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Abstract

Chromatin immunoprecipitation and sequencing (ChIP-seq) has been widely used to map

DNA-binding proteins, histone proteins and their modifications. ChIP-seq data contains

redundant reads termed duplicates, referring to those mapping to the same genomic loca-

tion and strand. There are two main sources of duplicates: polymerase chain reaction (PCR)

duplicates and natural duplicates. Unlike natural duplicates that represent true signals from

sequencing of independent DNA templates, PCR duplicates are artifacts originating from

sequencing of identical copies amplified from the same DNA template. In analysis, dupli-

cates are removed from peak calling and signal quantification. Nevertheless, a significant

portion of the duplicates is believed to represent true signals. Obviously, removing all dupli-

cates will underestimate the signal level in peaks and impact the identification of signal

changes across samples. Therefore, an in-depth evaluation of the impact from duplicate

removal is needed. Using eight public ChIP-seq datasets from three narrow-peak and two

broad-peak marks, we tried to understand the distribution of duplicates in the genome, the

extent by which duplicate removal impacts peak calling and signal estimation, and the fac-

tors associated with duplicate level in peaks. The three PCR-free histone H3 lysine 4 tri-

methylation (H3K4me3) ChIP-seq data had about 40% duplicates and 97% of them were

within peaks. For the other datasets generated with PCR amplification of ChIP DNA, as

expected, the narrow-peak marks have a much higher proportion of duplicates than the

broad-peak marks. We found that duplicates are enriched in peaks and largely represent

true signals, more conspicuous in those with high confidence. Furthermore, duplicate level

in peaks is strongly correlated with the target enrichment level estimated using nonredun-

dant reads, which provides the basis to properly allocate duplicates between noise and sig-

nal. Our analysis supports the feasibility of retaining the portion of signal duplicates into

downstream analysis, thus alleviating the limitation of complete deduplication.
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Introduction

Chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) has been widely used for

genome-wide mapping of transcription factors, chromatin regulators and histone modifica-

tions [1]. ChIP-seq data contain redundant reads (duplicates), which are reads or pairs of

reads having identical or near-identical (due to sequencing errors) sequences and mapping to

the same genomic position and strand [2–4]. Duplicate rate reflects library complexity, which

is an important ChIP-seq quality metric representing the nonredundant fraction (NRF) of

uniquely mapped reads (i.e., NRF = number of positions / total uniquely mapped reads) [5, 6].

It is recommended that NRF should reach approximately 0.8 (i.e., 20% or less duplicates) for

narrow-peak marks with 10 million and for broad-peak marks with 20 million uniquely

mapped reads [5].

During library preparation, ChIP DNA needs to be polymerase chain reaction (PCR)

amplified. This step introduces bias, as some of the templates are amplified more efficiently

than the others, leading to the sequencing of identical copies from the same DNA fragment

[7]. PCR amplification is a major source of redundant reads, the so-called “PCR duplicates” [3,

8]. PCR duplicates are more abundant when the library is deeply sequenced [5], or constructed

from insufficient DNA molecules due to low immunoprecipitation (IP) efficiency [9] or little

starting material (such as single cells) [10, 11]; in the latter cases, more PCR cycles are often

required to generate sufficient DNA for sequencing. PCR duplicates are artifacts that need to

be filtered out. In addition, a small proportion of duplicates may be caused by erroneous map-

ping of reads actually originating from regions of segmental duplication. Another major type

of duplicates is “natural duplicates”, which represent true signals [8]. Natural duplicates arise

from sequencing of independent DNA fragments derived from the same genomic locations

[6]. The differentiation of PCR versus natural duplicates is important but computationally

challenging.

Duplicates could be identified using de novo- and alignment-based approaches. Several de
novo-based methods have been developed to identify duplicates directly from raw Illumina

sequencing data, such as FastUniq [3] and Fastx-Toolkit Collapser (http://hannonlab.cshl.edu/

fastx_toolkit/) for identical duplicates and CD-HIT-DUP [12], Fulcrum [13] and GPU-Du-

pRemoval [14] for near-identical duplicates. More often, duplicates are identified from coordi-

nate-sorted alignments, using tools such as SAMtools markdup command [15] and Picard

MarkDuplicates command (http://broadinstitute.github.io/picard/). For both approaches,

duplicate rate is overestimated for single-end compared to paired-end reads [2]. For paired-

end reads, only those with the same mapping location and strand of both ends are counted as

duplicates; for single-end reads, however, some of the reads with the same mapping location

and strand, which are classified as duplicates, may actually come from fragments of different

sizes.

To separate PCR and natural duplicates, methods were developed to use unique molecular

identifiers (UMIs, they are random oligonucleotide barcodes) to tag individual DNA frag-

ments during library preparation [16]. After sequencing, natural duplicates could be confi-

dently separated from PCR duplicates, since the former are unlikely to share the same UMI

but the latter should [8, 10, 16]. Though showing evidence of improved accuracy in variant

discovery and gene expression quantification [8], the UMI-based methods are not routinely

used [7].

It is a common practice to filter out duplicates in ChIP-seq data [5, 6, 17], which has been

shown to improve specificity of peak calling by Model-based analysis of ChIP-Seq (MACS)

[17] without a noticeable loss of sensitivity [2]. However, excluding duplicates has the side

effect of underestimating the read coverage in peaks [4]. While MACS provides the options to
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keep a pre-defined number of reads per position or to calculate the maximum number of

reads to keep based on the binomal distribution (https://github.com/taoliu/MACS), both

options treat the peak and non-peak regions in the same way.

It is already known that the distribution of duplicates is far from random in the genome, at

least for RNA-seq [10] and ChIP-seq data [2]. Natural duplicates are much more abundant in

highly expressed genes [10]. For example, using RNA-seq data from individuals in the 1000

Genomes Project, it was estimated that only 5–30% of the redundant reads were PCR dupli-

cates and over 70% represented natural duplicates in highly expressed genes [8]. Another

study used UMIs to differentiate the two types of duplicates in RNA-seq, revealing that com-

plete deduplication without relying on the UMIs led to about one-fourth false negatives in the

detection of differential expression for highly expressed genes [7]. Not surprisingly, gene

duplicate rate is well correlated with the length-normalized read counts (i.e., reads per kilobase

(kb)) in RNA-seq [10]. Analogous to the exons from expressed genes that together account for

about 2% of the human genome, ChIP-seq peaks from narrow-peak marks only cover a small

portion (approximately 1–2%) of the mappable human genome. Thus, the probability of

sequencing identical but independent fragments (i.e., natural duplicates) is much higher in the

peaks relative to the non-peak regions. We and others found that duplicates are particularly

enriched in peaks from narrow-peak marks and reasoned that most of the duplicates within

peaks should represent true signal [2, 18]. We also found that duplicate rates are much lower

in broad peaks from histone H3 lysine 27 trimethylation [18], suggesting that duplicate

removal should have less impact for broad-peak marks.

In this study, we further investigated the distribution of duplicates in ChIP-seq peaks versus

non-peak regions, evaluated the impact of duplicate removal on peak calling and signal quanti-

fication, and identified the factors that are strongly associated with duplicate level. Using pub-

lic ChIP-seq data from three narrow-peak marks, including estrogen receptor (ER) and

nuclear respiratory factor 1 (NRF1) transcription factor and histone H3 lysine 4 trimethylation

(H3K4me3), we found overrepresentation of duplicates in peaks, especially in those with high

confidence. Duplicate level (redundant reads per kb) in peaks is highly dependent on the target

enrichment level (nonredundant reads per kb), based on which we estimated that 51–62% of

the duplicates in ER peaks and over 90% in NRF1 and H3K4me3 peaks are true signals. Broad-

peak marks H3K27me3 and H3K36me3 had much lower duplicate rates in peaks than the

above narrow-peak marks. A less obvious but similar trend of correlation was also observed

between duplicate level and target enrichment for these two marks, and over 80% of the dupli-

cates in peaks were predicted as signal. Thus, target enrichment level in peaks represents a reli-

able predictor of natural duplicates that should be included in the signal quantification.

Materials and methods

Test datasets

We downloaded eight public human ChIP-seq datasets (S1 Table). Four are from three nar-

row-peak marks, including 51 base pair (bp) single-end H3K4me3 data in HeLa cell line [19],

36-bp single-end data from ER in breast cancer cell lines [20], 50-bp single-end data from

NRF1 in HepG2, K562 and MCF7 cell lines [21], as well as 101-bp paired-end data from

H3K4me3 in lymphoblastoid cell lines [22]. The other four are from broad-peak marks

H3K27me3 and H3K36me3, including 50- or 51-bp single-end data in fetal retinal tissue [23]

and 36-bp single-end data in breast cancer cell lines [24]. For the ER dataset, the reads were

originally aligned to the hg18 reference genome [20]. The binary alignment/map (BAM) files

were downloaded from the National Center for Biotechnology Information (NCBI) Gene

Expression Omnibus under the accession GSE32222. Sequences were extracted from the BAM
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files using the SamToFastq command from the Picard suite (http://broadinstitute.github.io/

picard/). For the other datasets, the sequence read archive (SRA) files were downloaded from

NCBI short reads archive and converted into FASTQ format using SRA toolkit (v2.5.4–1)

(https://github.com/ncbi/sra-tools/). Only 1–50 bases were used for the H3K4me3 data in lym-

phoblastoid cell lines. The three H3K4me3 data in HeLa cell line were generated without PCR

amplification of ChIP DNA, which represent an ideal source to examine the abundance and

distribution of non-PCR duplicates.

Read mapping and peak calling

Reads were aligned to the hg19 reference genome using Burrows-Wheeler Alignment tool

(BWA) (v0.6.2 or v0.7.10) [25]. Only uniquely mapped reads with a minimum mapping qual-

ity score of 20 and no mismatch in the first five bp were used for further analysis. Alignments

were position sorted using the SortSam command and duplicates were identified using the

MarkDuplicates command from the Picard.

Peaks were called from BAM files both before and after duplicate removal. H3K27me3 and

H3K36me3 peaks were called using spatial clustering approach for the identification of ChIP-

enriched regions (SICER, v1.1), a program specifically developed for the identification of

broad peaks [26], at the parameter settings “window size = 200, fragment size = 300, effective

genome fraction = 0.75, gap size = 600 and FDR (false discovery rate) = 1E-2”. For ER, NRF1

and H3K4me3, peaks were identified using MACS (v2.0.10) [17], with the parameter settings

"-f BAM -g hs—keep-dup all -q 0.01—nomodel". The empirical FDR is calculated as the ratio

of number of input peaks over the number of IP peaks using sample swap [17]. To test whether

the results depend on the peak caller used, we also used the findPeaks program from HOMER

(http://homer.ucsd.edu/homer/ngs/peaks.html) to identify ER (via “-style factor” option) and

H3K4me3 peaks (via “-style histone” option), with the cutoff of fold-change� 2 over input

and FDR� 1E-4. FindPeaks showed good performance on the identification of histone modi-

fication peaks [27]. Peaks were filtered out if they overlap the blacklist (total 13.67 megabases),

which is a collection of mappable regions with artificially high signal (https://sites.google.com/

site/anshulkundaje/projects/blacklists). The blacklist was combined from a consensus list

empirically defined by the Encyclopedia of DNA Elements (ENCODE) consortium, available

at http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/

wgEncodeDacMapabilityConsensusExcludable.bed.gz, and the Terry’s blacklist primarily

based on repeat annotations, available at http://mitra.stanford.edu/kundaje/akundaje/release/

blacklists/hg19-human/Duke_Hg19SignalRepeatArtifactRegions.bed.gz.

Motif finding

To identify ER and NRF1 DNA binding motifs, sequence spanning the peak center +/- 50 bp

was extracted using the getfasta command in the Bedtools suite [28]. Motif was identified

using the meme software (v4.8.1) [29], at the parameter settings described in [18].

Duplicate level estimation and correlation between replicates

Number of raw reads in a peak was estimated from unique alignments both before and after

duplicate removal, using the intersectBed command from the Bedtools suite. Number of dupli-

cates represents the difference between the two estimates. Duplicate rate, defined as the ratio

of the number of duplicates over the number of uniquely mapped reads, was estimated for

peaks, non-peak regions and peak-flanking regions in IP, as well as for peak and non-peak cor-

responding regions in input. Non-peak regions represent the rest of the mappable genome

that are not covered by peaks. To avoid the possible influence from peaks and consider the
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difficulty in defining the precise peak boundary, non-peak regions were 100 bp away from

peaks, unless stated otherwise. Average duplicate rate in non-peak regions serves as the base-

line in assessing duplicate rate in peaks. To understand whether peak adjacent regions are sim-

ilarly enriched with duplicates as peaks or have a comparable duplicate rate as the average of

non-peak regions, we also estimated duplicate rate for peak-flanking regions. They are peak 5’

and 3’ regions, and both were 300 bp away from the peak and had the same size as the peak. A

300-bp (~ the fragment size) separation was used to minimize influence from the peak. If the

duplicate rate is much higher in the peaks compared with the baseline from non-peak regions

and with that from peak-flanking regions, it is a strong indication that duplicates in peaks

likely represent signal. In calculating the number of duplicates per base, the reads whose align-

ments start at the same position on the reference but on different strands were counted

separately.

To calculate correlation between replicates in duplicate level, blacklist-filtered peaks from

replicates were first merged into a single list if they show at least 1 bp overlap. For each merged

peak, the number of duplicates was estimated (see above) in each replicate and normalized to

per kb per 10 million uniquely mapped reads (RPK10M). Pearson correlation was computed

using log2-transformed RPK10M values.

Correlation between duplicate level and six features

For each IP, Spearman rank correlation was computed between duplicate level in peaks and

each of the six features including non-duplicate level in peaks, duplicate and non-duplicate

level in peak corresponding regions in input, peak GC content, as well as percentage of seg-

mental duplication and low-complexity sequences in peaks. Duplicate level in peaks and in

corresponding regions in input was estimated as the number of redundant reads per kb with-

out library size normalization, and non-duplicate level was estimated similarly from nonre-

dundant reads. GC content represents the number of guanine and cytosine bases divided by

the total bases in a peak. Percentage of segmental duplication is the fraction of a peak that

overlaps regions of segmental duplication, defined as those with > = 90% sequence identity

over at least 1 kb (http://humanparalogy.gs.washington.edu/build37/build37.htm) [30]. Per-

centage of low-complexity sequence is the fraction of a peak that overlaps low complexity

regions (https://figshare.com/articles/Low_complexity_regions_in_hs37d5/969685) [31].

The prediction of natural duplicates in peaks

In predicting the proportion of duplicates as true signals in blacklist-filtered peaks, we recalcu-

lated its raw duplicate level (i.e., number of duplicates per kb) and performed the prediction

based on target enrichment level (i.e. number of nonredundant reads per kb) using the "lowess

()" function in R. To avoid overestimation, natural duplicate level was set at the raw or pre-

dicted level, whichever is smaller.

Results and discussion

We first analyzed the three PCR-free H3K4me3 ChIP-seq data in HeLa. About two-fifths of

the uniquely mapped reads were duplicates (S1 Table), and 97% of the duplicates were within

the peaks that represented only 1.9% of the mappable genome. Of the other three datasets with

PCR amplification from narrow-peak marks, the six NRF1 ChIP-seq data had 10.3–20.9 mil-

lion uniquely mapped reads and 2.94–35.81% duplicates; the 13 ER ChIP-seq data had 18.5–

79.3 million uniquely mapped reads, of which 6.76–24.10% were duplicates; and another 13

H3K4me3 ChIP-seq data had 27.1–50.1 million uniquely mapped reads including 20.19–

55.38% duplicates (S1 Table). Focusing on the three datasets, we found that duplicates were
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highly enriched in peaks, especially within those having the highest confidence (lowest FDR),

compared to the non-peak regions. Furthermore, duplicate level (duplicates per kb) in peaks

was highly correlated between replicates and with the level of nonredundant reads. We con-

clude that a significant portion of duplicates in peaks represents true signal for narrow-peak

marks. While H3K27me3 and H3K36me3 peaks were also enriched with duplicates, the dupli-

cate level was substantially lower than that of narrow-peaks. For both marks, duplicates in

peaks also largely represent signal.

Genome-wide distribution of duplicates

For the ER dataset, 8.6% (median) of the positions with uniquely mapped reads had duplicates,

versus only 2.0% (median) in the input libraries. GSM798423 and GSM798427, the two sam-

ples with the highest duplicate rates (24%) (Fig 1A), had at least twice as many positions with

duplicates as the others. We further checked the per-base duplicates for those with> = 1 dupli-

cate. Over 94% of the positions each had five or less duplicates, together contributing to

approximately 79% of the total duplicates; about 1% had over ten duplicates (S1 Fig). As

expected, the proportion of positions with duplicates was several times higher within narrow

peaks than within broad peaks. Specifically, within ER, NRF1, and H3K4me3 peaks, 30.6, 45,

and 40.3% of the positions with uniquely mapped reads had duplicates, versus only about 5%

within H3K27me3 and H3K36me3 peaks.

Fig 1. Duplicate rate versus sequencing depth and target enrichment level in ER ChIP-seq data. (A) Duplicate rate

versus sequencing depth. (B) Enrichment level and the percentage of nonredundant reads in peaks. Duplicate rate was

defined as the ratio of duplicate reads over uniquely mapped reads. Enrichment level was estimated as (number of

nonredundant reads in peaks / total nonredundant reads in IP) / (number of nonredundant reads in peak-

corresponding regions in input / total nonredundant reads in input).

https://doi.org/10.1371/journal.pone.0214723.g001
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We called peaks from uniquely mapped reads after duplicate removal and counted dupli-

cates within peaks and non-peak regions (> = 100 bp away from peaks). We defined duplicate

rate as the number of duplicates over total uniquely mapped reads, which is 3 to 11.5 times

higher in ER peaks compared to the baseline in non-peak regions (S2 Fig). In contrast, dupli-

cate rate was largely comparable (less than twofold difference) between their corresponding

regions in input, with the exception of GSM798432 (2.3-fold) (S2 Fig). Representing about

0.5% of the mappable genome, ER peaks had a median of 14% of the nonredundant reads (Fig

1B) and 59.37% of the duplicates in IP (Table 1). The enrichment of duplicates in peaks is not

due to the mapping artifact based on little overlap with the blacklist. On average, only 0.2% of

the duplicates in peaks overlapped the blacklist, versus 8.9% in non-peak regions (Table 1).

Similar to the ER data, the H3K4me3 and NRF1 samples also had a high FRiP (fraction of

reads in peaks), which is a ChIP-seq quality metric of global enrichment proposed by the

ENCODE Consortium [5], and high proportion of duplicates in peaks (Table 2). For example,

H3K4me3 peaks represented 2% of the mappable genome but had over 65% of the nonredun-

dant reads (Table 2). Accordingly, H3K4me3 peaks contained over 82% of the total duplicates,

showing a 15-fold median enrichment over the corresponding regions in inputs (Table 2).

Next, we used the ER dataset to examine how the top positions with the most duplicates dis-

tribute in the genome. We extracted the top 2,000, 5,000 and 10,000 positions and analyzed

their genomic locations. Between 35.7 and 97.93% (median 84.7%) of the positions were

located in the ER peaks (S3 Fig), with the lowest (35.7 and 53.42%) from GSM798429 and

GSM798430, the two samples that had the highest fractions (>60%) of duplicates in non-peak

regions (Table 1). We thus predict that positions within peaks should have more duplicates

than those in non-peak regions. To confirm it, we estimated the average number of duplicates

per base, which was 4.9–19.5 times higher in peaks than in non-peak regions (Table 1). In par-

allel, we extracted the top 10,000 positions from both peak and non-peak regions and com-

pared the number of duplicates per base. Except GSM798429 and GSM798430 described

above, the other 11 samples showed 1.5- to 5.8-fold enrichment in peaks (S4 Fig).

Table 1. Duplicate level in ER peaks and non-peak regions.

Accession A B C D

Peak Non-peak Peak Non-peak Peak Non-peak Peak Non-peak

GSM798423 60.98 39.02 0.19 3.46 0.05 0.44 0.78 0.16

GSM798424 71.25 28.75 0.45 28.24 0.06 0.44 0.39 0.02

GSM798425 71.79 28.21 0.04 11.50 0.03 0.41 0.57 0.05

GSM798426 80.68 19.32 0.05 22.27 0.04 0.45 0.66 0.04

GSM798427 53.26 46.74 0.02 3.60 0.02 0.33 1.62 0.17

GSM798428 47.63 52.37 0.01 15.47 0.03 0.49 0.72 0.06

GSM798429 26.89 73.11 0.03 9.62 0.06 0.39 1.61 0.09

GSM798430 39.70 60.30 0.02 16.57 0.04 0.43 0.55 0.08

GSM798431 59.37 40.63 0.02 19.56 0.05 0.45 0.66 0.05

GSM798432 55.12 44.88 1.91 4.89 0.34 0.42 0.55 0.09

GSM798433 48.98 51.02 0.05 12.84 0.06 0.39 0.40 0.04

GSM798434 73.99 26.01 0.03 11.23 0.03 0.40 0.55 0.04

GSM798435 67.71 32.29 0.38 8.41 0.07 0.43 0.46 0.05

A, percentage of total library duplicates in peaks and non-peak regions. B, percentage of duplicates in peaks and non-peak regions that overlaps the blacklist. C,

percentage of positions with at least one duplicate that overlaps the blacklist. D, average number of duplicates per position, calculated as the ratio of total duplicates over

the total number of positions with at least one uniquely mapped read, with positions overlapping the blacklist excluded. Only uniquely mapped reads with a minimum

mapping quality score of 20 and no mismatch at the first five bases were used. Non-peak regions, the bases not covered by peaks.

https://doi.org/10.1371/journal.pone.0214723.t001
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Finally, we checked whether duplicate level within peaks is correlated between replicates.

We merged peaks from replicates, estimated the number of duplicates per merged peak and

normalized to reads per kb per 10M (RPK10M). Pearson correlation, calculated using

RPK10M on log2 scale, varied between 0.722 (95% confidence interval (CI): 0.719–0.726) and

0.832 (95% CI: 0.829–0.834) for ER (S5 Fig), between 0.732 (95% CI: 0.722–0.741) and 0.833

(95% CI: 0.828–0.837) for NRF1 (Fig 2A and 2B), and between 0.740 (95% CI: 0.736–0.745)

and 0.874 (95% CI: 0.871–0.876) for H3K4me3 (Fig 2C and 2D). The noticeable enrichment of

duplicates in peaks and high correlation of duplicate level between replicates suggested that

duplicates in ER, NRF1 and H3K4me3 peaks largely represent true signals rather than

artifacts.

Duplicates are over enriched in highly confident peaks

We have found that duplicates are enriched in peaks relative to the non-peak regions. Next we

ask whether the most confident peaks are more enriched with duplicates, particularly for nar-

row-peak marks, and whether peak-flanking regions are also enriched with duplicates. To

answer both questions, we split peaks into 10 equal-sized groups according to the FDR, with

peaks in group 1 having the lowest FDR (the highest confidence) and those in group 10 having

the highest FDR.

Table 2. Enrichment of duplicates in H3K4me3 and NRF1 peaks.

Accession Duplicate rate (%) Peak size (%) Nonredundant reads Duplicates

IP (%) Input (%) Ratio IP (%) Input (%) Ratio

GSM1233880 20.19 2.15 64.60 2.80 23.07 95.67 2.48 38.58

GSM1233881 26.19 2.03 77.33 2.57 30.09 96.73 2.25 42.99

GSM1233905 53.96 1.97 75.25 7.11 10.58 82.11 6.51 12.61

GSM1233906 32.75 1.99 82.52 7.26 11.37 93.67 6.62 14.15

GSM1233907 37.78 1.99 81.96 7.36 11.14 91.23 6.70 13.62

GSM1233926 21.08 1.79 69.07 5.32 12.98 94.02 4.28 21.97

GSM1233927 29.32 1.73 80.65 5.12 15.75 97.90 4.11 23.82

GSM1233947 55.38 1.95 77.28 6.34 12.19 83.71 5.81 14.41

GSM1233948 30.70 1.94 83.01 6.23 13.32 94.20 5.68 16.58

GSM1233949 34.94 2.10 81.81 6.86 11.93 89.50 6.28 14.25

GSM1233969 53.30 1.91 80.23 6.11 13.13 86.73 5.78 15.01

GSM1233970 29.32 1.95 82.95 6.10 13.60 93.62 5.75 16.28

GSM1233971 40.80 2.17 81.16 6.73 12.06 88.49 6.36 13.91

GSM2574769 23.57 0.28 25.1 0.98 25.61 81.38 2.16 37.68

GSM2574770 8.77 0.11 2.89 0.45 6.42 30.06 1.1 27.33

GSM2574771 21.21 0.24 21.4 0.88 24.32 79.49 1.96 40.56

GSM2574780 35.81 0.15 26.96 0.49 55.02 48.34 0.75 64.45

GSM2574812 17.86 0.16 19.91 0.51 39.04 91.61 0.97 94.44

GSM2574813 2.94 0.06 0.88 0.22 4 29.08 0.43 67.63

Peaks were called by MACS using uniquely mapped reads after duplicate removal, and those overlapping the blacklist were filtered out. Only reads with a minimum

mapping quality score of 20 and no mismatch at the first five bases were included in the analysis. Duplicate rate (%), number of duplicates divided by the number of

uniquely mapped reads. Peak size (%), total peak size over the size of mappable genome (0.75 x genome size). Nonredundant reads in IP (%), number of nonredundant

reads in peaks over total nonredundant reads in IP (FRiP). Nonredundant reads in input (%), number of nonredundant reads in peak-corresponding regions in input

over total nonredundant reads in input. Proportion of duplicates in peaks and in peak-corresponding regions from input was calculated similarly. H3K4me3, the first 13

samples from GSM1233880 to GSM1233971; NRF1, the bottom six samples from GSM2574769 to GSM2574813. See S1 Table for sample information.

https://doi.org/10.1371/journal.pone.0214723.t002
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For narrow-peak marks, group 1 had a duplicate rate of about 50% (31.09–78.86%), which

decreased from group 2 to 10 (Fig 3A, 3C and 3E). However, in the corresponding regions

from the input, all groups had similarly lower duplicate rates (Fig 3A, 3C and 3E). A similar

pattern was observed for the proportion of duplicates across the 10 groups (Fig 3B, 3D and

3F). For example, group 1 peaks from ER had 11.59–66.61% of the total library duplicates, rep-

resenting 43.11–82.91% of the duplicates from all peaks. In contrast, group 5 to 10 each had

less than 1.5% of total library duplicates, similar to the corresponding regions in input

Fig 2. Scatter plot of duplicate level within peaks between replicates. (A) NRF1 in K562. (B) NRF1 in MCF7. (C) H3K4me3 in

GM12878. (D) H3K4me3 in GM12891. Peaks overlapping the blacklist were filtered out. Duplicate level was estimated as the number of

duplicates per kb per 10 million uniquely mapped reads and log2 transformed. R2 value was calculated using Pearson correlation.

https://doi.org/10.1371/journal.pone.0214723.g002

ChIP-seq duplicate rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0214723 April 3, 2019 9 / 22

https://doi.org/10.1371/journal.pone.0214723.g002
https://doi.org/10.1371/journal.pone.0214723


Fig 3. Plot of duplicate abundance versus peak confidence. (A,C,E,G,I) Duplicate rate in 10 groups of peaks and in the corresponding regions

in input. (B,D,F,H,J) Proportion of total library duplicates in each of the groups and in the corresponding regions in input. Peaks were sorted

based on p value in ascending order and split into 10 equal-sized groups, with group 1 having the smallest p values. Y-axis in the left panels

represents duplicate rate per group, i.e., the number of duplicates over the total uniquely mapped reads in a group, as defined in Fig 1 legend. Y-

axis in the right panels represents the proportion of total duplicates from a library in each group and in the peak-corresponding regions in input.

The dotted horizontal lines in the left panels denote duplicate rates in the non-peak regions in IP (> = 100 bp away from peaks). See S1 Table for

sample information.

https://doi.org/10.1371/journal.pone.0214723.g003
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libraries. This analysis revealed that, for narrow-peak marks, duplicates are much more abun-

dant in the peaks with the highest confidence.

On the other hand, for H3K27me3 and H3K36me3, group 1 represents 0.2–2% of the map-

pable genome. In over 80% of the cases, it had>20% of the duplicates in a sample (Fig 3H, 3J;

S6B, S6D, S6F, S7B, S7D and S7F Figs), suggesting that broad peaks are also enriched with

duplicates. Nevertheless, due to the overall low duplicate rate, group 1 often had only a few

percent of duplicates, which, in many of the cases, was not markedly higher than that of the

other groups (Fig 3G, 3I; S6A, S6C, S6E, S7A, S7C and S7E Figs).

As narrow peaks were highly enriched with duplicates, we further examined the distribu-

tion of top 10,000 positions from ER peaks. They were from 196–408 peaks (S2 Table), with

over 85% from only 100 peaks, indicating that the top positions tend to cluster together. Over-

all, those peaks had high confidence (small FDR) (S8 Fig) and often contained the ER binding

motif. About 72–87% of these peaks contained the ER binding motif, showing more than two-

fold enrichment over randomly selected peaks. Similar patterns were observed for the top

2,000 and 5,000 positions (S2 Table).

Based on the above analysis, we finally checked the flanking regions from ER peaks in

group 1 (with the highest duplicate rate) to see whether they are also enriched for duplicates,

using those from group 5 (generally lack enrichment of duplicates) as the baseline. We defined

the flanking regions as peak 5’ and 3’ regions that are 300 bp away from the peak and have

the same size as the peak. We further split group 1 and 5 into 10 equal-sized subgroups as

described above. Regardless of the duplicate rates in peaks, the flanking regions had similar

duplicate rates across all the subgroups, which were markedly lower than those of the peaks

(S9A–S9D Fig). Thus, duplicates appear to be exclusively enriched in peaks.

Impact of duplicates on peak calling and signal quantification

As duplicate rate was on average over seven times higher in narrow peaks than in broad peaks,

we assessed the extent by which duplicate removal impacts peak calling in ER, H3K4me3 and

NRF1. Unique alignments were filtered by requiring a mapping quality score of at least 20 and

no mismatch over the first five bases at the 5’ end. We called peaks with and without duplicate

removed and estimated the portion of peaks unique to either of the two options. We found

that the proportion of library duplicates in ER peaks (merged from the two options and fil-

tered by blacklist) was positively correlated with the proportion of peaks unique to duplicate

removal (Spearman rank correlation R = 0.66, p = 1.71e-02) and negatively correlated with the

proportion of peaks unique to no duplicate removal (R = -0.80, p = 1.84e-03). The correlation

was more obvious for H3K4me3 (R = 0.96, p = 2.20e-16; R = -0.98, p = 2.20e-16).

There were 5% ER peaks unique to duplicate removal and 2.72% unique to no duplicate

removal (S3 Table). To understand whether these unique peaks represent true binding sites or

false positives, we used the meme program to scan the 100-bp sequence spanning the peak cen-

ter for matches to the ER binding motif. On average, 22.5% and 24.5% of the two unique peak

sets contained the ER motif (S3 Table), indicating that at least a subset represents true binding

sites. For NRF1 in HepG2, K562 and MCF7, there were 5.32% and 4.05% peaks unique to

duplicate removal and no duplicate removal, respectively (S4 Table). As over 60% of the NRF1

binding sites are located within the -150 to 50 bp regions around transcription start sites

(TSSs) [32], we checked overlap with the TSS ± 2kb regions in the Ensembl v78 annotation

and with the H3K4me3 peaks from reference epigenome in HepG2, K562 and HMEC [33]. Of

the unique peaks from duplicate removal, 24.5% had the NRF1 binding motif, and 60.5 and

70.9% overlapped the TSS ± 2kb regions and H3K4me3 peaks, versus 33.3, 33.5 and 37.3% of

the unique peaks from no duplicate removal (S4 Table).
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Similarly, there were 6.23% H3K4me3 peaks unique to duplicate removal and 1.43% unique

to no duplicate removal (S5 Table). H3K4me3 is a hallmark of promoters. To assess what pro-

portion of those unique peaks might represent true H3K4me3 sites, we intersected both shared

(called with both options) and unique sites with the 4-kb windows centered on the TSSs. Of

the H3K4me3 sites unique to either option, about 22% showed overlap (S5 Table), versus

about 51% for the shared peaks. Intersecting with H3K4me3 peaks from the GM12878 refer-

ence epigenome [33] revealed 54% overlap for unique peaks and 85% overlap for shared peaks.

Complete removal of duplicates is currently a common practice for ChIP-seq. It had 386–

1,385 unique peaks but missed 2,123–5,793 peaks that are unique to the option of no duplicate

removal in five of the samples (S5 Table). These samples generally had high duplicate rates

than the others. About half of the peaks unique to no duplicate removal overlapped with

H3K4me3 peaks from the GM12878 reference epigenome. Thus, complete deduplication is

not an ideal option, in particular for the five samples. On the other hand, as some of the dupli-

cates represent PCR artifacts, it is necessary to develop a method to remove noise duplicates,

which is expected to minimize false positives in peak detection.

To investigate whether the results depends on the peak caller used, we also identified ER

and H3K4me3 peaks using findPeaks from HOMER. In terms of the proportion of peaks

unique to duplicate removal and to no duplicate removal, the pattern was highly consistent

between MACS and findPeaks (S3 and S5 Tables). For example, GSM798428 and GSM798430

had comparable number of unique ER peaks before and after duplicate removal for both call-

ers, while GSM798427 had over three times more peaks unique to duplicate removal (S3

Table). Apparently, analysis of the three narrow-peak marks indicates that the option of dupli-

cate removal impacts peak calling and the extent of impact tends to be library dependent.

Thus, it is advisable to develop an optimal deduplication strategy to achieve both high sensitiv-

ity and specificity in peak detection.

Finally, ER data was used to understand the impact of duplicate removal on signal quantifi-

cation. For peaks in group 1 and 5 (see above), we calculated their RPK10M for IP and input

and plotted the input-subtracted RPK10M on log2 scale. We observed 1.21- to 2.47-fold

changes before and after duplicate removal for peaks in group 1 (S10 Fig), but no obvious dif-

ferences for peaks in group 5. As expected, duplicate removal mainly reduces the signals in

highly confident peaks.

Factors associated with duplicate level

To separate duplicates within peaks into those that likely represent true signal and others that

are PCR amplification noise, we need to understand what factors are associated with the dupli-

cate level. We first considered sequencing depth. For the same IP, sequencing at a higher

depth likely increases the chance of generating duplicates. However, confronted by factors

such as difference in the amount of starting material and immunoprecipitation efficiency,

sequencing depth does not necessarily correlate well with duplicate rate across different librar-

ies. For example, GSM798427 and GSM798429 from the ER dataset had the highest sequenc-

ing depths (79.3 and 78.3 million), their duplicate rates differed by twofold (24.10% versus

11.42%) (Fig 1A). This is likely because GSM798429 had only 6,600 peaks (S3 Table).

GSM798423, on the other hand, had only 21.4 million reads but a high duplicate rate (23.81%)

(Fig 1A).

We next examined whether duplicate level is correlated with non-duplicate level in peaks.

Uniquely mapped reads in each peak were split into duplicates, which are redundant reads

mapped to the same location and strand, and non-duplicates (nonredundant reads). Duplicate

level and non-duplicate level were estimated as the number of redundant and nonredundant
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reads per kb, respectively. We found that, within peaks, duplicate level was highly correlated

with non-duplicate level for ER (Spearman rank R = 0.79–0.96) (Figs 4B–4D and 5A), NRF1

(R = 0.90–0.95) (Figs 4E, 4F and 5B), PCR-free H3K4me3 in HeLa (R = 0.96) (Fig 4A) and

H3K4me3 in lymphoblastoid cell lines (R = 0.91–0.97) (Fig 5C and S11A and S11B Fig).

Obvious correlation was also detected for the two broad-peak marks, H3K27me3 (R = 0.46–

0.86) (Fig 5F and S11C–S11F Fig) and H3K36me3 (R = 0.50–0.91) (Figs 4G–4I and 5D, 5E).

As expected, these two variables were much less correlated for the peak corresponding

regions in inputs, as showed for the ER dataset (R = 0.12–0.33) (S12 Fig). The high correla-

tion indicates that we can predict the duplicate level in peaks as belonging to signal based on

the non-duplicate level, which will allow us to properly allocate duplicates between signal and

noise.

To understand whether additional factors are also associated with duplicate level, we also

assessed the correlation between duplicate level in peaks and five other variables (Fig 5). The

analysis revealed a modest correlation with non-duplicate level in the peak corresponding

regions in input (R = 0.04–0.51; median 0.28), likely reflecting the influence of local chromatin

structure. In general, a smaller correlation (median R = 0.11) was detected with the other four

variables including duplicate level in peak corresponding regions in input, %GC content, %

segmental duplication and %low-complexity sequences in peaks. Therefore, of the six factors

examined, non-duplicate level is the most critical determinant of duplicate level in peaks.

Partition of duplicates in peaks

To separate duplicates in peaks into true signal and noise, we first examined the duplicate fre-

quency at the positions that had at least one duplicate in peaks. Ninety-six to ninety-nine point

eight percent of the positions in H3K4me3 peaks and 86.5–96.4% of the positions in ER peaks

had 1–5 duplicates. To minimize noise, we arbitrarily kept a maximum of five duplicates per

position. We then recalculated the duplicate level (number of duplicate per kb) for each peak

and obtained the predicted level based on the peak enrichment level (number of nonredundant

reads per kb) (Fig 4A–4I and S11A–S11F Fig).

Overall, 51.3–61.7% of the duplicates in ER, 61.3–94% in NRF1 and 92.7–95% in H3K4me3

peaks should represent true signal (Fig 6C). For the top 10% of the peaks, a slightly lower pro-

portion was predicted to be true signal (Fig 6C). The proportion of duplicates predicted as

signal (Fig 6C) is well correlated with the enrichment level (the fraction of nonredundant

reads in peaks, FRiP) (Fig 6B), the proportion of positions with duplicates (Fig 6B), and the

proportion of duplicates within peaks (Fig 6A). Compared to the above narrow-peak marks,

H3K27me3 and H3K36me3 peaks had over 10 times larger coverage (Fig 6B) and over 10

times less enrichment (FRiP) (Fig 6B). Consequently, within peaks the duplicate rate (Fig 6A)

and the proportion of mapped positions with duplicates (Fig 6B) were only ~5%. Nevertheless,

about half of the duplicates were located within peaks (Fig 6A), and over 80% of them were

predicted to be true signal (Fig 6C).

We proposed a strategy for optimal deduplication in peaks (Fig 7). Based on the high corre-

lation between duplicate level and the level of nonredundant reads in peaks, the number of

duplicates as signal could be predicted using local regression. On the other hand, for the non-

peak regions (regions not covered by peaks) and input, the current practice of complete dupli-

cate removal can be applied. As peaks from narrow-peak marks had a much higher duplicate

rate (Fig 6A) and FRiP (Fig 6B) than those from broad-peak marks, optimal deduplication

would be much less beneficial for the latter. We have provided scripts for the automation of

complete duplicate removal in non-peak regions and proper deduplication in peaks. The prop-

erly deduplicated BAM file and the list of peaks with number of nonredundant reads, signal
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Fig 4. Duplicate level in peak is correlated with mark enrichment. (A) PCR-free H3K4me3 ChIP-seq data in HeLa cell line. (B-D) ER ChIP-

seq data in MCF7 cell line. (E,F) NRF1 ChIP-seq data in HepG2 and MCF7 cell line. (G-I) H3K36me3 ChIP-seq data in MCF7 and ZR751 cell

line and in fetal retinal tissue. Peaks were called from alignments with duplicate removed. X-axis indicates mark enrichment level in peaks,

estimated as the number of nonredundant reads per kb, and y-axis shows the number of duplicates per kb. The curve was constructed using the

"lowess()" function in R. R2 value was calculated using Spearman rank correlation.

https://doi.org/10.1371/journal.pone.0214723.g004
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Fig 5. Box plot of Spearman rank correlation between duplicate level in peak and six factors. (A) Thirteen ER libraries in breast cancer cell lines. (B) Six

NRF1 libraries, including one in HepG2, two in MCF7 and three in K562. (C) Thirteen H3K4me3 libraries in lymphoblastoid cell lines. (D) Four

H3K36me3 libraries in fetal retinal tissue. (E) Twelve H3K36me3 libraries in breast cancer cell lines. (F) Twelve H3K27me3 libraries in breast cancer cell

lines. For each peak, duplicate level was estimated as the number of duplicates divided by peak size in kb, and non-duplicate level was estimated similarly.

Duplicate and non-duplicate levels in peak corresponding regions in input were also calculated. GC content represents the number of guanine and cytosine

bases divided by the total bases in a peak. Percentage of segmental duplication is the proportion of a peak that overlaps regions of segmental duplication,

defined as those with> = 90% sequence identity over at least 1 kb (http://humanparalogy.gs.washington.edu/build37/build37.htm) [30]. Percentage of low-

complexity sequence is the proportion of a peak that overlaps low complexity regions (https://figshare.com/articles/Low_complexity_regions_in_hs37d5/

969685) [31].

https://doi.org/10.1371/journal.pone.0214723.g005
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and noise duplicates could be easily used for downstream analysis. The scripts are available at

GitHub (https://github.com/shulantianmayo/dedup).

Conclusion

ChIP-seq data contains redundant reads, which are a mixture of PCR artifacts and natural

duplicates. Currently, duplicates are filtered out prior to peak calling and signal quantification.

Using public ER, NRF1 and H3K4me3 ChIP-seq data, we demonstrate that the current prac-

tice of filtering out all duplicates in peaks introduces a strong bias for narrow-peak marks,

leading to a preferential loss of signals in highly confident peaks. However, the bias is less obvi-

ous for H3K27me3 and H3K36me3.

Fig 6. Prediction of duplicates as signal based on peak enrichment. (A) Duplicate rate in a library and in peaks and proportion of

duplicates in peaks. Duplicate rate in a lib was estimated as the number of duplicates divided by the number of uniquely mapped reads.

Duplicate rate in peaks was estimated in the same way. (B) Plot of peak coverage, fraction of positions with duplicates and fraction of

nonredundant reads in peaks. Peak coverage was estimated as the total peak size over the mappable genome size (0.75 x genome size).

Fraction of positions with duplicates was estimated as the number of positions with duplicates over the number of positions with uniquely

mapped reads. Fraction of reads in peaks (FRiP), fraction of uniquely-mapped, nonredundant reads in peaks. (C) Proportion of duplicates

predicted as signal. The prediction was based on the correlation between peak duplicate and non-duplicate level, as showed in Fig 4.

https://doi.org/10.1371/journal.pone.0214723.g006
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Fig 7. Flowchart for optimal deduplication in peaks. The workflow takes a BAM file and a list of peaks as input. It

outputs a table that shows the number of nonredundant reads (non-duplicates), duplicates predicted as signal and

duplicates as noise for each peak. A properly deduplicated BAM file is also generated, which contains alignments for all

nonredundant reads and for duplicates in peaks that are predicted as signal. For each peak, if N represents the

predicted number of noise duplicates and S represents the predicted number of signal duplicates, a list of N read ID is

randomly extracted from N+S duplicates mapped to that peak. Alignments for the noise duplicates are then excluded,

and alignments for the remaining duplicates are combined with those from nonredundant reads.

https://doi.org/10.1371/journal.pone.0214723.g007
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For the three narrow-peak datasets, duplicates are predominantly located in peaks, espe-

cially within those with high confidence, but at the baseline level in the flanking regions. The

same pattern of duplicate enrichment was not observed in the corresponding regions in the

inputs. In addition, duplicate level (number of duplicates per kb) in peaks is well correlated

between replicates and with the enrichment level (nonredundant reads per kb). Collectively,

these evidence supports that a substantial portion of the duplicates in peaks represents true

signals.

Our analysis argues for the development of a more appropriate approach to handle dupli-

cates in peaks, especially for narrow-peak marks, rather than simply filtering out all duplicates.

The strategy is based on the high correlation of the duplicate level in peaks with the level of tar-

get enrichment. As demonstrated in this study, a substantial portion of duplicates in peaks is

predicted to represent true signals that should be retained for downstream analysis.

Supporting information

S1 Fig. Proportion of positions with different number of duplicates in ER ChIP and input

libraries. GSM798423 to GSM798435 are IP and the other five are inputs. Only positions with

at least one duplicate were included in the analysis. Ninety-four point six percent (median) of

the positions had no more than three duplicates.

(PDF)

S2 Fig. Duplicate rate in ER peaks and non-peak regions and in the corresponding regions

in inputs. Non-peak regions are the rest of the mappable genome that are 100 bp away from

peaks.

(PDF)

S3 Fig. A large proportion of top positions in the ER libraries are from peaks. For each

library, the top 2,000, 5,000 and 20,000 positions with the highest number of duplicates were

analyzed. The overall duplicate rate was also plotted for each library.

(PDF)

S4 Fig. Box plot of the number of duplicates per position. The top 10,000 positions with the

most duplicates from both ER peaks and non-peak regions were analyzed. Non-peak regions

are those not covered by peaks.

(PDF)

S5 Fig. Scatter plot of duplicate level within ER peaks between replicates. Duplicate level

was estimated as the number of reads per 10 million (RPK10M) on log2 scale. Breast cancer

cell lines BT-474 (left) and TAM-R (right) were shown. See Fig 2 legend for details.

(PDF)

S6 Fig. Duplicate rate versus confidence level of H3K36me3 peaks. (A,C,E) Duplicate rate

in 10 groups of peaks and in the corresponding regions in input. The dotted horizontal lines

denote duplicate rates in the non-peak regions (> = 100 bp away from peaks). (B,D,F) Propor-

tion of total library duplicates in each of the groups and in the corresponding regions in input.

See Fig 3 legend for details.

(PDF)

S7 Fig. Duplicate rate versus confidence level of H3K27me3 peaks. (A,C,E) Duplicate rate

in 10 groups of peaks and in the corresponding regions in input. The dotted horizontal lines

denote duplicate rates in the non-peak regions (> = 100 bp away from peaks). (B,D,F)
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Proportion of total library duplicates in each of the groups and in the corresponding regions

in input. See Fig 3 legend for details.

(PDF)

S8 Fig. Positions with the most duplicates tend to present in highly confident ER peaks.

Peaks were ranked (1 to 100) based on p value, with rank 1 indicating the top 1% of the peaks

with the smallest p values. For each library, the top 10,000 positions with the most duplicates

were identified from peaks, and the ranks of the peaks covering these positions were plotted.

The top 10,000 positions were from relatively lower confident peaks in GSM798427 and

GSM798429; they had over 2.5-fold more uniquely mapped reads than the other 11 libraries.

(PDF)

S9 Fig. Duplicate rate in ER peaks and the flanking regions. Peaks from group 1 (top 10%

peaks with the lowest p values) and 5 (the fifth decile) were both split into 10 subgroups of

equal size. Non-peak regions are 100 bp away from peaks. Flanking regions are peak 5’ and 3’

regions that are 300-bp away from the peaks and have the same size as the peaks. See S1 Table

for sample information.

(PDF)

S10 Fig. Box plot of the number of reads in ER peaks with and without duplicate removal.

Peaks were called with duplicate removal and the top 10% peaks with the smallest p values

were shown. Number of raw reads in peaks was estimated from alignments both before and

after duplicate removal. Y-axis indicates the input-subtracted number of reads per 10 million

(RPK10M) on log2 scale. Only reads with a minimum mapping quality score of 20 and no mis-

match at the first five bases were used.

(PDF)

S11 Fig. Scatter plot of duplicate versus non-duplicate level within H3K4me3 and

H3K27me3 peaks. (A,B) H3K4me3 in lymphoblastoid cell lines. (C,D) H3K27me3 in fetal ret-

inal tissue. (E,F) H3K27me3 in breast cancer cell lines. The curve was generated using the

"lowess()" function in R. The coefficient of determination (R2) was calculated using Spearman

rank coefficient. See Fig 4 legend for details.

(PDF)

S12 Fig. Duplicate level versus non-duplicate level in ER peak corresponding regions in

input. The coefficient of determination (R2) was calculated using Spearman rank coefficient.

See Fig 4 legend for details.

(PDF)

S1 Table. Public ChIP-seq data used in this study.

(PDF)

S2 Table. Number of ER peaks with the most highly duplicated positions.

(PDF)

S3 Table. Number of ER peaks called with and without duplicate removal.

(PDF)

S4 Table. Number of NRF1 peaks called with and without duplicate removal.

(PDF)

S5 Table. Number of H3K4me3 peaks called with and without duplicate removal.

(PDF)
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