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A B S T R A C T   

Background and purpose: Radiomics offers great potential in improving diagnosis and treatment for patients with 
glioblastoma multiforme. However, in order to implement radiomics in clinical routine, the features used for 
prognostic modelling need to be stable. This comprises significant challenge in multi-center studies. The aim of 
this study was to evaluate the impact of different image normalization methods on MRI features robustness in 
multi-center study. 
Methods: Radiomics stability was checked on magnetic resonance images of eleven patients. The images were 
acquired in two different hospitals using contrast-enhanced T1 sequences. The images were normalized using one 
of five investigated approaches including grey-level discretization, histogram matching and z-score. Then, 
radiomic features were extracted and features stability was evaluated using intra-class correlation coefficients. In 
the second part of the study, improvement in the prognostic performance of features was tested on 60 patients 
derived from publicly available dataset. 
Results: Depending on the normalization scheme, the percentage of stable features varied from 3.4% to 8%. The 
histogram matching based on the tumor region showed the highest amount of the stable features (113/1404); 
while normalization using fixed bin size resulted in 48 stable features. The histogram matching also led to better 
prognostic value (median c-index increase of 0.065) comparing to non-normalized images. 
Conclusions: MRI normalization plays an important role in radiomics. Appropriate normalization helps to select 
robust features, which can be used for prognostic modelling in multicenter studies. In our study, histogram 
matching based on tumor region improved both stability of radiomic features and their prognostic value.   

1. Introduction 

Glioblastoma multiforme (GBM) is the most common primary brain 
tumor in adults with poor median overall and long-term survival rates 
below 10%[1]. Recently introduced disease phenotyping using iso
citrate dehydrogenase (IDH) and methylation status of O6- 
methylguanine-methyltransferase (MGMT) as prognostic biomarkers 
has improved disease classification and selection of the optimal treat
ment strategy [2,3]. However, these biomarkers alone have limited 
predictive power and better patient stratification is needed. Radiomics 
refers to the extraction of imaging characteristics using automated data- 
mining algorithms. Numerous studies have shown that these charac
teristics known as radiomic features have the potential to decode tumor 

phenotypes and predict treatment outcome [4]. Magnetic resonance 
imaging (MRI)-based radiomics have already demonstrated their 
promising abilities to predict disease progression [5,6], methylation 
status [7], tumor grade [8] and overall survival [9,10] for patients with 
central nervous system malignancies. Magnetic resonance (MR) images 
are routinely acquired for patients with GBM at baseline and for follow- 
up. Combined with radiomic analysis these images may enable further 
tumor profiling. On the other hand, radiomic features used for prog
nostic modelling need to be stable in terms of any variability excluding 
intratumoral heterogeneity. This comprises significant challenges in 
MRI-based radiomics, particularly in multi-centric data collections. 

Most of the existing studies investigated MRI-based radiomic fea
tures reproducibility on datasets collected from a single institution 
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[11–13]; however, robustness of radiomic features in a multi-center 
framework is a prerequisite for successful translation of radiomic bio
markers into the clinical workflow [14]. 

A particular challenge in the multi-centric setting is the lack of 
harmonization between MR imaging protocols, which results in large 
variability in image intensities among inter-patient and intra-patient 
acquisitions. Unlike computed tomography (CT) and positron emission 
tomography (PET) imaging, where intensities are calibrated to Houns
field units (HU) and standard uptake values (SUV), respectively, MR 
intensities have arbitrary values. This fact can significantly affect the 
absolute values of radiomic features, compromising their robustness. In 
order to mitigate the aforementioned issues, intensity normalization of 
the MR images should be performed prior to any quantitative analysis. 

The aim of this study was to evaluate the intra-patient stability of 
radiomic features for patients with GBM derived from MR images 
sequentially acquired in multi-centric study and to investigate the 
impact of different types of intensity normalization methods on radio
mics reproducibility. The hypothesis was that normalization of MR in
tensities leads to reduction of discrepancy in the dataset and thus 
improves prognostic value of MR-based biomarkers. To that end we 
analyzed the prognostic value of features extracted from contrast- 
enhanced T1-weighted images before and after intensity normalization. 

2. Materials and methods 

2.1. Robustness study 

2.1.1. Patient cohort 
To perform robustness analysis we identified patients with GBM 

diagnosed between September 2012 and December 2019. Using local 
picture archiving and communication system (PACS), we selected pa
tients, who underwent preoperative brain MRI scans in two different 
hospitals. The inclusion criteria were the following: a) pathologically 
confirmed GBM, b) availability of two preoperative contrast-enhanced 
T1-weighted (T1c) MRI examinations, c) without significant tumor 
growth between two scans (<30% change in tumor volume) d) without 
surgical treatment/biopsy between two examinations. The study was 
approved by the local ethics committee (BASEC Nr.2020-00859). 

2.1.2. Image acquisition 
For all patients the T1c images were sequentially acquired in our 

healthcare institution (internal) and elsewhere (external). The MRI data 
was acquired using either 1.5 or 3 Tesla scanners, following standard 
local protocols of each healthcare institution, the detailed technical in
formation is shown in Table 1. 

2.1.3. Segmentation 
For each patient, the volume of interest (VOI) represented by the 

enhanced tumour region was manually delineated by a radiologist with 
5 years of experience in medical imaging using MIM VISTA (Version 
6.7.9., MIM software Inc., Cleveland, USA). All segmented images were 
validated by an experienced radiation oncologist with more than 5 years 
of experience in oncologic imaging. 

2.1.4. Image postprocessing 
All images were resampled using trilinear interpolation to 3 mm 

voxel size, which represented the largest voxel size (3 × 3 × 3 mm) 
among both internal and external cohorts. None of the voxels in the 
acquired datasets exceeded 3 mm in any dimension. Image normaliza
tion was performed prior to the radiomics analysis, using five different 
methods described below (Table 2). 

In the first approach, the entire range of intensities was divided into a 
series of 32 bins (fixed bin number, FBN) usually defined in the literature 
as a relative grey-level discretization [15,16]. In the second approach, 
absolute discretization with fixed bin size of 30 and linear intensity 
interpolation using two small ROIs positioned in the white matter of the 
contralateral brain and vitreous body of one eye were applied (FBS1). In 
the third approach, we also used linear intensity interpolation and a 
fixed bin size of 30, but in this case the vitreous body of one eye and the 
contrast-enhanced region of torcular Herophili (confluence of sinuses) 
were selected as reference regions (FBS2). In both FBS1 and FBS2, the 
intensities outside of the selected range were extrapolated. 

Additionally to the methods based on the gray-level discretization, 
we used two less common approaches: histogram matching and z-score, 
which were recently suggested for radiomics analysis based on MRI 
collected from several institutions [17,18]. In histogram matching (HM) 
approach we used one intensity histogram as a reference and linearly 
mapped the intensities of other images to it. In the z-score (ZS) method, 

Table 1 
Technical characteristics and imaging protocol details for internal and external patient cohorts.   

Robustness study Prognostic study 

Characteristics Internal cohort External cohort Overall survival cohort 

MRI scanner Siemens 
Skyra N = 10 (91%) N = 1 (9%)  
Aera  N = 1 (9%)  
Avanto  N = 1 (9%) N = 3 (5%) 
Verio   N = 4 (7%) 
TrioTim   N = 1 (1%) 
Symphony   N = 2 (3%) 
GE Medical Systems 
Signa N = 1 (9%)   
Genesis Sigma  N = 1 (9%) N = 15 (25%) 
Signa Excite   N = 8 (13%) 
Philips 
Ingenia  N = 3 (27%)  
Achieva  N = 4 (36%) N = 5 (8%)  
Intera   N = 2 (3%)  
Unknown   N = 20 (33%) 

Magnetic field strength 1.16 T    
1.5 T  N = 4 (36%) N = 33 (55%) 
3 T N = 11 (100%) N = 7 (64%) N = 22 (37%)  
unknown   N = 5 (8%) 

Slice thickness Median (range) 0.88 (0.7–0.9) mm 1.17 (0.6–3.0) mm 5.0 (1.0 – 12.5) mm 
Repetition time (TR) Median (range), s 1622 (8.9–1900) s 441.9 (5.5–2300) s 586.3 (34.0 – 3285.6) s 
Echo time (TR) Median (range) 2.65 (2.54–3.42) s 3.78 (2.31–9) s 8.00 (2.48 – 17.00) s 
Flip angle Median (range) 9.54 (9–15) ◦ 15.6 (8–90) ◦ 90 9–90) ◦
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the mean intensity of the entire image or a region of interest was sub
tracted from each voxel value followed by division by the corresponding 
standard deviation. In both HM and ZS methods we considered two 
possible regions of interest a) delineated tumor (VOI) and b) whole 
brain. In latter, brain segmentation was performed using automated 
approach described by Isensee et al. [19]. 

In the approaches with fixed bin size (FBS1, FBS2, HM and ZS), the 
size of the bins was adapted so that on median 32 bins were analyzed. 
This has been done to match the noise in the FBN normalization. 

2.1.5. Feature extraction and statistical analysis 
Radiomic features were extracted from each VOI using the in-house 

developed software Z-Rad. This software performs three-dimensional 
image analysis allowing the extraction of four feature types: shape (n 
= 18), intensity (n = 17), texture (n = 137) and wavelet (n = 1232). In 
total, 1404 features were extracted. The mathematical description of the 
features was previously published [20,21]. To compare the radiomic 
features from two different images of a single subject, the one-way 
random intra-class correlation coefficients (ICC) were calculated using 
R-package version 3.3.2. Features with ICC ≥ 0.90 were considered to be 
robust, ICC < 0.90 non-robust. With respect to the literature, this level of 
ICC allows to keep the error below 0.05 even for a small patient cohort 
[22]. The ICC calculations were performed separately for each of the 
investigated normalization techniques. Features with ICC ≥ 0.9 were 
examined for their correlations with the tumor volume using Spear
man’s rho statistic to estimate a rank-based measure of association. 
Additionally the features robustness was tested using Lin’s concordance 
correlation coefficients (CCCs) as previously described [23,24]. Stable 
features were defined as CCC ≥ 0.90. 

2.2. Prognostic study 

2.2.1. Dataset for evaluation 
To investigate improvement in the prognostic performance of fea

tures extracted from MR images after intensity normalization a publicly 
available dataset of patients with GBM was analyzed [25]. This multi
center collection of data provided large heterogeneity in imaging pa
rameters (Table 1). For 110 cases tumor segmentation masks were 
available based on the results of the International multimodal BRAin 
Tumor Segmentation challenge (BRATS 2015) [26,27]. 

For this analysis, we selected region of interest comprising the 
contrast-enhanced part of the tumors similarly to the robustness study. 

For 60 patients both tumor segmentation and follow-up data were 
available. Patients were treated with surgery (resection n = 53, exci
sional biopsy n = 2, data not available n = 5) combined with radio
therapy (yes n = 56, no n = 3, data not available n = 1)) and/or 
chemotherapy (yes n = 50, no n = 5, data not available n = 5). The 
analyzed endpoint was overall survival at 18 months (35 events). The 

median overall survival in the cohort was 13 months and median follow- 
up time was 42 months. 

2.2.2. Value of the robust features 
Based on the robustness analysis the normalization method resulting 

in the largest number of stable features was selected for further prog
nostic performance investigation. For this part of the study, we decided 
to exclude shape features, since different normalization methods have 
very little influence on absolute value of shape features. The prognostic 
value of the stable intensity, texture and wavelet features was tested in 
the univariable logistic regression a) when simple grey-level dis
cretization was used (fixed bin size = 32, no ROI), b) when the 
normalization technique providing the maximum robust features was 
applied. The number of prognostic features (p-value < 0.05) between 
those two scenarios was compared. Additionally, the increase in area 
under receiver operating characteristic (AUC) after application of the 
image normalization was reported. Statistical analysis was performed 
using R (Version 3.3.2). 

3. Results 

3.1. Stable features 

In total, MR images from eleven patients (7-male, 4-female, mean 
age 66.1 ± 14.8 years old) were identified and included in the analysis 
(Table 3). 

The number of stable radiomic features (ICC ≥ 0.9) in each category 
(all, shape, intensity, texture and wavelets) for the investigated 
normalization methods are shown in Table 4. The proportion of stable 
features by category for all investigated normalizations is shown in 
Fig. 1. The overall stability was low (at most 8%) and stability of certain 
features was dependent on normalization method. The ICC values for 
features stable in at least one normalization are shown in Supplementary 
Fig. S1. Some features were stable regardless of the normalization 
method (mostly shape). The HM_VOI showed superior stability for 
texture features, but there was also a subgroup of texture feature solely 
stable for the HM_brain normalization. HM_brain normalization also 
resulted in a higher number of stable features in wavelet features LLH/ 
LHL/HLL similarly to ZS_brain. These results suggested that combining 
different normalization methods could be beneficial to retain larger 
number of stable features. For instance, combination of HM_VOI (the 
one with superior features stability) with other normalizations has 
shown that the maximum number of stable features (169 / 1404) can be 
achieved by combination of HM_VOI and HM_brain normalization. The 
number of stable features that can be achieved from pairwise 

Table 3 
The patient characteristics and the time gap between two MR acquisitions for 
each patient.  

Patient Gender MGMT 
mutation 
status 

IDH mutation 
status 

Age, 
years 

Time between 
scans, days 

1 male positive not 
confirmed 

72 5 

2 female not confirmed not 
confirmed 

60 2 

3 male not confirmed positive 52 8 
4 female negative negative 70 6 
5 male negative negative 76 36 
6 male negative negative 72 9 
7 male not confirmed negative 69 4 
8 male positive positive 30 1 
9 female negative not 

confirmed 
75 17 

10 female negative negative 66 9 
11 male negative negative 86 11 
Mean: 66 9 
Median: 70 8  

Table 2 
Short description of the image normalization approaches considered in this 
study.  

Normalization Bins ROIs for intensity interpolation 

Fixed bin number 
(FBN) 

Number of bins 
equal to 32 

no 

Fixed bin size 
(FBS1) 

Bin size 30 vitreous body of an eye, white matter 

Fixed bin size 
(FBS2) 

Bin size 30 vitreous body of an eye, contrast- 
enhanced confluence of sinuses 

Histogram matching 
(HM) 

Fixed bin size of 
20 

delineated VOI 

Fixed bin size of 
20,000 

brain mask 

Z-score (ZS) Fixed bin size of 
0.15 

delineated VOI 

Fixed bin size of 
0.2 

brain mask  
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combination of investigated normalization methods are shown in Sup
plementary Fig. S2. The complete list of ICCs for all features is provided 
in supplementary table (Supplementary Table S1-S4). Lin’s concordance 
coefficients have shown similar trend in features stability (Supplemen
tary Table S5). 

3.1.1. Gray-level discretization and linear interpolation 
For FBN, FBS1 and FBS2 normalizations, the ICC analysis showed 

that only 5.9% (83/1404), 3.4% (48/1404) and 3.9% (55/1404) of the 
total number of radiomic features were stable, respectively. Among all 
feature types extracted from the MR images performed in two different 
healthcare centers shape features have shown the highest reproduc
ibility (89%), while only 7% of the texture features and 5% of the 
wavelet features satisfied this criterion. The intensity features did not 
show any significant reproducibility while using these normalizations. 

3.1.2. Z-score 
Z-score normalization with brain and VOI selected as a region for 

intensity normalization showed similar results to FBN, with 5.9% and 
5.4% robust features for ZS_VOI and ZS_brain, respectively. However, 
unlike FBN both ZS_VOI and ZS_brain resulted in a higher proportion of 

stable texture features and a lower proportion of wavelet features. 

3.1.3. Histogram matching 
Histogram matching image normalization method showed higher 

stability of the features with total number of 113/1404 (8.0%) and 104/ 
1404 (7.4%) stable features for HM_VOI and HM_brain, respectively. 
This approach also identified few stable features in intensity domain. 

3.2. Correlations between features and tumor volume 

Certain features are known to be volume correlated and thus their 
stability might be independent of the MR intensities. Across all 
normalization types, the mean absolute of Spearman’s |r| between sta
ble features and volume was 0.78 ± 0.06. The number of features which 
correlated highly (|r| > 0.8), strongly (0.6 ≤ |r| ≤ 0.8) and weakly (|r| <
0.6) with the tumor volume for each normalization type is shown in 
Table 5. 

3.3. Prognostic value of the robust features 

The radiomic features for 60 patients from publicly available dataset 
were extracted using basic discretization and histogram matching based 
on the tumor region. The stable intensity, texture and wavelet features 
were analyzed for their value to predict overall survival at 18 months in 
univariable logistic regression. Without normalization only 3 features 
were found to be prognostic, whereas in case of histogram matching 
(HM_VOI) 7 out of 97 analyzed features were prognostic (p-value <
0.05). Features, which were identified as prognostic after histogram 

Table 4 
Number of robust features using different normalization approaches.  

Normalization Stable features, ICC > 0.9 

Shape Intensity Texture Wavelets All 

FBN 16/ 
18 

0/17 4/137 63/1232 83/1404 
(5.9%) 

FBS1 16/ 
18 

0/17 9/137 23/1232 48/1404 
(3.4%) 

FBS2 16/ 
18 

0/17 7/137 32/1232 55/1404 
(3.9%) 

HM_VOI 16/ 
18 

3/17 22/137 72/1232 113/1404 
(8.0%) 

HM_brain 16/ 
18 

2/17 13/137 74/1232 104/1404 
(7.4%) 

ZS_VOI 16/ 
18 

1/17 13/137 53/1232 83/1404 
(5.9%) 

ZS_brain 16/ 
18 

0/17 12/137 49/1232 77/1404 
(5.4%) 

Regardless of the 
normalization 

16/ 
18 

0/17 2/137 8/1232 26/1404 
(1.9%)  

Fig. 1. The percentages of stable features by categories for FBN, FBS1, FBS2, HM_VOI, HM_brain, ZS_VOI and ZS_brain normalizations.  

Table 5 
Correlations between features and tumor volume.  

Normalization Highly correlated 
features, |r| >0.8 

Strongly correlated 
features, |r| >0.6 

Weakly correlated 
features, |r| <0.6 

FBN 8/83 67/83 9/83 
FBS1 37/48 8/48 3/48 
FBS2 40/55 7/55 8/55 
HM_VOI 57/113 19/113 37/113 
HM_brain 54/104 11/104 39/104 
ZS_VOI 59/83 11/83 13/83 
ZS_brain 53/77 12/77 12/77  
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normalization had in general higher AUC (AUC range 0.65 – 0.70) in 
comparison to features significant in the non-processed images (AUC 
range 0.57 – 0.73). For the 3 features already significant prior tonorm
alization, histogram matching resulted in additional increase in AUC 
(median = 0.065). The increase in AUC was not significant for this 
relatively small patient cohort. 

4. Discussion 

This study aimed to identify stable MRI-based radiomic features in 
multi-center study.. The results showed that only 8% (113 out of 1404 
investigated features) remain stable. The analysis also demonstrated 
that image normalization has significant impact on radiomics robust
ness. Depending on the normalization the number of robust features was 
between 48 and 113 (out of 1404). A similar study performed recently 
on diffusion-weighted magnetic resonance imaging (DWI) for patients 
with lung, liver and ovarian cancer has shown about that 122 features 
out of 1322 remain robust [18]. Interestingly, Shiri at al showed that if 
the acquisition parameters remain the same in test–retest MR data 
separated with two days interval as much as 53.8% of features can 
remain stable (out of 107 investigated features) [12]. 

Among four investigated feature types the shape features have 
demonstrated the highest stability with only 2 non-robust features 
(fractal dimension and center of mass shift). For both of these features it 
can be explained by small variation in contours performed manually and 
the distribution of contrast which might be different in two consequent 
examinations. The study from Peerlings et al. [18] has demonstrated 
similar rate of shape features in DWI scans. The test–retest study by Shiri 
et al. has demonstrated the superior robustness of the shape features, 
however that study did not include the above-mentioned features in the 
analysis. 

Texture features, which describe intra-tumour heterogeneity [28], 
have shown lower percentage of stable features. This can be explained 
by the fact that texture features are sensitive to acquisition parameters 
which influence spatial resolution, unless the spatial resolution is suf
ficiently high [29]. In our study, the median slice thickness was 0.88 mm 
and 1.17 mm for internal and external cohorts, respectively (Table 1). 
However, since one patient in the external cohort had thicker slices of 3 
mm, we resampled all datasets to the common resolution of 3 mm. In 
prospective studies this problem can be solved by harmonization of the 
imaging protocols [5,6], however harmonizing between machines of 
different generations often comes with degrading the image quality 
achieved by the most recent one[30]. In retrospective studies, one can 
reduce the variability in voxel size by applying low-pass filtering in the 
frequency domain [31], however this also reduces the quality of images 
acquired by the most recent device [32]. Alternatively, one can select 
the images to match spatial resolution, however, this will strongly 
decrease the amount of investigated subjects. 

Our findings indicated that histogram matching and z-score nor
malizations improved the stability of the texture features compared to 
gray-level discretization. Similar improvement in texture features 
reproducibility has been previously shown by several groups investi
gating other cancers [33] or collected in a single institution [33,34]. 

Intensity features showed the lowest stability for all investigated 
normalizations. Despite our effort the highest number of stable intensity 
features was equal to 3, for HM_VOI normalization. Other researchers 
have also reported, that MR-based intensity features generally show 
lower stability [18]. 

Potentially the amount of stable radiomic features can be increased 
by combining histogram matching based on VOI and brain (see Sup
plementary Fig. S12). 

Despite the low number of stable features, our results showed that 
relevant numbers of informative features were preserved. In the overall 
survival prediction task, we were also able to show that our selected 
normalization technique (histogram matching based on the tumor re
gion) reduced noise in dataset and improved the prognostic value. 

While several researchers have already investigated the prognostic 
power of radiomics in multi-center studies, the robustness of the MRI- 
based features were mainly investigated in test–retest studies, when 
MR images were acquired under similar conditions. In order to gener
alize prognostic models, the features used for modelling need to be 
stable irrespective of image acquisition and reconstruction parameters. 
To the best of our knowledge, our study is the first one aiming to 
investigate intra-patient robustness of the radiomic features for GBM 
patients, using MRI collected in different institutions. 

Our study has several limitations. First of all, only few patients were 
included into this study due to strict inclusion criteria. Similar 
test–retest studies rarely exceed our population number. Second, we 
have only investigated contrast-enhanced T1-weighted sequence, since 
it was available for all patients in our cohort and this sequence is often 
reported as the most informative one for GBM patients [35,36]. Addi
tionally, in this study the tumor segmentation was controlled by two 
independent observers, however such study could potentially benefit 
from automatic segmentation. Last, but not least, we only considered the 
images collected retrospectively in real clinical routine, however it 
would be interesting to compare results of our work with similar in
vestigations performed on MR images acquired in standard test–retest 
environment. 

To conclude, our study assessed the intra-patient stability of radio
mic features based on sequential MR images of patients with GBM 
collected from different healthcare centers. This methodology allowed 
the selection of stable radiomic features which can be further investi
gated as reliable biomarker for prognostic modelling, phenotyping and 
treatment strategy selection in realistic clinical conditions. Histogram 
matching based on tumor region was identified as the most reliable 
normalization method, which improved both stability of radiomic fea
tures and their prognostic value. 
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