlated genes were not detected (ex: 
“Mitophagy”) could be due to lack of representation of 
those pathways in the hand curated MsigDB (Figure 1D).

Taken together, our Drp1 based analyses of the 
31 TCGA tumor types highlighted the cellular functions 
that are related to Drp1 across various cancer types with 
varying degree of Drp1 expression and DNM1L gene 
amplification. Of the various functions Drp1 has been 
reported to be involved in, Cell Cycle was identified as 
a major Drp1 correlating module widely across cancer 
types; co-expression in 16 cancer, anti-expression in 5 
cancer, co/anti expression in 8 cancer (could be due to 
distinct gene sets in co and anti expression categories), 
no correlation in 2 cancer (likely due to low sample size).

Drp1 co-expresses predominantly with mitosis 
genes, independent of gene duplication events, 
and supports cell proliferation in epithelial 
ovarian cancer

We have previously shown that perturbation of 
Drp1 activity causes aberration in cell proliferation in the 
ovarian epithelial cell layer of Drosophila [23, 36]. Based 
on this and our current finding (Figure 1) we hypothesized 
that elevated Drp1 levels in epithelial ovarian cancer 
(EOC) would be necessary for promoting cell proliferation 
in the EOC patients, where a specific cell cycle pathway 
was found to be perturbed in greater than 80% of the 
patients [34]. We found that the Median Normalized 

expression Value (RNA-seq) of Drp1 in the TCGA-EOC 
tumors (MNVov) is modestly but significantly higher 
(14.6 %) than that of all other cancers pooled together 
(MNVothers) (Figure 2A). DNM1L (cytogenetic location: 
12p11.21), resides in one of the regional amplified 
genomic regions identified in the TCGA-EOC patients 
[37]. Indeed, we found the DNM1L gene amplification was 
detected in around 50% of the EOC patients (Figure 1B, 
Ov). Linear regression analyses between DNM1L GISTIC 
scores and Drp1 expression at the corresponding GISTIC 
levels revealed a strong correlation between the two 
parameters in individual EOC patients (Figure 2B). The 
expected fold increase in Drp1 expression at increasing 
GISTIC levels in the EOC tumors confirm that the 
DNM1L gene is amplified in the EOC patients leading to 
elevated expression of Drp1 (Figure 2C). Taken together, 
we concluded that Drp1 expression is elevated due to 
DNM1L duplication in EOC tumors.

Next, we wanted to perform more detailed and 
stringent Drp1 co-expression analyses to understand 
the Drp1-Cell-Cycle co-expression module in the 
TCGA EOC samples. To maintain robustness of our 
conclusion here we only included samples where the 
normalized Drp1 expression values lie within “one” 
Median Absolute Deviation (MAD) [34] (median +/-1 
MAD) and only those genes with expression levels 
above “zero” in the MAD1 patient group. Such filtering 
allowed expression analyses of about 15,000 genes(n) 
from 175 tumors (N), which represent our TCGA-EOC 
data set presented here, unless otherwise stated. GSEA 
analyses of the statistically significant (p≤0.05) Drp1 
correlated gene set (Supplementary Table 3A) in the 
Drp1-MAD1 EOC patient group was performed. Of the 
various REACTOME pathways identified (Supplementary 
Figure 3A) we considered only the top 20 (based on NES, 
Supplementary Figure 4) significant pathways (p and 

Figure 2: Elevated expression of Drp1 due to gene duplication in epithelial ovarian tumors. A. Density plots depicting the 
frequency distribution of Drp1 expression in the primary epithelial ovarian tumors (red) in comparison to all other primary tumors of TCGA 
(black). B. Linear regression analysis of Drp1 expression (plotted on a log scale) and raw GISTIC scores in individual EOC patients (red 
dots). Regression coefficient (R2), p value and correlation mentioned. C. Box-plot of Drp1 expression at various thresholded GISTIC levels 
in EOC patients; median Drp1 expression values mentioned on top. N denotes sample size.
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q≤0.05) and mapped them to their top-level categories. 
Such stringent GSEA analyses in the Drp1-MAD1 group 
confirmed “Cell Cycle” as the predominant top-level 
category that positively correlated with Drp1 expression 
in the REACTOME (Figure 3A, Supplementary Table 
4A) as well as in the KEGG pathways (Supplementary 
Table 4B). Moreover, the identified “Immune System” 
and “Metabolism of Protein” pathways had their leading-
edge gene sets (contributing mostly to the identification 
of a pathway) significantly overlapping with that of 
the “Cell Cycle” category (Figure 3A, Supplementary 
Table 5). However, we did not detect “Gene Expression” 
or “Metabolism” categories positively correlating with 
Drp1 in the Drp1-MAD1 group. Instead, Gene Expression 
was identified as a negatively Drp1 correlating pathway 
along with “Immune System” (with distinct genes from 
the positively correlated “Immune System”) (Figure 3A, 
Supplementary Table 5).

Further classification of the Drp1 co-expressing 
cell cycle genes according to their involvement in 

various cell cycle phases revealed that 55% of the Drp1  
co-expressed cell cycle genes are specifically involved 
in mitotic transition (Figure 3B, Supplementary Table 5). 
We noted that although we detected Drp1-coexpression 
with various mitotic genes that are transcriptionally 
controlled by the FoxM1 transcription factor [34], we did 
not identify FoxM1 itself due to its absence in the hand 
curated MsigDB. However, our targeted investigation 
revealed that Drp1 indeed co-expressed with FoxM1 and 
its downstream mitotic genes (Supplementary Figure 
3C) previously shown to be perturbed in majority of 
the TCGA-EOC patients [34]. Importantly, Drp1 also 
predominantly co-expressed with cell cycle genes even in 
the tumors with no SCNA of the DNM1L gene (GISTIC 
score 0) (Figure 3C, Supplementary Figure 3B), thus 
ruling out any confounding effect of gene co-amplification 
on Drp1 co-expression. We noted that Drp1 expression did 
not correlate with that of KRas in tumors with no DNM1L 
SCNA, although the Drp1 correlation with FoxM1 was 
maintained (Supplementary Figure 3D). Given the KRas 

Figure 3: Drp1 co-expresses with cell cycle genes, independent of gene duplication events, and supports proliferation 
of the EOC cells. A. Venn diagram depicting the overlap in the leading edge genes of the REACTOME top-level pathways correlating 
positively (Up) or negatively (Down) with Drp1 expression in the primary EOC tumors of TCGA. Numbers signify the total number of 
leading edge genes. B. Pie chart representing distribution of Drp1 co-expressing REACTOME Cell Cycle leading edge genes in various 
phases of cell cycle (G1 phase, G1/S transition, S phase, G2/M transition and M (mitosis)). The Drp1 co-expressing genes involved in 
proteasomal function that are assigned to all cell cycle phases were excluded in this classification. C. Venn diagram depicting the overlap 
in the leading edge genes of the REACTOME top-level pathways correlating positively (Up) with Drp1 expression in the TCGA EOC 
patients with no amplification of DNM1L gene in their primary tumors; no statistically significant negatively correlated pathways were 
detected. Numbers signify the total number of leading edge genes. D. Bar plot showing the distribution of cells in G1, S and G2-M phases 
in A2780 cell line stably expressing Drp1shRNA2 as normalized by the distribution of A2780 cell line stably expressing a non-targeting 
(NT) shRNA. E. Bar plot showing the cell proliferation rate of A2780 cell line stably expressing Drp1shRNA2 as normalized by that of 
A2780 cell line stably expressing a non-targeting (NT) shRNA. n denotes number of genes; N denotes number of patients. * denotes p value 
< 0.05 in Student’s t-test.
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gene (12p12.1) resides in between DNM1L (Drp1 gene) 
(12p11.21) and FoxM1 gene (12p13), we reasoned that 
any confounding effect of regional epigenetic regulation 
is highly unlikely, thus hinting towards a potential 
significance of the correlation of Drp1 with FoxM1 
involved in mitosis. Drp1-Cell-Cycle gene co-expression 
was also identified as the predominant category in tumors 
with DNM1L SCNA (GISTIC score≥1) as well as in 
tumors outside the Drp1-MAD1 range (not shown).

Next, we sought to investigate whether the cell cycle 
association observed with Drp1 also occurs for other fission 
and/or fusion factors of mitochondria. Towards this end, 
we performed pairwise comparison of the genome wide 
correlation profile of Drp1 expression and each of the other 
fission proteins, namely Fis1, Mid49, Mid51, Mff or fusion 
proteins namely Mfn1, Mfn2, Opa1. Our approach involved 
a primary gene based comparison followed by a secondary 
pathway based comparison. Given, gene duplication may 
be a confounding factor, we first identified the patients 
with no gene amplification (GISTIC 0) for each gene of 
interest and then identified the common patients between 
Drp1 GISTIC 0 and that of the other gene of interest in each 
pairwise comparison (Supplementary Figure 5). Then, we 
identified the genes that are commonly correlated (p≤0.05) 
between Drp1 and the other gene of interest and performed 
GSEA of the common genes using correlation values 
with Drp1 and the other gene of interest (Supplementary 
Figure 6). Finally, we computed the overlap between 
the identified (not top level) pathways and compared the 
leading edge genes of any identified cell cycle categories 
(Supplementary Table 6). From these thorough stringent 
analyses we found that the genome wide correlation 
profile of Drp1 matches overwhelmingly with Mff at every 
level of analyses and common cell cycle pathways were 
identified only in the pairwise comparison of Drp1 and Mff 
(Table 1); 50 leading edge Cell Cycle genes comprise the 
Drp1:MFF overlapping gene set with only a small fraction 
of this gene set being present in the correlation profile of 
Fis1, Mfn1, Mfn2 and Opa1 (Supplementary Table 7). 
Although MIEF1 had some significantly correlated gene 
overlap with Drp1, no significant pathways were identified 
in GSEA. The overlapping gene set between Drp1 and Fis1 
was not statistically significant and did not identify any 
overlapping pathway, although Fis1 correlation module 
itself identified a distinct set of pathways (Supplementary 
Figure 5, Supplementary Table 6). Importantly, we did 
not identify any negative correlation with cell cycle and 
any of the mitochondrial fusion proteins. However, Drp1 
and Mfn2 had a complete overlap of all the 12 identified 
negatively correlating pathways, which predominantly 
consisted of “Ribosome” and “Gene Expression” categories 
(Supplementary Figure 5, Supplementary Table 6).

In summary, our exploratory analyses of the TCGA-
EOC genome reveal that Drp1 (and Mff) co-expresses 
with cell cycle genes, specifically the ones promoting 

mitotic transition of cell cycle. These observations are 
consistent with the previous findings that Drp1 function 
is elevated specifically during mitotic transition of the 
cell cycle [26]. Next, we determined if Drp1 is required 
for mitotic transition during the proliferation of EOC 
cells. Here, we downregulated Drp1 using 2 distinct 
shRNAs in the widely used A2780 ovarian cancer cell 
line and generated Drp1 knocked down stable A2780 
lines (Supplementary Figure 7A). Since Drp1shRNA1 
caused certain degree of cell death we chose to use the 
stable line expressing Drp1shRNA2 for our further 
experimentations. To investigate if Drp1 knockdown can 
prevent mitotic transition we performed flow cytometry 
analyses of the DNA content. Drp1 knocked down stable 
A2780 line (in sub-confluent cultures) had significantly 
greater number of cells in the G2-M phase in comparison 
to the A2780 line expressing non-targeting (NT) shRNAs, 
indicating Drp1 repression attenuates mitotic transition 
(Figure 3D). To rule out the effect of Drp1 repression is 
not due to a secondary compensatory response we wanted 
to confirm these effects of Drp1 repression in transiently 
knockdown cells; we chose the commonly used ovarian 
cancer cell lines, A2780 and SKOV3. We observed 
similar attenuation of mitosis with transient transfection 
of plasmids expressing both Drp1shRNAs in the A2780 
line (Supplementary Figure 7B, 7C); note the degree 
of the detected mitotic attenuation varied significantly 
between experimental replicates presumably due to 
mitotic catastrophe [38]. Since the plasmid mediated 
expression of the Drp1shRNAs in the SKOV3 ovarian 
cancer cell line did not yield consistent knockdown of 
Drp1, we resorted to lentiviral mediated transduction 
of the Drp1shRNAs in the SKOV3 cells. Indeed, we 
found a similar trend of attenuation of mitosis with Drp1 
knockdown in the SKOV3 cells (Supplementary Figure 
7D, 7E). Attenuation of mitosis with Drp1 repression 
has also been observed in osteosarcoma cells [38] but 
not in lung cancer cells [32]. Furthermore, we found that 
Drp1shRNA2 stably expressing A2780 cells proliferated 
slowly in comparison to the A2780 cells expressing 
NTshRNAs, based on colony assay (Figure 3E). The 
transient Drp1 knockdown also showed similar results 
in both the cell lines, however, the associated cell death 
observed in the transient Drp1 knockdown cells remains 
a confounding factor in this case (Supplementary 
Figure 7F). Although, our experiments do not rule 
out involvement of Drp1 in other cell cycle stages, the 
data demonstrates a potential involvement of Drp1 in 
promoting mitotic transition and cell proliferation of 
ovarian cancer cells. These data provide validation for 
our genome analyses identifying cell cycle, specifically 
mitosis, as the most prominent Drp1 co-expression 
module in the primary EOC tumors. More experiments 
are necessary in establishing the exact mechanism of 
action for an active role of Drp1 in mitosis.



Oncotarget60027www.impactjournals.com/oncotarget

Drp1-Cell-Cycle co-expression module is 
specifically detected in primary epithelial 
ovarian tumors that robustly respond to 
chemotherapy

Since the genes in the same biological phenomenon 
generally co-express together, we hypothesized that the 
Drp1 correlated genes would form distinct co-expressing 
clusters that would correspond to the REACTOME 
pathways identified by their GSEA analyses. Thus, we 
performed unsupervised hierarchical clustering analyses 
of the co-expression matrix of Drp1 co-related genes 
(p≤0.05). We calculated the all vs all correlation of the 
expression of these genes and clustered the correlation 
value after converting them into a Euclidian distance 
matrix where ‘zero’ distance corresponds to maximum 
gene correlation. Thereafter, we superimposed the 
REACTOME top-level category for each gene; Drp1 
correlating genes identified in multiple REACTOME 
categories (Figure 3A) were assigned to unique categories 
with maximum correlation (see methods). We found 
that the Drp1 correlating genes clustered into two broad 
categories largely corresponding with the REACTOME 
pathways positively and negatively correlating with Drp1 
(Figure 4A, boxed). More importantly, the Drp1 co-
expressing cell cycle genes strongly clustered together 
within the positive gene cluster (Figure 4A, red clusters).

Next, we determined if Drp1 driven cell 
cycle regulation has any relationship to the patient 
chemoresistance status, since acquisition of 
chemoresistance to platinum based chemotherapy occurs 
in majority of the EOC patients [33]. First, we compared 
Drp1 expression between the patients with different 
clinical outcome to chemotherapy and disease progression 
[34] (see methods): disease free for more than 6 months 
(sensitive,11%), relapsing with resistant tumors after 
6 months (recurred-resistant, 69%) and relapsing with 
resistant tumors within 6 months (resistant, 11%). Drp1 
expression was found to be 7.7 % higher in the primary 
tumors of the recurred-resistant patients and 11.3 % higher 
in resistant patients in comparison to the sensitive patients 
(Figure 4B). We next performed GSEA and hierarchical 
clustering analyses of the co-expression matrix of the 
Drp1 correlated genes (as in Figure 4A) separately in 
the sensitive, recurred-resistant and resistant patient 
groups. In each group the identified two broad gene co-
expression clusters largely corresponded with the identified 
REACTOME pathways that are positively and negatively 
correlated with Drp1. Interestingly, Drp1 correlated with 
distinct gene sets in each of the patient groups (Figure 4C-
4E, Supplementary Figure 8A-8C, Supplementary Table 
8). Importantly, Drp1-Cell Cycle co-expression clusters 
were identified only in the sensitive and recurred-resistant 
patients that responded robustly to chemotherapy but 

Table 1: Comparison of genome wide correlation profile of Drp1 expression with that of the other mitochondrial 
fission and fusion proteins in TCGA EOC patients

Gene Based Analysis Pathway Based Analysis

Gene1 Gene2 Correlation 
Category

No. of 
Genes  

Correlating 
with  

Gene1 
(p <= 0.05)

[x1]

No. of 
Genes 

Correlating 
with Gene2 
(p <= 0.05)

[x2]

Overlap 
[y=x1:x2]

Fisher Exact 
Test (p-value)

Jaccard 
Index for 

gene overlap

Common  
cell  

cycle  
pathways

DNM1L: MFF 
correlated 
cell cycle 
leading 

edge genes [z]

% correlated 
cell cycle 

leading edge 
genes [z/y 

*100]

DNM1L FIS1 Positive 2934 2735 125 1 0.022546898 0 7 5.6

DNM1L MFF Positive 2677 2488 614 1.52665E-15 0.134915403 9 50 8.143322476

DNM1L MFN1 Positive 907 689 47 0.343676161 0.030342156 0 3 6.382978723

DNM1L MFN2 Positive 1836 1687 291 3.90929E-08 0.090037129 0 5 1.718213058

DNM1L MIEF1 Positive 1151 1170 238 5.48548E-44 0.114258281 0 0 0

DNM1L MIEF2 Positive 766 731 6 1 0.004024145 0 0 0

DNM1L OPA1 Positive 973 1194 178 1.43616E-24 0.089492207 0 2 1.123595506

DNM1L FIS1 Negative 1456 3711 116 1 0.022965749 0 0 0

DNM1L MFF Negative 1360 2647 394 1.44191E-22 0.10905065 0 0 0

DNM1L MFN1 Negative 480 886 45 0.004192997 0.034065102 0 0 0

DNM1L MFN2 Negative 747 1386 134 1.27922E-12 0.067033517 0 0 0

DNM1L MIEF1 Negative 455 630 62 2.01866E-15 0.060606061 0 0 0

DNM1L MIEF2 Negative 327 642 7 0.992945943 0.007276507 0 0 0

DNM1L OPA1 Negative 296 955 48 1.07603E-08 0.039900249 0 0 0
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not in the resistant EOC patients, that did not respond as 
well to chemotherapy. In the resistant patients, the genes 
associated with Signal Transduction and Hemostasis were 
identified as predominant clusters positively correlating 
with Drp1, whereas, genes associated with mitochondrial 
metabolism was identified as a predominant cluster that 
negatively correlated with Drp1 only (Figure 4E). This data 
indicates the role of Drp1 is likely different in the resistant 
patients in comparison to the sensitive, or recurred resistant 
patients.

In summary, our detailed Drp1 based analyses 
of the primary tumors of the TCGA-EOC cohort 
confirm that Drp1 is co-expressed with cell cycle genes 
in chemosensitive tumors but not in the relatively 
chemoresistant primary tumors.

Drp1 co-expresses with cell cycle genes in 
relapsed tumors of a specific group of epithelial 
ovarian cancer patients

Majority of the EOC patients that initially respond 
to the treatment undergo relapse of the disease in a 
chemoresistant form [33]. Therefore, we investigated if 
Drp1 and its interplay with cell cycle are important in the 
relapsed chemoresistant disease. Here, we took advantage 
of the large-scale genomic data set published recently 
by the ICGC consortium towards understanding EOC 
chemoresistance [39]. We compared Drp1 expression 
(RNA-seq) from the paired primary sensitive tumor and 
relapsed resistant ascites samples of the recurred-resistant 
patient cohort (N=12, Supplementary Table 1B-1C). We 

Figure 4: Drp1 expression and its correlation with cell cycle module vary with chemosensitivity. A. Heat map and 
hierarchical clustering of the genes correlating positively or negatively with Drp1 expression in the primary EOC tumors of TCGA. 
Heat map represents gene to gene correlation matrix (in the form of distance) where the color scale depicts distance between the genes. 
The GSEA output is superimposed on the heatmap in the form of color-coded ticks representing the Drp1 correlating genes in various 
REACTOME pathways as labeled. B. Box plot of Drp1 expression in the primary tissues of sensitive, recurred-resistant and resistant EOC 
patients of TCGA. Median values of Drp1 expression mentioned on the top. p values signifies significance in permutation test. C. Heat 
map and hierarchical clustering (like in A) in Sensitive patients. D. Heat map and hierarchical clustering (like in A) in Recurred-Resistant 
patients. E. Heat map and hierarchical clustering (like in A) in Resistant patients. n denotes number of genes; N denotes number of patients. 
Extra description of the pathways in parenthesis is obtained from the REACTOME pathway hierarchy (see relevant supplementary table 
in each case).



Oncotarget60029www.impactjournals.com/oncotarget

found that Drp1 expression in the relapsed samples was 
higher in comparison to the primary tissue (Supplementary 
Figure 9A). However, examination of individual patients 
revealed that 7 patients had increase in Drp1 levels in their 
relapsed samples (Figure 5A, Drp1-High) while 3 patients 
did not (Figure 5A, Drp1-Low); patient with two relapsed 
samples showing opposite trends of Drp1 expression (dotted 
lines in Figure 5A) was excluded from further analyses. 
Drp1 based re-grouping of patients revealed that Drp1-
High group had 72% increase of Drp1 expression in their 
relapsed samples in comparison to their primary, while 
the decrease in the Drp1-Low group remains statistically 
insignificant likely due to low sample size (Figure 5B). To 
understand the significance, if any, of the elevated Drp1 
expression in the relapsed samples we compared the Drp1-
High and the Drp1-Low patient groups. Considering the 
low sample size we refrained from performing correlation 
analyses. Here, we compared the overall gene expression 
profile between Drp1-High and Drp1-Low groups to 
identify uniquely altered pathways in each group in their 
primary or relapsed samples. We performed GSEA analyses 

of the differentially expressed genes (≥2 fold) to identify 
functional pathways (p and q≤0.05). First, we identified the 
pathways that are differentially regulated uniquely in the 
primary or in the relapsed samples between the Drp1-High 
and Drp1-Low groups (strategy in Supplementary Figure 
10A). We identified Cell Cycle pathway as predominantly 
boosted in the Drp1-High relapsed samples in comparison 
to that of Drp1-Low (Figure 5C, Supplementary Figure 
11A-11B, Supplementary Table 9A-9B). This data, 
although indirectly, indicated a positive correlation between 
expression of Drp1 and cell cycle genes in the ICGC 
cohort, in consistent with the results from the TCGA cohort. 
Genes involved in “Extracellular Matrix Organization” 
and PDGF “Signal Transduction” pathways were also 
identified in this comparative analysis. Surprisingly, even 
the primary tumors of the Drp1-High group had a distinct 
gene expression profile compared to that of the Drp1-Low 
group: elevated expression of the “Ribosome” (reassigned, 
see methods), GPCR “Signal Transduction”, mitochondrial 
“Metabolism” and “Hemostasis” pathway components 
and lowered expression of “Gene Expression” and lipid 

Figure 5: Drp1 co-expresses with cell cycle genes in relapsed tumors of a particular group of EOC patients. A. Drp1 
expression of various ICGC recurred-resistant EOC patients (color coded) in matched primary and relapsed disease. Lines connect the same 
patients. Patient with dashed line has been dropped from further analyses (please see relevant text in the Results section). The numbers on 
the right signify percentage increase (+) or decrease (-) in Drp1 expression in the relapsed samples in comparison to the primary. B. Barplots 
showing mean Drp1 expression in the primary and relapsed samples of Drp1-High and Drp1-Low patient groups of ICGC. * denotes p 
value < 0.05 in Student’s t-test. C. Barplots showing the Normalized Enrichment Score (NES) of the pathways uniquely altered in the 
primary or relapsed samples between the Drp1-Hogh and Drp1-Low patient groups. The top-level REACTOME pathways are mentioned 
in the figure index. Extra description of the pathways in parenthesis is obtained from the pathway hierarchy (see relevant supplementary 
Table in each case), D. Barplots showing the Normalized Enrichment Score (NES) of the pathways uniquely altered in the Drp1-High or 
Drp1-Low patient groups between their relapsed and primary samples. The top-level REACTOME pathways are mentioned in the figure 
index. Extra description of the pathways in parenthesis is obtained from the REACTOME pathway hierarchy (see relevant supplementary 
Table in each case).
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“Metabolism” components in the Drp1-High group (Figure 
5C). Next, we determined the distinct contribution of the 
Drp1-High and Drp1-Low groups in establishing these 
relative differences identified between the groups. Thus, 
we identified the pathways that are differentially regulated 
uniquely in the Drp1-High or Drp1-Low groups between 
their respective primary and relapsed samples (analysis 
strategy in Supplementary Figure 10B). Indeed, the 
Drp1-High EOC patients had elevated expression of cell 
cycle genes and lowered expression of genes involved in 
ribosomal function (reassigned, see methods), mitochondrial 
metabolism and GPCR signaling pathway in their relapsed 
samples in comparison to the primary samples (Figure 5D, 
Supplementary Figure 11C-11D, Supplementary Table 
9C-9D). Importantly, this gene expression pattern was 
absent in the Drp1-Low groups where elevated expression 
of primarily the “Histone” genes (reassigned, see methods) 
was noted in the relapsed samples. Please note that although 
Cell Cycle does not emerge as a primary pathway that is 
altered between the primary and relapsed samples of the 
Drp1-low group, small sample size of this patient group 
presents an incomplete picture of the gene regulation in this 
group.

Relapse with chemoresistant disease may be 
triggered or maintained by cancer stem cells (CSCs) 
[40]. Aldh1A1 has been canonically used as marker for 
ovarian CSCs [41] and its function has also been shown to 
confer stem cell properties to ovarian CSCs [42]. We have 
previously demonstrated that transient repression of Drp1 
elevates levels of Aldh1A1 in ovarian cancer cells (and 
other stem cell genes in other lineages) [36]. Consistently, 
here we find that Aldh1A1 was lowered in the relapse 
samples of the Drp1-High EOC patients that also have 
elevated levels of cell cycle genes (Supplementary Figure 
9B), while the data remained inconclusive in the Drp1-
Low group like due to its low sample size.

In summary, our analyses of the paired primary 
and relapsed EOC samples from the ICGC cohort 
demonstrate that patients that underwent an elevation of 
Drp1 expression in their relapsed disease (Drp1-High) 
had an associated increase in cell cycle genes that was 
not observed in the EOC patients that did not undergo the 
elevation of Drp1 in their relapsed disease (Drp1-Low).

A Drp1-based-gene-expression-signature employed 
on primary tumors identifies recurred-resistant 
EOC patients with poor survival outcome

We found that Drp1-High and Drp1-Low patients, 
with differential Drp1 regulation in their relapsed 
disease, exhibit distinct gene expression profiles in their 
primary tumors (Figure 5C). Therefore, we determined 
if the gene expression profile of the primary tumors of 
the Drp1-High and Drp1-Low ICGC groups match 
with that of distinct recurred-resistant patients from 
the larger TCGA-EOC cohort. Here, we considered the 

differential gene expression profile between the primary 
tumors of the ICGC-Drp1-High/Low groups as a Drp1-
based-gene-expression-signature (≥2 fold difference, 
p≤0.05; n= 745, Supplementary Table 10B). This 
gene expression signature was used to perform Non-
negative Matrix Factorization (NMF) of the primary 
tumors of the TCGA recurred-resistant EOC patients. 
The NMF algorithm divided the 118 patients into 
various clusters (Supplementary Figure 12A-12B), with 
maximum cophenetic (>0.95) and silhuoette score (1) 
for classification into 2 clusters of 70 (TCGA-RR-70) 
and 48 (TCGA-RR-48) patients (boxed in Figure 6A, 
Supplementary Figure 13A-13B). To determine which of 
these two TCGA groups correspond to the ICGC-Drp1-
High group we performed hierarchical clustering of the 
TCGA and ICGC samples together, based on their Drp1-
based-gene-expression-signature. Given the nature of the 
NMF clusters (Figure 6A, Supplementary Figure 13A, 
13B), we identified the top 29 patients that formed the 
core of each cluster (Figure 6A, Supplementary Table 
10A). Interestingly, the ICGC-Drp1-High group clustered 
with TCGA-RR-70 group (Figure 6B), which strongly 
suggested that the Drp1-based-gene-expression-signature 
profile is similar between these ICGC and TCGA groups. 
However, the correspondence of the ICGC-Drp1-low and 
the TCGA-RR-48 groups remained inconclusive, likely 
due to the low sample size of the ICGC-Drp1-Low group. 
Nonetheless, Drp1 expression level in the TCGA-RR-70 
primary tissue was lower than that of TCGA-RR-48 
(Supplementary Figure 14A), a trend that was observed 
between the ICGC-Drp1-High and Drp1-Low groups 
(Figure 5B). Consistently, the TCGA-RR-70 primary 
tissue had a weaker Drp1-Cell- Cycle co-expression 
cluster when compared to that of the TCGA-RR-48 
group (not shown). GSEA analyses of the differentially 
expressed genes (≥2 fold) of the core TCGA-RR-70/48 
and ICGC-Drp1-High/Low groups revealed that the core 
TCGA-RR-70 and the ICGC-Drp1-High groups have 
higher levels of genes involved in GPCR signaling and 
Hemostasis (Supplementary Figure 14B-14C). More 
importantly, the survival probability, specifically in the 
long term after diagnoses or the earliest chemotherapy, 
was significantly lower in the core TCGA-RR-70 group 
(median survival-35 months) in comparison to the core 
TCGA-RR-48 group (median survival- 43 months) 
(Figure 6C, 6D). Given that the Drp1-based-gene-
expression-signature of the TCGA-RR-70 group was 
similar to that of the ICGC-Drp1-High group (Figure 
6B), our results raise the retrospective possibility that the 
TCGA-RR-70 group may have been more susceptible 
to activating the Drp1 based Cell Cycle module in their 
relapsed tumors, leading to a more aggressive relapse in 
comparison to the TCGA-RR-48 group.

In summary, our results suggest that a Drp1-based-
gene-expression-signature can be potentially employed on 
the EOC primary tumors towards identification of patients 
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who would be expected to have poor survival, potentially 
due to further activation of a Drp1 based cell cycle regime 
in their relapsed disease.

DISCUSSION

Given mitochondria are the central players in 
cellular energetics/metabolism, detailed investigations 
are underway to understand the mechanistic involvement 
of mitochondria in cancer energetics/metabolism. In this 
regard, the involvement of the mitochondrial fission-
fusion molecules in cancer has recently been appreciated 
and The mitochondrial fission protein, Drp1, has been 
directly implicated in various cancer types [25, 30–32]. 
Drp1 driven mitochondrial fission can be activated by 

various cancer signaling pathways involving PKA [43], 
AMPK [44] and EGFR-Ras [23–25, 45]. The Ras activated 
molecule RALBP1 mediates the effect of the mitotic 
cyclin, Cyclin B1, on Drp1 [26, 27]. Although, Ras-ERK 
signaling driven regulation of Drp1 contributes to cell 
transformation [25, 45], any relationship to cell cycle 
alteration has not been reported. Our exploratory analyses 
of the publically available gene expression data from the 
31 cancer types in TCGA reveal that Drp1 is predominantly 
co-expressed with genes involved in cell cycle along with 
those involved in gene expression and metabolism, across 
majority of the cancer types (Figure 1). We further focused 
on epithelial ovarian cancer (EOC) given observations 
that FoxM1 driven cell cycle pathway is perturbed in 
these very patients from TCGA [34] and our previous 
observation on an active role of Drp1 in ovarian epithelial 

Figure 6: Drp1 based classification of the primary tumors of recurred-resistant EOC patients. A. NMF consensus plot 
of 100 runs clustering the TCGA recurred-resistant EOC patients into TCGA-RR-70 (bottom right, red) and TCGA-RR-48 (top left, red) 
groups based on a Drp1-based-gene-expression-signature (basis). The color coded patients are the core of the TCGA-RR-70 (brown) 
or TCGA-RR-48 (orange) groups based on their weights. See Supplementary Table 10. B. Unrooted dendrogram showing hierarchical 
clustering of the TCGA-RR-70, TCGA-RR-48, ICGC-Drp1-High and ICGC-Drp1-Low patient groups. Bootstrap values on the nodes 
indicate branching confidence. C. Survival plot of the TCGA-RR-70 and TCGA-RR-48 patient groups after diagnoses of the disease 
as EOC. Dashed lines indicate mean survival probability. D. Survival plot of the TCGA-RR-70 and TCGA-RR-48 patient groups after 
commencement of chemotherapy. Dashed lines indicate mean survival probability. p values denote significance with a chi-square test.
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cell layer development in Drosophila [23]. More detailed 
stringent analyses confirmed the co-expression of Drp1 
specifically with genes involved in mitotic transition of 
cell cycle in the TCGA-EOC tumors (Figure 3), including 
the mitotic transcription factor, FoxM1 (Supplementary 
Figure 3). Since, Drp1 co-expression module constitutes 
of genes that can be upstream (or downstream) of Drp1’s 
action, we speculate that FoxM1 can potentially regulate 
Drp1 gene expression in a cell cycle dependent manner, 
at least in EOC cells. We also find that Mff, which recruits 
Drp1 to the mitochondrial membrane towards causing 
mitochondrial fission [46], overwhelmingly shares its 
cell cycle co-expression module with Drp1. Moreover, 
none of the mitochondrial fusion proteins examined 
exhibit any negative correlation with cell cycle molecules. 
Therefore, our results raise the possibility that the cell cycle 
regulation, at least in EOC tissues, occurs primarily at the 
level of Drp1 mediated mitochondrial fission promoted by 
mitochondrial recruitment of Drp1 by Mff, which remains 
to be tested. Consistently, our laboratory experimentations 
involving repression of Drp1 establishes a potential causal 
role of Drp1 in mitotic transition and cell proliferation in 
EOC cells (Figure 3, Supplementary Figure 7). Previous 
studies from our laboratory and others demonstrated that 
Drp1 regulates the levels of the cell cycle molecule Cyclin 
E [24–28, 36], which has been identified as a driver gene 
in the TCGA ovarian cancer cohort [34]. Since Drp1 is 
already emerging as a chemotherapeutic target [47], our 
current findings strongly encourage detailed investigation 
of the mechanisms underlying the crosstalk between Drp1 
and cell cycle in various tumor types.

The significance of the Drp1-Cell Cycle co-
expressing module becomes more evident since we 
detected it in the chemosensitive but not in the relatively 
chemoresistant primary EOC tumors, irrespective of Drp1 
expression levels (Figure 4). The potential Drp1 driven 
boost in mitosis in the primary tumors may underlie 
their ability to respond to the platinum-taxane based 
chemotherapy that majorly targets the proliferating cells 
[40], while lack of the potential Drp1 driven boost in 
mitosis may underlie the lack of robust response of the 
primary tumors. It is possible that the involvement of Drp1 
is different in the resistant EOC patients, as indicated by 
the predominance of genes involved in signal transduction 
in the Drp1-coexpression module in this group (Figure 
4E). This dichotomy in Drp1’s role is also evident in our 
finding that Drp1 is associated with cell cycle boost in 
some specific relapsed resistant patients (Drp1-High), but 
not in others (Drp1-Low) (Figure 5). Further investigation 
is needed to understand the mechanisms underlying how 
the Drp1’s involvement in mitosis, or lack of it thereof, 
can be related to primary or acquired chemoresistance. 
It is noteworthy in this context that Drp1 repression can 
attenuate induction of mitochondria dependent apoptosis 
[18, 48], which can potentially cause chemoresistance [40, 
49], although such a role of Drp1 may not be universal 

[8]. From our results we speculate that Drp1 may exert a 
pro-apoptotic role in Drp1-Low and an anti-apoptotic role 
in Drp1-High patients. We propose that the Drp1-based-
gene-expression-signature, identified by the comparison 
of the Drp1-High and Drp1-Low patients (Supplementary 
Figure 13A), is the first step towards elucidation of the 
potential influence of the genetic background in guiding 
Drp1’s role as pro or anti-apoptotic.

Our data obtained from comparison of the primary 
and relapsed ICGC samples are end point analyses and 
therefore preclude us from concluding about any role of 
Drp1 in chemoresistance acquisition. Drp1’s involvement 
is emerging to be important in stem cell regulation [30, 
50–51, 36] and cancer stem cells (CSCs) have been shown 
to contribute to acquisition of chemoresistance [40]. Our 
comparison of expression of a functional marker for 
ovarian CSCs, Aldh1A1, between primary and relapse 
samples demonstrated an inverse relationship between 
Aldh1A1 and Drp1 expression (Supplementary Figure 9B). 
This finding is consistent with our previous observation 
that transient repression of Drp1 in ovarian cancer cells 
leads to elevation of Aldh1A levels in ovarian cancer 
cells [36]. Therefore, our current data from EOC patients 
raises an exciting possibility that modulation of Drp1 may 
alter the Aldh1A1 levels to potentially modulate stem cell 
properties at least in the relapsed EOC disease. However, 
we did not detect any difference of a potential CSC gene 
expression signature (n=68) [52–54] in the primary tissue 
of the sensitive, recurred-resistant and resistant patients 
(Supplementary Figure 15A), which could be masked by 
the overwhelming presence of the bulk tumor cells over the 
limited number of CSCs.

Ovarian cancer is associated with marked levels 
of inter patient heterogeneity although greater than 80% 
of the deaths are due to relapse with chemoresistant 
tumors [33]. Therefore, focus in ovarian cancer research 
has shifted towards testing new therapeutic strategies 
in a more precise and personalized manner [55, 56]. In 
this light our identification of TCGA-RR-70 and TCGA-
RR-48 group of patients, by applying a Drp1-based-gene-
expression signature, is highly significant (Figure 6). 
Importantly, our data implies that 60% of the recurred-
resistant population (TCGA-RR-70) show poor survival 
outcome than that of the rest (TCGA-RR-48) due to 
a potential activation of Drp1 driven cell cycle in their 
relapsed tumors. We propose that a Drp1-based-gene-
expression-signature, in its current or more refined form, 
can potentially identify EOC patients from their primary 
tumors who may have better or worse survival after 
exposure to a platinum-taxane based chemotherapy. Such 
knowledge from the primary tumors may be used to design 
better chemotherapeutic or targeted strategies to overcome 
chemoresistance.

Use of mitochondrial inhibitors to prevent occurrence 
of chemoresistance has been recently demonstrated in 
pancreatic cancer model systems [57, 58]. Our current 
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findings on the mitochondrial regulation of cell cycle 
through Drp1 highlights an important role of mitochondria 
in ovarian cancer chemoresistance and relapse. We find 
that certain EOC patients (Drp1-High) that have potentially 
elevated mitochondrial energetics in their primary tumors 
undergo activation of Drp1 related Cell Cycle regime in 
their relapsed disease (Figure 5), which can potentially 
lead to their poor survival after chemotherapy (Figure 
6). Chemotherapeutic drugs have been previously shown 
to affect the function of Drp1 [49]. Along those lines we 
noted that exposure to platinum based chemotherapeutic 
drug can enhance the inhibitory phosphorylation of Drp1 
in an ovarian cancer cell line (Supplementary Figure 15b). 
Our data also raise the possibility that chemotherapy 
may have different effects on Drp1 in the Drp1-High and 
Drp1-Low patients. We speculate that a Drp1-based-gene-
expression signature may be able to identify EOC patients 
that would specifically benefit by replacement of platinum-
taxane based chemotherapeutics with a mitochondria based 
targeted therapy.

Overall, our study indicates that analyses of Drp1 
mRNA expression can reveal functional aspects of the 
molecule and also demonstrate the potential usefulness 
of such analyses in translational endeavors involving 
Drp1. In summary, our Drp1 based analyses of the 
publically available cancer genomes highlights that 
Drp1 driven cell cycle regulation is a general feature of 
various cancer types, which may allow robust response 
to chemotherapeutics targeted against proliferating cells. 
Based on our current data we speculate that preventing 
further activation of Drp1 driven mitosis may be critical 
in preventing relapse in a group of patients that can be 
identified by a Drp1-based-gene-expression-signature 
employed on their primary tumors.

MATERIALS AND METHODS

Data types and sources

TCGA RNA-seqV2 data was downloaded from 
TCGA data matrix (https://tcga-data.nci.nih.gov/
tcga/dataAccessMatrix.htm). Raw FASTQ files were 
downloaded from CGHUB (https://cghub.ucsc.edu) 
and reanalyzed using in-house pipeline. ICGC RNA-
Seq data was downloaded from the European Genome-
phenome Archive (EGA; https://www.ebi.ac.uk/ega/
home; accession EGAD00001000877). GISTIC data was 
downloaded from Broad Institute’s firehose pipeline using 
firehose_get script (https://confluence.broadinstitute.org/
display/GDAC/Download).

TCGA EOC patients were clinically classified 
based on their reported “ProgressFreeStatus” and 
“PlatinumStatus” [34]. 33 cases labelled “DiseaseFree” 
for “ProgressionFreeStatus” and “sensitive” for 
“PlatinumStatus” were deemed “Sensitive”; 70 cases labelled 
“resistant” for “PlatinumStatus” were deemed “Resistant”; 

223 cases that were “sensitve” for “PlatinumStatus” 
category and labelled as “Recurred/Progressed” for 
“ProgressionFreeStatus” were deemed “Recurred-Resistant”. 
Thus, the degree of patient chemotherapeutic response is as 
follows: Sensitive>Recurred-Resistant>Resistant. Patient 
survival data was obtained from the TCGA data matrix.

RNA-seq data processing and 
expression analyses

Paired end reads in FASTQ files were aligned 
to the human reference genome (hg19) using STAR 
aligner (version 2.4.2a) [59]. The resulting BAM files 
were then used to generate the gene and transcript level 
expression estimate using RSEM (version 1.2.21) [60]. 
The “estimated count” data was normalized using upper-
quartile normalization, re-scaled and log2 converted. The 
BAM files provided by EGA were sorted by read name 
using Samtools (version 1.3) [61] and then paired-ends 
reads were extracted using Bedtools (version 2.23) [62] to 
estimate expression as described above. Outlier correction 
(MAD) was applied on the 430 TCGA-EOC samples 
where 215 samples resided within within +/- 1 MAD 
for Drp1 expression. Only 175 Drp1-MAD1 patients 
had clinical outcome and thus included in our analyses. 
Statistical significance of the difference of the median 
Drp1 expression amongst categories was determined 
using pairwise permutation test by randomly shuffling the 
category labels.

GSEA

GSEA was performed using the Broad institute 
software (http://software.broadinstitute.org/gsea/index.
jsp). A “pre-ranked” list of genes based on either gene 
correlation or differential expression was provided for 
enrichment analysis using REACTOME and KEGG 
pathway databases from the MSigDB (Molecular 
Signatures Database) [63]. The GSEA run parameters are: 
permutations-1000, collapse data to gene symbol-false, 
enrichment statistics-classic, max-size-500 and min-
size-15.

Given that the REACTOME pathway is not perfect 
we considered the following re-assignments of genes: 
a) the REACTOME top-level DNA Replication under 
REACTOME Cell Cycle since DNA replication is a core 
cell cycle functionality; b) two new top-level categories 
called “Ribosomes” and “Histones” to reassign all the 
various pathways that were identified primarily based 
on the ribosomal and histone genes, respectively. We 
re-assigned genes belonging to multiple REACTOME 
pathways to a unique pathway as follows: we first 
calculated average correlation (see below) of the gene with 
all other genes within each conflicting category, then the 
gene was assigned to the category that had the maximum 
average correlation value for the gene.
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Gene correlation and differential gene 
expression analyses

We performed Pearson correlation of DNM1L with 
all other genes using log2 converted normalized expression 
value. For representing gene by gene correlation 
matrix using heatmap, the matrix were converted to a 
distance matrix using the following formula: D(i,j)=1- 
(Cor(i,j)+1)/2, where, D(i, j) is the distance and Cor(i,j) is 
the correlation between genes i, j. The formula effectively 
maps the correlation values (1 and -1) between distance (1 
and 0). This distance matrix was then directly used to draw 
the heatmap using R package “pheatmap”.

We performed differential gene expression analysis 
of the upper quartile normalized gene expression data 
using edgeR Bioconductor package [64] and log fold 
change values were used for ranking genes for GSEA.

Non Negative Matrix Factorization (NMF)

NMF is a factorization algorithm that splits a given 
matrix into two matrices [65]. Here, we applied NMF 
to split a gene by sample matrix (m × n) into a gene by  
rank (m × k) and a rank by sample (k × n) matrices. The 
NMF was performed using NMF package in R [65] 
and consensus matrix was obtained with 100 runs. The 
optimal rank (k) was estimated by evaluating various 
output parameters, most importantly the cophenetic and 
the silhouette scores between the NMF runs with varying 
rank (k = 2 to 10).

Co-clustering of ICGC and TCGA samples

We used “pvclust” [66] package from R to cluster 
the samples using “ward.D2” option using the 745 gene 
expression signature. For testing the robustness of the 
cluster, we did bootstrap analysis with 1000 replicates. 
The final circular tree was drawn first generating a newick 
tree file from the pvclust object and then using the FigTree 
software (http://tree.bio.ed.ac.uk/software/figtree/).

Patient survival analyses

Survival probabilities were determined using R 
package “survival”. Survival information (time to death) 
was available for 21 patients from the TCGA-RR-70 
and 23 patients from TCGA-RR-48. We used “days to 
death” values for calculating survival probabilities after 
diagnoses. We used the interval between the “earliest 
chemotherapy start” and the “days to death” value for 
each patient to obtain the survival probabilities after 
chemotherapy commencement. Statistical significance was 
obtained using chi square test.

Cell culture and related procedures

A2780 ovarian cancer cells were cultured in RPMI 
medium using standard laboratory methods.

For knocking down Drp1 expression cells were 
lentivirally transduced with Drp1 or NT shRNA [36] 
and stable lines were selected using puromycin. Flow 
cytometry based cell cycle analyses were performed as 
described before [36]. For colony assay, 500 cells were 
seeded in each well of 6 well plates and colony growth 
quantified by crystal violet staining as before [36]. Cell 
proliferation rate was obtained by normalization the 
crystal violet counts of 10 day cell growth by that of 7 
days. For transient knockdown experiments transfection 
of plasmids or transduction of lentiviral particles encoding 
non-targeting or Drp1 targeted shRNAs were performed 
for 72 hours. Hereafter, cells were harvested for flow 
cytometry or re-plated for cell proliferation assay by 
seeding 50,000 A2780 and 30,000 SKOV3 cells in each 
well of the 24 well plates and harvesting them for crystal 
violet staining after 24 and 72 hours post seeding.

Statistical analyses

All statistical analyses were performed using R 
statistical packages (v3.2.2).
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