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Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus
making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some
models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area
of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to
external stimuli.This research is devoted to themodeling and prediction of the human EEG signal, as an alert state of overall human
brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling
show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as
prediction of seizure onset in patient with epilepsy.

1. Introduction

Brain as the most complex organ in the human body controls
all bodies’ actions/reactions by receiving different stimuli
through the nervous system. Any stimulus stronger than the
threshold stimulus is translated by the number of sensory
neurons generating information about the stimulus and the
frequency of the action potentials. After the action potential
has been generated, it travels through the neural network to
the brain. In various sections of the network and the brain,
integration of the signals takes place. Different areas of the
brain respond depending on the kind and location of stimuli.
The brain sends out signals which generate the response
mechanism.

Duringmany years, numerous studies related to the brain
response to external stimuli have been reported by scientists.
Some researchers studied the brain response to different
kinds of stimuli without proposing any model. In case of
visual stimuli, we can mention the work done by Kaneoke
et al. in analyzing the effect of the visual stimulus size on
the human brain response using magnetoencephalography
(MEG) [1]; see also [2, 3]. Other groups of researchers

investigated the effect of auditory stimuli on the brain
response. For instance, Will and Berg studied and compared
the brain responses to periodic stimulations, silence, and
random noise using electroencephalography (EEG) [4]; see
also [5, 6]. Olfactory stimuli also were the main focus of
some researchers. Sutani et al. investigated the brain response
to pleasant and unpleasant olfactory stimuli using MEG
signals. They found out that the MEG signals have recorded
from frontal/prefrontal cortical areas of the brain has some
differences in case of pleasant versus unpleasant stimuli [7];
see also [8, 9]. Different works have been reported on the
investigation of the brain response to other kinds of stimulus
such as emotional stimuli [10, 11] and pain stimuli [12, 13].

On the other hand, some scientists proposed some
models of the human brain activity. On the microscopic
level, the work done by Freeman in the modeling of the
EEG arising from the olfactory bulb of animals during the
perception of odors is noteworthy. He developed a set of
nonlinear equations for this response which generates EEG
like pattern [14, 15]. In another work Seetharaman et al. pro-
posed a mathematical model for generation and propagation
of action potential in a node of Ranvier and they called it as
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the phase-lagging model of single action potential [16].
When the microscopic models are extended to a macrolevel,
then different methods are employed. Many of these models
assume the cortical region to be a continuum. Liley et al.
developed a set of nonlinear continuumfield equationswhich
described the macroscopic dynamics of neural activity in the
cortical region [17]. These equations were used by Steyn-
Ross et al. who introduced noise terms into them to give a
set of stochastic partial differential equations (SPDEs). They
also converted the equations governed by Liley et al. into
linearized ODEs. This model could predict the substantial
increase in low frequency power at the critical points of
induction and emergence. They later used this model to
study the electrical activity of an anaesthetized cortex [18–
21]. Kramer et al. started with the equations given by Steyn-
Ross and coworkers and neglected the spatial variation and
the stochastic input. They believed that this gave rise to a set
of ordinary differential equations (ODEs) for the modeling
of the cortical activity. They showed that the results obtained
from the SPDE model agree with clinical data in an approx-
imate way [22], but they also stated that the spatial sampling
of the cortex was poor because of inherent shortcomings
in the equipment used. Kulish and Chan have suggested a
novel method for the modeling of the brain response using
fundamental laws of nature like energy conservation and the
least action principle. The model equation obtained has been
solved and the results show a good agreement with real EEGs
[23].

Despite rapid advances in the studies related to the
analysis of the human brain response, there has been less
progress in the mathematical modeling of the human brain
activity due to external stimuli. Yet, it seems that the con-
temporary level of developments in physics and mathematics
makes establishing quantitative correlations between external
physical stimuli and the brain responses to those stimuli.

This paper attempts to introduce a new mathematical
model of the human brain response to external stimuli based
on the fractional diffusion equation. At first we talk about
the macroscopic level of brain organization and EEG signal
as an alert state of human behavior monitoring. Then, by
introducing fractional diffusion equations and considering
the EEG signal as a fractal time series we model the EEG
signal using mathematical equations. This model is then
solved and after discussing different parameters in the model
we provide some results and discuss about the model’s
solution in details. Some concluding remarks are provided at
the end.

2. Macroscopic Level of Brain Organization
and the EEG Signal

In order to study the human neural activity, one can consider
different levels of brain organization at different scales in
time and space from a single neuron (microscopic level) to
the whole brain organization (macroscopic level). In fact, the
whole brain activity cannot be observed by measuring the
activity of just a single neuron as far it is informative as it
contributes to study the entire population of which it is a
member.
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Figure 1: EEG signal of a subject in response to an external stimulus.

In this research, we focus on the macroscopic level of
brain organization. Macroscopic level of brain organization
refers to the level of neural assemblies’ population in which
each neural assembly interacts with other neural assem-
blies in close and distant cortical areas, exhibits spatial-
temporal behaviour, and paints the human behaviour [24].
The functional behaviour of the brain is encoded in these
spatial-temporal structures and can be extracted from the
macroscopic quantities dynamics observed by EEG signal
mostly [25].

During many years scientists have studied the human
behavior by recording and analysis of the EEG signals from
different areas of the brain. The EEG signal is the com-
position of different frequency bands (oscillatory activities-
Alpha, Beta, . . .) which are structured coordinately (spatially,
temporally). In fact, this signal has different characteristics
that can be used in order to study the human brain response
to external stimuli in our research. For instance, Figure 1
shows the EEG signal of a subject who received an external
stimulus at 𝑡 = 1 s. In this figure the brain response to external
stimulus can be seen as a sudden upward deflection at about
𝑡 = 1.25 s after the application of stimulus at 𝑡 = 1 s.

3. Fractional Diffusion Equation

Here, in order to develop our model we start with a simple
equation:

𝜕𝐹

𝜕𝑡

= 𝐷∇

2
𝐹,

(1)

where

∇

2
𝐹 =

𝜕

2
𝐹

𝜕𝑥

2
.

(2)

Equation (1) is the well-known diffusion equation where
the coefficient 𝐷 is the diffusivity of the medium for the
property 𝐹. In fact, this equation arises in many descriptions
of biological and physical phenomena, including Brownian
motion [26], gradient driven chemical diffusion (with Fick’s
law), and heat transfer (heat diffusion with Fourier’s Law). It
is noteworthy that (1) is written in the Euclidean space.

On the other hand, the diffusion process can also been
studied for fractals in fractal space. Fractals (such as random
walk) may be defined as self-similar geometric objects whose
scaling exponent (dimension) satisfies the Szpilrajn inequal-
ity:

ℵ ≥ 𝐷

𝑇
, (3)
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whereℵ is the scaling exponent (dimension) of the object and
𝐷

𝑇
is its topological dimension, that is, Euclidean dimension

of units from which the fractal object is built. In fact, Fractal
and Euclidean geometries are conjugate approaches to the
geometry of natural forms. Fractal geometry builds complex
objects by applying simple processes to complex building
blocks; Euclidean geometry uses simpler building blocks but
frequently requires complex building processes.

Considering the diffusion process in the case of fractals,
(1) is changed to (4) which is called the fractional diffusion
equation [27]:

𝜕

2𝐻
𝐹

𝜕𝑡

2𝐻
= 𝐶

2(2𝐻−1)
𝐷

2(1−𝐻)
∇

2
𝐹,

(4)

where ∇2𝐹 = 𝜕

2
𝐹/𝜕𝑥

2.
In (4), 𝐶 is the speed of propagation and 𝐻 is the Hurst

exponent with the value within the range 0 ≤ 𝐻 ≤ 1 that
brings predictability of signal into account. In fact, the Hurst
exponent can be viewed as the probability of the diffusion
process being persistent in a certain given direction.Note that
the case𝐻 = 1/2, which corresponds to a nonfractal diffusion
process, leads to the well-known classical equation. Observe
also that if𝐻 = 0, (4) degenerates into the Poisson equation,
𝜕

2
𝐹/𝜕𝑡

2
= 𝐶

−2
𝐷

2
∇

2
𝐹; that is, there is no preferred direction

of randomwalk in this case, while the case𝐻 = 1 leads to the
wave equation, 𝜕2𝐹/𝜕𝑡2 = 𝐶

2
∇

2
𝐹.

It is now necessary to make a very important remark. It
is possible to consider a Brownian motion type process as
a process which takes place in an Euclidean space (see the
right hand side of (4)), considering the temporal dimension,
𝑡, of the process as fractal time which, for the same diffusion
coefficient, 𝐷, either slows down (in case of 𝐻 < 1/2) or
speeds up (in case of 𝐻 > 1/2) the process in question. This
can be described with the generalized diffusion equation (4)
inwhich the time coordinate appears as a fractal quantity.The
generalized diffusion equation is a fractional PDEof order 2𝐻
with respect to time.

Taking all these conjectures into account, (4) is a general-
ized form for describing the diffusion process when the time
becomes fractal.

4. Fractional Diffusion Model of EEG Signal

In this section, it is aimed to show that EEG signal as a fractal
time series (but not stochastic), which represents a transient
record of a random walk process, can be modeled by the
solution of the fractional diffusion equation:

𝜕

2𝐻
𝑉

𝜕𝑡

2𝐻
= 𝐶

2(2𝐻−1)
𝐷eff
2(1−𝐻) 𝜕

2
𝑉

𝜕𝜂

2
, (5)

where the term 𝑉, which stands for the brain response, is
the voltage fluctuations resulting from ionic current flows
within the neurons of the brain. The impulse propagation
speed within the neural network, which is a finite quantity, is
represented by 𝐶. The term 𝐷eff, the effective diffusion coef-
ficient, as the property of neural tissue, is related to neuron’s
resistance to the electrical impulse as it travels over the nerve.

Downward deflection
Upward deflection

Figure 2: Upward and downward deflection in the signal from one
point to the next point.

The term𝐻, as a time variable parameter, corresponds to the
Hurst exponent that brings the predictability of signal into
account.

The direction of deflection at each moment in the signal
can be studied by computing the Hurst exponent (Figure 2).
The Hurst exponent is an indicator of the long term memory
of the process generating the signal and thus it is the measure
of the predictability of the signal.

As it was mentioned before the Hurst exponent can have
any value between 0 and 1, where the value that it gains in
each moment determines the behavior of the next deflection
in the signal.

Firstly, if the Hurst exponent has a value between 0 and
0.5, it means that the process is antipersistent; that is, the
trend of the value of the process at the next instant will be
opposite to the trend in the previous instant. Secondly, a value
of 𝐻 between 0.5 and 1 means that the process is persistent;
that is, the trend of the value of the process at the next instant
will be the same as the trend in the previous instant. Finally,
if 𝐻 = 0.5, the process is considered to be truly random
(e.g., Brownian motion). It means that there is absolutely no
correlation between any values of the process.

One of the interesting points about the fractional dif-
fusion model (5) is that it accounts for a finite time lag
(reaction time) between any given disturbance (stimulus) and
the brain response to it (human action/reaction) based on
the assumption that no instantaneous propagation of infor-
mation is possible within the brain. This effect is considered
during the derivation of this model, but it is substituted by 𝐶,
𝐷 according to the equation:

𝜏 =

𝐷eff
𝐶

2
. (6)

Equation (6) is the formula for relaxation time in hyperbolic
reaction diffusion equations [28].

In this research we consider the brain in an informa-
tional space where 𝜂 is the spatial dimension of this space.
In fact, each two neurons in informational space, which
have informational interlink, make an informational channel
between themselves and the length of this channel is called
the informational distance 𝜂 where

0 ≤ 𝜂 < ∞. (7)

It is noteworthy that informational distance is not same
as the concept of spatial distance. Two neurons, which are
close together, may not exchange information which means
𝜂 ∼ ∞. On the other hand, two neurons which are far apart
may be closely interlinked to each other and exchange a lot of
information which makes 𝜂 very small. Thus, 𝜂 has value in
the range 0 ≤ 𝜂 ≤ ∞ [29].
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The exchange of information between two neurons in the
brain happens when there is a potential difference along the
channel. In fact, the potential difference between two neurons
causes an information flux and the exchange of information
from the neuron with higher informational potential value
to the one with the lower value continues till the gradient
becomes zero.

The fractional diffusion equation is valid for the time
scale:

𝑡 ≥ 0. (8)

Also, regarding (5),

𝑉 (𝜂, 0) = 𝑉

0 (9)

is the initial condition at 𝑡 = 0. Also, the solution of the
model is required to be bounded as 𝜂 → ∞. Otherwise, the
conservation of energy principle would be violated. In other
words,

lim
𝜂→+∞

𝑉 (𝜂, 𝑡) = const < ∞ (10)

is the boundary condition in the case of infinite domain.
In order to solve the above fractional diffusion model the

method proposed by Oldham and Spanier is employed here
[30].

Upon introducing the excess value ̂𝑉(𝜂, 𝑡) = 𝑉(𝜂, 𝑡) − 𝑉

0
,

so the initial condition imposed on ̂

𝑉 is ̂𝑉(𝜂, 0) = 0.
In order to solve (5) we apply the Laplace transform with

respect to time, 𝑡; then we have

𝐶

2(2𝐻−1)
𝐷eff
2(1−𝐻) 𝜕

2
𝑌

𝜕𝜂

2
− 𝑠

2𝐻
𝑌 = 0, (11)

where 𝑠 is the Laplace transform variable and 𝑌 denotes the
Laplace transform of the excess value ̂𝑉.

Equation (11) is a second-order ordinary differential
equation (ODE), where the general solution is calculated as

𝑌 (𝜂; 𝑠) = 𝐴

1
(𝑠) 𝑒

−𝜂𝑠
𝐻
/[𝐶
(2𝐻−1)
𝐷eff
(1−𝐻)
]

+ 𝐴

2
(𝑠) 𝑒

𝜂𝑠
𝐻
/[𝐶
(2𝐻−1)
𝐷eff
(1−𝐻)
]
,

(12)

where𝐴
1
(𝑠) and𝐴

2
(𝑠) are two arbitrary functions. However,

since the solution is to be bounded for all 𝜂, the second
arbitrary function, 𝐴

2
(𝑠), must be identically zero, so the

solution (12) is changed to

𝑌 (𝜂; 𝑠) = 𝐴

1
(𝑠) 𝑒

−𝜂𝑠
𝐻
/[𝐶
(2𝐻−1)
𝐷eff
(1−𝐻)
]
.

(13)

Upon differentiating (13) with respect to 𝜂,

𝑑𝑌 (𝜂; 𝑠)

𝑑𝜂

= −

𝐴

1
(𝑠) 𝑠

𝐻
𝑒

−𝜂𝑠
𝐻
/[𝐶
(2𝐻−1)
𝐷eff
(1−𝐻)
]

[𝐶

(2𝐻−1)
𝐷eff
(1−𝐻)

]

. (14)

After comparing (13) and (14), 𝐴
1
(𝑠) can be eliminated; then

it can be written as

𝑌 (𝜂; 𝑠) = −𝑠

−𝐻
𝐶

(2𝐻−1)
𝐷eff
(1−𝐻)

𝑑𝑌 (𝜂; 𝑠)

𝑑𝜂

. (15)

By taking the inverse Laplace transform of (15) and restoring
the original variables, then we have

𝑉 (𝜂, 𝑡) = 𝑉

0
− 𝐶

(2𝐻−1)
𝐷eff
(1−𝐻) 𝜕

−𝐻

𝜕𝑡

−𝐻
(

𝜕𝑉

𝜕𝜂

) (16)

which is written in terms of fractional derivative of order −𝐻
with respect to 𝑡.

Using the definition of fractional derivative [30], namely,

𝜕

𝛼
𝑓

𝜕𝑡

𝛼
=

1

Γ (−𝛼)

∫

𝑡

0

𝑓 (𝜉) 𝑑𝜉

(𝑡 − 𝜉)

𝛼+1
, Re (𝛼) < 0, (17)

where Γ(𝛼) is the Gamma function, and noticing the Fick’s
law,

−

𝜕𝑉

𝜕𝜂

=

𝜑

𝐷eff
, (18)

where 𝜑 represents the flux, and (16) can be written as

𝑉 (𝜂, 𝑡) = 𝑉

0
+ 𝐶

(2𝐻−1)
𝐷eff
(−𝐻) 1

Γ (𝐻)

∫

𝑡

0

𝜑 (𝜂, 𝜉) 𝑑𝜉

(𝑡 − 𝜉)

1−𝐻
. (19)

Since the function 𝜑(𝜂, 𝑡) represents the flux it can be equated
with the external influence acting on the system (external
stimulus).

Equation (19) provides the relationship between the
nonequilibrium value, 𝑉(𝜂, 𝑡), and the external influence
acting on the system, 𝜑(𝜂, 𝜉). This equation is valid for every
locationwithin the domain (including the boundary) at every
moment.

Since 𝐻 is a nonnegative parameter, it follows from (19)
that the value of 𝑉, on the average, increases with the time
according to the power law as 𝑡𝐻, provided of course that
the fluctuations are small in comparison with the averaged
influence. Note that, for 𝐻 = 1/2, Γ(1/2) = 𝜋

1/2 and (19)
yields the well-known diffusion (random walk) growth given
by 𝑡1/2.

An external influence can be modeled by a Gaussian
pulse; that is,

𝜑 (𝑥, 𝑡) = 𝜑

0
(𝑥, 𝑡) exp[−

(𝑡 − 𝑡

∗
)

2

𝜎

2
] , (20)

where 𝑡∗ denotes the moment, at which the Gaussian pulse
reaches its maximal value 𝜑

0
(𝑥, 𝑡), whereas 𝜎 is the standard

deviation of the Gaussian pulse.
In case of different types of stimuli, depending on the

size and duration, the parameters in (20) will have different
values. In the case of many concurrently external stimuli, a
series of Gaussian pulses is considered.

It is noteworthy that (20) is not a compulsory form
of external stimulus where other formulas might be used,
provided that they meet the principle demands discussed in
this research. This mathematical form is chosen because its
capability was examined in the modeling of generation of
action potential in a neuron [16].

In the next section we provide a formulation for com-
puting the effective diffusion coefficient at each moment that
can be used in (19) in order to compute the brain response to
external stimuli.
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5. A Phase-Lagging Diffusion Based Model
of the Diffusion Coefficient

In order to analyze the behavior of fractal time series, the
value and the direction of each fluctuation in the signal
should be analyzed. The direction of each fluctuation can be
found by computing the value of the Hurst exponent at the
previous point of the signal.

In order to know about the value of the signal, we should
know about different parameters which are appeared in the
fractional diffusion model. By looking at (19) and replacing
the value of 𝜑 = −𝐷eff(𝜕𝑉/𝜕𝜂), we have

𝑉 (𝜂, 𝑡) = 𝑉

0
− 𝐶

(2𝐻−1)
𝐷eff
(1−𝐻) 1

Γ (𝐻)

∫

𝑡

0

𝜕𝑉

𝜕𝜂

𝑑𝜉

(𝑡 − 𝜉)

1−𝐻
.

(21)

The value of the Hurst exponent which is used in (21)
can be computed using MATLAB based on Rescaled Range
Analysis method [31, 32].Then, in order to compute the value
of the signal in (21) twoparameters𝐶 and𝐷 should be known.
In order to do this, first, a relationship between𝐷 and𝐻 can
be made, and then by using the formula for relaxation time,
(6), 𝐶 can be replaced by𝐷 and 𝜏.

In order tomake a relation between𝐷eff and𝐻, the phase-
lagging model of action potential can be used [16]:

𝑉 (𝑥, 𝑡) = 𝑉

0
− (

𝐷

𝜏

)

1/2

∫

𝑡

0

𝜕𝑉

𝜕𝑥

T
0
(

𝑡 − 𝜉

2𝜏

) exp(−𝑡 − 𝜉

2𝜏

) 𝑑𝜉.

(22)

In (22) the diffusivity term𝐷 is related to the resistance of
the neuron to the electrical impulse. 𝐷 is the property of the
neural tissue and will dampen the impulse as it travels over
the nerve. The term 𝜏 is the reaction time and T

0
(𝑧) is the

zero-order modified Bessel function.
Considering the phase-lagging model of action potential

in the whole brain scale then, this model and the fractional
diffusion model explain the same phenomenon. Thus, the
mathematical equations that belong to these two models can
be equal.

By writing this equality,

𝑉

0
−

√

𝐷

𝜏

∫

𝑡

0

𝜕𝑉

𝜕𝜂

T
0
(

𝑡 − 𝜉

2𝜏

) exp(−𝑡 − 𝜉

2𝜏

) 𝑑𝜉

= 𝑉

0
− 𝐶

(2𝐻−1)
𝐷eff
(1−𝐻) 1

Γ (𝐻)

∫

𝑡

0

𝜕𝑉

𝜕𝜂

𝑑𝜉

(𝑡 − 𝜉)

1−𝐻
,

(23)

where 𝐷 is the diffusion coefficient in the phase lagging
model of action potential and 𝐷eff is the diffusion coefficient
in the fractional diffusion model.

Considering 𝐶 = (𝐷eff/𝜏)
1/2 and removing 𝑉

0
from both

sides of the equation,

√

𝐷

𝜏

∫

𝑡

0

𝜕𝑉

𝜕𝜂

T
0
(

𝑡 − 𝜉

2𝜏

) exp(−𝑡 − 𝜉

2𝜏

) 𝑑𝜉

− 𝜏

1/2−𝐻
√𝐷eff

1

Γ (𝐻)

∫

𝑡

0

𝜕𝑉

𝜕𝜂

𝑑𝜉

(𝑡 − 𝜉)

1−𝐻
= 0.

(24)

Then, we can write

∫

𝑡

0

{

√

𝐷

𝜏

𝜕𝑉

𝜕𝜂

T
0
(

𝑡 − 𝜉

2𝜏

) exp(−𝑡 − 𝜉

2𝜏

)

− 𝜏

1/2−𝐻
√𝐷eff

1

Γ (𝐻)

𝜕𝑉

𝜕𝜂

1

(𝑡 − 𝜉)

1−𝐻
}𝑑𝜉 = 0.

(25)

Because (25) is valid for all values of 𝑡 > 0 thenwe can remove
the integral:

√

𝐷

𝜏

𝜕𝑉

𝜕𝜂

T
0
(

𝑡

2𝜏

) exp(− 𝑡

2𝜏

)

− 𝜏

1/2−𝐻
√𝐷eff

1

Γ (𝐻)

𝜕𝑉

𝜕𝜂

1

(𝑡)

1−𝐻
= 0.

(26)

Thus,

√

𝐷

𝜏

𝜕𝑉

𝜕𝜂

T
0
(

𝑡

2𝜏

) exp(− 𝑡

2𝜏

)

= 𝜏

1/2−𝐻
√𝐷eff

1

Γ (𝐻)

𝜕𝑉

𝜕𝜂

1

(𝑡)

1−𝐻
.

(27)

Diving both sides of (27) by 𝜕𝑉/𝜕𝜂 ̸= 0 and introducing a
new variable 𝑧 = 𝑡/2𝜏 we have

𝐷eff
𝐷

= [2

1−𝐻
Γ (𝐻) 𝑧

1−𝐻
T
0
(𝑧) exp (−𝑧)]

2

.
(28)

Considering a constant value for 𝐷, in order to study the
variation of 𝐷eff/𝐷 versus 𝑧, Figures 3 and 4 are provided. It
is noteworthy in order to analyze the value of the signal that it
is only needed to concentrate on the calculations of𝐷eff and,
accordingly, 𝑉 in 0 ≤ 𝐻 ≤ 0.5 or 0.5 ≤ 𝐻 ≤ 1 because as it
is known, having the probability of 𝐻 on one side yields the
probability of𝐻 = 1−𝐻 in the reverse side, butwith the same
value of fluctuation. In this research the span 0.5 ≤ 𝐻 ≤ 1 is
taken as the reference. So, for instance, in order to compute
the value of the signal in a point with𝐻 = 0.2 it is needed just
to compute the value of the signal with𝐻 = 0.8.

As it can be seen in Figures 3 and 4, first the value of
dimensionless diffusivity increases but after that as time
increases (𝑧 → ∞), dimensionless diffusivity tends a
constant value. In order to describe this behavior, (28) can
be analyzed when 𝑧 → ∞:

lim
𝑧→∞

𝐷eff
𝐷

= lim
𝑧→∞

[2

1−𝐻
Γ (𝐻) 𝑧

1−𝐻
T
0
(𝑧) exp (−𝑧)]

2

.
(29)

lim
𝑧→∞

T
0
(𝑧) is computed as

lim
𝑧→∞

T
0
(𝑧) =

exp (𝑧)
√
2𝜋𝑧

= exp (𝑧) 2−1/2𝜋−1/2𝑧−1/2. (30)

By substituting (30) into (29),

lim
𝑧→∞

𝐷eff
𝐷

= lim
𝑧→∞

[

2

1−2𝐻
Γ

2
(𝐻)

𝜋

𝑧

1−2𝐻
] . (31)
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Figure 3: Dependence of the dimensionless diffusivity, 𝐷eff/𝐷, on
the dimensionless temporal variable, 𝑧, for𝐻 = 0.5.
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Figure 4: Dependence of the dimensionless diffusivity, 𝐷eff/𝐷, on
the dimensionless temporal variable, 𝑧, in case of 0.5 < 𝐻 ≤ 1.

Considering (31) in case of𝐻 = 0.5

lim
𝑧→∞

𝐷eff
𝐷

= lim
𝑧→∞

[1] = 1
(32)

which is the same as the trends observed in Figure 3.
By considering (31) in case of 0.5 < 𝐻 ≤ 1 we have

lim
𝑧→∞

[

2

1−2𝐻
Γ

2
(𝐻)

𝜋

𝑧

1−2𝐻
] = lim
𝑧→∞

[𝑋 ⋅

1

𝑧

2𝐻−1
] . (33)

Thus,

lim
𝑧→∞

𝐷eff
𝐷

= 0
(34)

which is the same as the trend observed in Figure 4 for values
of 𝐻 where 0.5 < 𝐻 ≤ 1. So, in both cases (𝐻 = 0.5 and
0.5 < 𝐻 ≤ 1) the dimensionless diffusivity tends to a constant
value as time increase.

So, in cases of Figures 3 and 4, before the maximum point
of graph, as time goes on, the value of the dimensionless
diffusivity increases, but after passing the maximum point,
the dimensionless diffusivity shows the opposite behavior
and, after some time, the dimensionless diffusivity tends to
a constant value which is 0 and 1 in the cases of 0.5 < 𝐻 ≤ 1

and𝐻 = 0.5, respectively.
As 𝐷eff has been considered as a time dependent param-

eter and 𝐷 as a constant, thus from previous discussion it
can be concluded that when human senses a stimulus, the
diffusion of this stimulus to human brain increases but after
some time, the diffusion of the stimulus decreases. In fact,
these results validate and show the importance of (28) for
computing the value of𝐷eff.

Thus, by computing the value of𝐷eff at each timemoment
and substituting its value in the fractional diffusionmodel the
value of the signal at each time moment can be computed.

6. Result and Discussion

In this section using the fractional diffusionmodel the human
brain response to a visual external stimulus is modeled and
compared with the real EEG signal.

6.1. Subjects. In this research the experiments were carried
out on 6 voluntary healthy students (21–24 years old, 3 males
and 3 females). Prior to the experiment, each subject was
examined and interviewed by a physician to ensure that no
neurological deficit, pain condition, or medication affects the
EEG. All subjects were right handed. Informed consent was
obtained from each subject after the nature of the study was
fully explained.

All procedures were approved by the Internal Review
Board of the University and the approval for experimentation
involving human subjects was issued. It is noteworthy that the
identity of all subjects remains confidential.

6.2. EEG Recording. The EEG data used in this research were
collected using Mindset 24 device, a 24-channel topographic
neuromapping instrument, which can measure 24 channels
of data with the sampling frequency of 256Hz.

In an electrically shielded, acoustically isolated, and dimly
illuminated room a visual stimulus applied on subjects. It
should be mentioned that it is endeavoured to insulate the
subjects from all other external stimuli. This ensures that the
response measured in the EEG signals is primarily due to the
stimulus applied. In the experiment subjects were watching
a checkerboard pattern (see Figure 5) on the monitor of a
computer from the distance of 130 cm.

The stimulus was the checker reversal. After one second
the reversed pattern (see Figure 6) was displayed and then the
original pattern was displayed again. Thus, the stimulus was
applied at 𝑡 = 1 s.The interstimulus interval of 5 s was chosen
in these experiments.

Mindmeld 24 software is used for the collection of data
using Mindset 24 machine. The software gives data in the
form of .bin files which can be processed to give text files
(.txt) that are required for further processing.
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Figure 5: Checkerboard pattern.

Figure 6: The reversed pattern as the visual stimulus.

Although EEG data are recorded from 24 electrodes,
in this research the analysis is done on the data governed
from the left occipital (O1) electrode (near to the location of
the visual primary sensory area). This electrode was chosen
based on the nearest place to the visual sensory area which
shows the strongest response that can be seen in the signal
recorded from this electrode compared to other electrodes.
The electrode impedance was kept lower than 5KΩ.

A bipolar electrooculogram (EOG, vertical and hori-
zontal) was recorded for off-line artifact rejection. After
bandpass filtering in the range of 0.1–70Hz, 2 seconds of data
(256 data before stimulation and 256 data after stimulation)
was saved. It means that there are 256 values of voltage
collected every second. Prestimulation is defined as the status
before the application of the stimulus. On the other hand,
poststimulation is defined as the status after the application

of the stimulus. As it was mentioned previously the stimulus
was applied at 𝑡 = 1 s.

It is noteworthy that choosing higher sampling rate
will result in more pre- and poststimulation data. Having
more data will results in more precise computation of Hurst
Exponent, diffusion coefficient, and accordingly the signal
and its parameters such as response initiation time.

In the first week 40 trials were collected from each subject
in one day. The data collections were repeated after a week
for each subject in order to examine the reproducibility of
the results from experiments. By repeating the experiments
in the secondweek totally 80 trials were collected. After visual
inspection of data collected from each subject and rejection
of trials with artifacts, 40 trials free of artifacts were selected
for future analysis. It is noteworthymentioning that physician
monitored the subjects during all experiments.

6.3. Data Analysis. A set of codes was written in MATLAB
software in order to compute all required parameters which
were discussed before.

As the recorded data were noisy, the EEG signals were
filtered using theWavelet toolbox inMATLAB and then were
processed by the methodology discussed in this section.

The value of 𝑉
0
can be read from the record of the signal

at the moment the stimulus is applied to the subject, 𝑡 = 1 s.
The initial value of𝐻 is computed for 1 second of the recorded
data before the application of the stimulus to the subject. In
order to compute the Hurst exponent, as it was mentioned
previously the Rescaled Range Analysis method is employed,
which is widely used by statisticians.

It is required to compute the Hurst exponent value in
each moment in order to analyze the generated signal. At the
first step, the program computes the Hurst exponent for the
recorded EEG signal and the predicted signal and generates
two time series in one figure.

In each moment, the program computes 𝐷eff using (28).
Also, as it was mentioned previously that, for all analysis
performed here, a single stimulus is considered and thus a
single Gaussian pulse is modeled using (20). By substituting
the required parameters in (35), the program computes the
value of the signal in each moment and then plots the
modeled signal in a figure together with the recorded EEG
signal (after stimulation):

𝑉 (𝜂, 𝑡) = 𝑉

0
+ 𝜏

1/2−𝐻 1

√𝐷eff

1

Γ (𝐻)

∫

𝑡

0

𝜑 (𝜂, 𝜉) 𝑑𝜉

(𝑡 − 𝜉)

1−𝐻
. (35)

It is noteworthy that (35) is governed by substituting
𝐶 = (𝐷eff/𝜏)

1/2 into (19).
The values of some required parameters are listed in

Table 1.
As it was mentioned previously, one second of EEG

data was recorded, and using these data as the reference,
one second of EEG time series is predicted. After that, the
modeled signal is analyzed in terms of the initiation time
for the response, the response duration, and the peak to
peak voltage. In this research in order to see the response
fluctuations clearly, the real or the modelled signals after the
poststimulation are averaged in each case. It means that for
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Table 1: Values of required parameters.

Variable Value Units
𝐷 6.5 × 10

−4 m2/s
𝜑

0
(𝑥, 𝑡) 1 V ⋅m/s

𝑡

∗ 0.002 s
𝜎 0.001 s

each subject 40 selected trials are used as the input to the
model and, accordingly, the grand average of all modeled
signals (40 signals for each subject) is presented. Then, the
generated plots for the real or the predicted signals are the
result of averaging over all selected trails in each case.

Here it should be mentioned that in the analyses of the
EEG signals plots the initiation time for the response and
the duration are chosen based on the literature notes which
consider themajor positive or negative pole. For instance, the
fluctuations which have voltage in the range of 5 to 10𝜇V or
−5 to −10 𝜇V are related with the response to the stimulus.
Thus, for instance, in order to have a feature of the response
duration, the time span between the first peak and the last
peak which have the voltage values within one of these two
ranges is considered.

The grand average of the recorded EEG signals and the
grand average of the predicted signals using the fractional
diffusion model over all selected trials for 1 second post-
stimulation are shown in Figure 7.

As it can be seen for different subjects in Figure 7, the
recorded signal (black solid line) and the predicted signal
(red dashed line) show the similar behavior. In both cases
the brain response to the stimulus starts with a positive peak
(𝑃) after the application of the stimulus to the subject where
its amplitude goes further than 5 𝜇V. This response causes
the signal’s voltage to fluctuate in a bigger span. Following
the positive peak a negative rebound (𝑁) can be seen in the
plot. In fact, the response to the stimulus terminates at this
negative peak, after which the brain goes back to its normal
status during rest, without any big deflection in the signal.

As an example, for subject 1 in cases of the real and
predicted signals the response to the stimulus starts with a
positive peak (𝑃) at about 118ms and about 127ms, respec-
tively, after the application of the stimulus to the subject.This
response causes the signal’s voltage to fluctuate in a bigger
span. Following the positive peak a negative rebound (𝑁) at
about 𝑡 = 1.170 s and 𝑡 = 1.174 s can be seen in the plot in
cases of the real and predicted signals, respectively. In fact, the
response to the stimulus terminates at this point, after which
the brain goes back to its normal status during rest, without
any big deflection in the signal.

The values of peak to peak voltage, the initiation time
for the response (the initial peak of the response), and the
response duration (the time difference between the first and
the last peaks within the response duration) for the recorded
EEG signal and the predicted signal in case of different
subjects are provided in Table 2.

As it can be seen in Table 2 for all subjects the predicted
initiation time for the response, the response duration, and
the peak to peak voltage have very close values with their

related values in the recorded EEG signals.Thus, it can be said
that the predicted signal resembles the real EEG signal within
the response duration in the cases of the initiation time for the
response, the peak to peak voltage, and the response duration.
Moreover, in order to study the uncertainty and predictability
of the model’s solution, the Hurst exponent variations for
the recorded EEG signals and the predicted signals over all
selected trials for 1 second after stimulation are shown in
Figure 8.

The high correlation between the values of the real signals
and also the predicted signals can be realized by looking at
the values of the Hurst exponents. For instance, in the case
of subject 1, the value of the Hurst exponent is distributed
between 0.900 and 0.943 for the recorded EEG signal (black
solid line) and between 0.900 and 0.952 for the predicted
signals (red dashed line). Thus, the low uncertainty of the
prediction can be confirmed, and it can be said the signal
is predicted well, because the Hurst exponent values are not
close to 𝐻 = 0.5, which stand for a truly random process.
This behavior can be seen in the Hurst exponent plots for all
subjects.

Also, as it can be seen in the Hurst exponent plot, the
value of the Hurst exponent in the case of the real EEG
signal and the predicted signal experiences a sudden upward
deflection. For instance, in the case of subject 1, the value of
the Hurst exponent is decreasing in the time span of 𝑡 = 1 s
to about 𝑡 = 1.118 s and 𝑡 = 1 s to about 𝑡 = 1.127 s,
respectively, for real EEG signal and the predicted signal; after
that, a sudden upward deflection can be seen, which stands
for experiencing the visual stimulus, and again the trend
shows the same behavior. The overall decreasing behavior
stands for the phenomenon that when a longer time span is
considered, the less the human brain “remembers” its initial
state.The same behavior can be seen in other Hurst exponent
plots.

By analyzing the behaviors which have been seen in
Figures 7 and 8 it can be said that on one hand the uncertainty
of the prediction was low and on the other hand, the accuracy
of the prediction was very good as the predicted signal
resembles the real EEG signal.

All the analyses which have been done in this research
show that EEG signals can be modeled by the solution
of fractional partial differential equations and, thus, the
behavior of system modeled by means of such equations can,
in principle, not only be predicted but also quantifies.

7. Conclusion

In this paperwe introduced a newmathematicalmodel which
quantifies the human brain response to external stimuli. We
developed this model by applying the fractional diffusion
equation to human EEG signals. The model generates a
multifractal time series which shows a quantitative con-
currence with the real EEG signals. Using this model we
successfully predicted the EEG signals of different subjects
upon receiving a visual stimulus. This model shall be further
applied in case of different external stimuli where the results
can be verified against the real EEG signal which means the
prediction of the human behavior by forecasting the EEG
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Figure 7: The grand average of the recorded EEG signals (black solid line) and the grand average of the predicted signals (red dashed line)
for 1 second after stimulation in the case of the visual stimulus, subject 1 to subject 6.
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Figure 8: The grand average of the Hurst exponent variations for the recorded EEG signals (black solid line) and the grand average of the
Hurst exponent variations for the predicted signals (red dashed line) for 1 second after stimulation in the case of the visual stimulus, subject
1 to subject 6.
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Table 2: Comparison between the real and the predicted signals.

Subject The initiation time for the response (ms) Response duration (s) Peak to peak voltage (𝜇V)
Real Predicted Real Predicted Real Predicted

1 P118 P127 0.052 0.047 13.97 13.07
2 P120 P120 0.054 0.067 12.86 13.75
3 P110 P120 0.058 0.060 15.24 15.24
4 P100 P120 0.078 0.057 16.28 15.50
5 P112 P121 0.043 0.041 12.50 11.81
6 P120 P130 0.050 0.044 13.85 15.50
Average 113 123 0.055 0.052 14.11 14.14

signal. On the other hand this model also can be employed
in order to predict different abnormal brain activities, such
as epileptic seizure, by at least some seconds before the time
of occurrence. If so, a seizure warning and the expected time
of this epilepsy occurrence can be generated, leading to the
future monitoring of this disease.
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