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Abstract: Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis and represents
a major public health issue, as both its incidence and mortality are expecting to increase steeply
over the next years. Effective screening strategies are lacking, and most patients are diagnosed
with unresectable disease precluding the only chance of cure. Therapeutic options for advanced
disease are limited, and the treatment paradigm is still based on chemotherapy, with a few rare
exceptions to targeted therapies. Germline variants in cancer susceptibility genes—particularly those
involved in mechanisms of DNA repair—are emerging as promising targets for PDAC treatment
and prevention. Hereditary PDAC is part of the spectrum of several syndromic disorders, and
germline testing of PDAC patients has relevant implications for broad cancer prevention. Germline
aberrations in BRCA1 and BRCA2 genes are predictive biomarkers of response to poly(adenosine
diphosphate–ribose) polymerase (PARP) inhibitor olaparib and platinum-based chemotherapy in
PDAC, while mutations in mismatch repair genes identify patients suitable for immune checkpoint
inhibitors. This review provides a timely and comprehensive overview of germline aberrations in
PDAC and their implications for clinical care. It also discusses the need for optimal approaches
to better select patients for PARP inhibitor therapy, novel therapeutic opportunities under clinical
investigation, and preclinical models for cancer susceptibility and drug discovery.

Keywords: germline; pancreatic cancer; BRCA; PARP inhibitors; precision prevention; familial
pancreatic cancer

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a malignant disease with an extremely
poor prognosis [1,2]. Both incidence and mortality continue to rise, and PDAC is pre-
dicted to soon become the second leading cause of cancer-related death [3,4]. Major
efforts in improving surgical outcomes and progress in therapeutic development have only
marginally increased the 5-year overall survival (OS) rate of patients with PDAC over the
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past 5 decades, and is still less than 10% [3]. Much still needs to be improved to impact the
burden of this disease. Currently, most patients (up to 80%) are diagnosed with unresectable
disease due to non-specific symptoms and a lack of effective screening strategies. Earlier
diagnosis may potentially improve outcomes since surgical resection is the only chance of
cure [5]. As a consequence, the identification of biomarkers for early detection is an urgent
priority. Patients with advanced tumors are treated with chemotherapy with an unselected
approach, either in the neoadjuvant or metastatic setting. The most effective combinatorial
regimens, based on phase III clinical trials, i.e., FOLFIRINOX (5-fluorouracil, leucovorin,
irinotecan, and oxaliplatin) and nab-paclitaxel plus gemcitabine, only marginally improve
the OS of patients, which rarely exceeds one year [6–13]. After progression, less than 50%
of patients are eligible for further treatments due to the rapid clinical deterioration typical
of this disease. Second-line treatments have a very limited impact on clinical and survival
outcomes, and clinical trials remain the optimal therapeutic choice in this setting [14].

Multi-omics studies have elucidated the molecular complexity of PDAC, which chal-
lenges the development of effective treatments for patients with this tumor [15–18]. In this
context, germline variants in cancer susceptibility genes are emerging as clinically relevant
targets for more selective PDAC treatment and prevention. This review summarizes the
progress in the field of germline aberrations in PDAC and discusses current challenges,
limitations, and implications for clinical care.

2. Germline Variants and PDAC Susceptibility

In contrast to somatic mutations, which are acquired during life and arise specifically
in tumors, germline variants can be passed from parents to offspring and are associated with
hereditary cancer syndromes. Germline pathogenic/likely-pathogenic variants in cancer
predisposing genes are prevalent molecular alterations in PDAC (Figure 1) [19,20]. Several
studies have shown that 3.8% to 9.7% of patients with PDAC carry a pathogenic germline
mutation in genes that predispose them to hereditary cancer syndromes, including familial
atypical multiple mole melanoma (CDKN2A), Peutz-Jeghers (STK11), hereditary breast
and ovarian cancer (BRCA1, BRCA2, PALB2, ATM), Lynch (MLH1, MSH2, MSH6), and
Li-Fraumeni (TP53) syndromes [21–28]. In some large single-center datasets, the prevalence
of these alterations is as high as 19.8% [29]. Germline deleterious variants in the hereditary
pancreatitis genes PRSS1 and SPINK1 also confer an increased risk of PDAC [30].

Figure 1. Prevalence of germline variants in PDAC. Prevalence of germline mutations in PDAC
patients from published studies. MMR: mismatch repair. HR: homologous recombination.
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Compared with a risk of about 1.5% in the general population, carriers of pathogenic
variants in CDKN2A and STK11 have a higher lifetime risk of developing PDAC, which is
estimated to be more than 15%. Carriers of pathogenic variants in the breast cancer genes
BRCA2, ATM, and PALB2 have a moderate lifetime risk, ranging from 5% to 10%, whereas
pathogenic variants in BRCA1 are estimated to confer a lower risk (less than 5%) [31]. More
recently, data from a large international consortium of families with hereditary cancer
syndromes associated with BRCA germline mutations demonstrated that the relative risk
(RR) of PDAC was 2.36 (95% CI, 1.51–3.68) for BRCA1 and 3.34 (95% CI, 2.21–5.06) for
BRCA2. The absolute risk of PDAC to age 80 was approximately 2.5% (for both BRCA1 and
BRCA2 carriers) [32]. Pathogenic variants in Lynch syndrome genes and TP53 are estimated
to confer a moderate pancreatic cancer lifetime risk of about 5–10% [33].

A family history of PDAC also confers an increased risk. Patients with one or more
first-degree relatives affected by PDAC are considered familial pancreatic cancer (FPC)
cases [34]. In general, in the presence of a first-degree relative family history, the risk
of developing PDAC increases with the number of affected relatives (by up to 4, 6, and
32 times for 1, 2, and 3 or more affected relatives, respectively) [35]. Overall, 80–90% of FPC
cases are not attributable to a known genetic cause, suggesting the presence of additional
genetic factors involved in PDAC susceptibility that have not yet been identified.

The recent broad use of cancer predisposing gene panel testing in clinical practice
has allowed for the identification of pathogenic variants in a larger number of candidate
cancer susceptibility genes, and also in patients without a family history, the so-called
sporadic cases, with mutation rates varying among studies [19,36–38]. These findings have
supported the current National Comprehensive Cancer Network (NCCN) recommendation
of performing extended genetic testing on all patients with a diagnosis of PDAC, regardless
of family history or age of onset. Genetic testing should be performed with a comprehensive
multi-gene panel, including, at a minimum, the genes ATM, BRCA1, BRCA2, CDKN2A,
MLH1, MSH2, MSH6, EPCAM, PALB2, STK11, and TP53 [33].

The opportunity for extended and universal genetic testing as a standard of care or
in the research setting is expanding the probability of identifying clinically actionable
germline variants in many genes, but their association with increased risk of PDAC is
still uncertain. Indeed, a limited number of proposed candidate susceptibility genes have
been consistently associated with an increased risk of PDAC, both in familial and sporadic
cases [39,40]. For instance, there is no robust evidence suggesting a significant increased risk
of PDAC in mutation carriers of CHEK2 pathogenic variants [40], although these variants
are frequently observed in PDAC patients [19]. Overall, the rarity of pathogenic variants
makes it very challenging to define reliable population-based risk estimates, and much
larger studies are warranted. Targeted sequencing using comprehensive cancer gene panels
may represent the best way to accumulate data to improve the genetic risk assessment for
known-candidate genes. On the other hand, a broader genomic approach using whole
exome sequencing or whole genome sequencing in selected high-risk families may help
define “missing heritability” in PDAC.

As for most complex diseases, the role of low-penetrance common single nucleotide
polymorphisms (SNPs) has been investigated in PDAC using genome-wide association
studies (GWAS). According to the GWAS catalogue (accessed May 2021), a total of
200 associations with pancreatic risk were reported; however, few loci reached GWAS
statistical significance at a p-value threshold of 5 × 10−8 and was consistently replicated
among many studies (reviewed elsewhere [41]). To date, GWAS-identified loci have been
estimated to explain about 4% of the phenotypic variation of PDAC; however, more associ-
ated SNPs (up to 1750) are expected to be discovered using larger study populations [29,42].
Since each common variant has a small impact on cancer risk, a polygenic architecture,
in which many variants that confer low risk individually act in combination to confer
much larger risk in the population, has been suggested as a model of cancer susceptibility.
Polygenic risk scores (PRS), developed including GWAS identified loci, and multifactorial
risk scores (MRS), developed combining genetic and non-genetic risk factors, were recently
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shown to improve risk prediction in patients with PDAC [43–45]. However, the clinical
implementation of these models has yet to be established and deserves further assessment.

3. Implications of Germline Variants Identified in PDAC Patients

The identification of germline deleterious variants in cancer susceptibility genes in
patients with PDAC or healthy subjects with a significant family history of PDAC (at-risk
subjects) has relevant implications for cancer prevention and treatment (Figure 2).

Figure 2. Overview of the clinical implications of germline variants in PDAC patients and at-risk
subjects. Pathogenic germline variants are of key interest in PDAC owing to their therapeutic ac-
tionability and implications for cancer prevention (downstream identification of at-risk relatives
and possible hereditary cancer syndromes previously unknown in the family). Red arrow: pathway
of healthy individuals at risk of PDAC based on family history. Blue arrow: pathway of patients
with PDAC who should be tested for germline variants at diagnosis, regardless of family history.
Complementary somatic analysis of tumor tissue may help the therapeutic decision (not standard
recommendation, only in the research context). MMR-D: mismatch repair-deficiency; MSI-H: mi-
crosatellite instability–high; PARPi: poly-ADP (adenosine diphosphate)-ribose polymerase inhibitors;
ICI: immune checkpoint inhibitors.

3.1. Preventative Implications

Given that hereditary PDAC is part of the spectrum of several syndromic disorders,
germline testing of patients with PDAC has relevant implications for broad cancer preven-
tion. The identification of deleterious variants in well-known cancer susceptibility genes
through universal and extended genetic testing, as suggested by recent NCCN guidelines,
can potentially become a significant opportunity to reach asymptomatic individuals who
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are at high risk of certain types of cancers due to genetic predisposition to submit to primary
and secondary preventative strategies [46,47]. This can be achieved by applying the strategy
of cascade testing, which implies that the direct relatives of mutation carriers are tested in a
stepwise manner until all at-risk family members are screened for the specific mutation [48].
As PDAC may share genetic susceptibility with other cancer types (e.g., melanoma, breast,
ovarian, colorectal, and prostate cancer), germline testing of healthy relatives through the
cascade approach has the potential to indirectly lower overall cancer-related mortality.
In this way, PDAC can become a sentinel for the identification of hereditary cancer syn-
dromes previously unknown in the family (Figure 2). Healthy subjects carrying germline
variants in BRCA1, BRCA2, PALB2, CDKN2A, ATM, and MMR genes can be referred to as
dedicated intensive surveillance programs, which may include risk-reducing measures for
several cancer types (breast, ovarian, prostate cancers, colorectal cancer, and melanoma)
as standard of care or in research settings to reduce morbidity and mortality due to those
syndromes [49].

The management of subjects at risk for PDAC due to familial predispositions is less
clear and still debated. First-degree relatives of PDAC patients sharing the same germline
deleterious variant are eligible for early detection programs for PDAC. While screening for
PDAC is not indicated for the general population due to the relatively low prevalence of
this disease, the International Cancer of the Pancreas Screening (CAPS) Consortium [50,51]
recommends it to individuals who have a lifetime risk of PDAC > 5% (or a 5-fold increased
RR), including those with familial risk only and those diagnosed with predisposing genetic
disorders or carrying specific mutations (with or without family history), who may benefit
from surgical resection. Familial risk is defined as the presence of (i) at least three affected
relatives on the same side of the family, of whom at least one is a first-degree relative;
(ii) two affected relatives who are first-degree relatives to each other, of whom at least one is
a first-degree relative of the individual to survey; and (iii) at least two affected relatives on
the same side of the family, of whom at least one is a first-degree relative [51]. Guidelines of
other authoritative international societies, such as those of the American Society of Clinical
Oncology [52], NCCN [49], European Society of Medical Oncology [53] and an international
panel of experts [54], have also emphasized the importance of PDAC surveillance for high-
risk individuals, including those carrying germline pathogenic variants.

Surveillance of these cohorts leads to higher detection rates of PDAC or other pancre-
atic abnormalities [55]. Although few studies have shown that the surveillance of high-risk
subjects could positively impact survival [47,56], it remains uncertain whether PDAC
surveillance ultimately reduces PDAC-related mortality. From a clinical standpoint, surveil-
lance should be based on magnetic resonance imaging with cholangiopancreatography, or
endoscopic ultrasound, as both have been demonstrated to detect pancreatic disorders at an
earlier stage. Regarding the latter, recent reports have shown, unfortunately, that incidental
PDAC exists and that 12-month surveillance may sometimes be ineffective [57,58]. In
addition, a non-negligible amount of PDAC detected within surveillance is diagnosed
at an advanced stage, raising the question of whether this surveillance strategy may be
tailored according to an individualized risk-profile [59]. If the screening is negative for
pancreatic abnormalities, then it should be repeated annually to possibly improve the early
identification of PDAC or pre-malignant lesions. It is not clear at what age pancreatic
surveillance should be started. Considering the lifetime risk and anticipation phenomenon
that may occur when a germline mutation may be present, 50 years of age (or 10 years
earlier than the youngest case of PDAC in the family) is a reasonable cutoff [51,53]. When
abnormalities are present, guidelines should be followed for therapeutic management.

In conclusion, the identification of genetic germline variants in PDAC has relevant
implications for cancer risk assessment and broad cancer prevention in family members.
PDAC surveillance is challenging, and it should not disregard the genetic background of
all individuals at risk of PDAC. Ongoing multicenter studies, such as that of the Pancreatic
Cancer Early Detection Consortium (PRECEDE), enrolling thousands of individuals at
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risk of PDAC [60] aims to assess who should be under surveillance and if surveillance
ultimately reduces mortality.

3.2. Therapeutic Implications

Emerging data suggest relevant therapeutic implications for PDAC patients with
germline pathogenic variants in genes that regulate double-strand break (DSB) repair,
such as homologous recombination deficiency (HRD) and MMR (Figure 2). In particular,
those in BRCA1, BRCA2, and increasingly PALB2 are the most well characterized and
include responses to platinum-based chemotherapy agents and poly-ADP (adenosine
diphosphate)-ribose polymerase inhibitor (PARPi) [61,62]. Germline alterations in MMR
genes associated with the MSI-high phenotype are predictive of the response to immune
checkpoint inhibitors (ICIs) [63,64]. Homologous recombination (HR) is the error-free
mechanism of DNA repair that repairs DSB, and its functional defects can be exploited
to increase the activity of platinum agents or compounds targeting PARP [65,66]. PARP
enzymes are involved in the regulation of multiple cellular processes, including the repair
of single-strand DNA breaks through base excision repair [67]. PARPi induces cytotoxic
effects by inhibiting PARP enzymes, exploiting a synthetic lethal interaction with defects in
HR, most of which are due to BRCA1 or BRCA2 inactivation [68]. The BRCA1 and BRCA2
genes encode critical proteins involved in repairing DSB via HR. The ability to repair
double-strand DNA breaks is impaired in cancer cells with deleterious BRCA mutations,
resulting in an increased reliance on other DNA damage response (DDR) pathways for
survival [69]. As a consequence, they become particularly sensitive to the inhibition of the
HR and DDR pathways [69,70]. In patients with germline BRCA mutations, platinum-based
chemotherapy and PARP inhibition increase the chance of cancer cell death [71].

A retrospective study of 71 unresectable PDAC patients with BRCA1/2 mutations,
showed that those treated with platinum agents achieved significantly longer OS than
those treated with non-platinum agents (22 vs. 9 months; p = 0.039) [72]. Although there
is no clear evidence for the superiority of first-line platinum agents over non-platinum
agents in PDAC patients with germline BRCA1/2 or PALB2 variants, NCCN guidelines
recommend FOLFIRINOX or modified FOLFIRINOX or gemcitabine plus cisplatin as
first-line chemotherapy for this subgroup of patients [14]. In the phase III POLO study
conducted in patients with deleterious or suspected deleterious germline BRCA mutation
with metastatic PDAC whose disease had not progressed after at least 16 weeks of first-
line platinum-based chemotherapy, subsequent maintenance therapy with PARPi olaparib
significantly improved progression-free survival (PFS) versus placebo (7.4 vs. 3.8 months,
p = 0.004) with an objective response rate (ORR) of 23% vs. 12%, respectively [12]. These
results led to the approval of olaparib in multiple countries as a maintenance therapy
after platinum-based first-line treatment in patients with advanced PDAC associated
with germline BRCA mutation. Retrospective studies suggest that preoperative platinum-
based chemotherapy is most effective in patients with germline BRCA mutation [73,74]
highlighting the importance of having BRCA status available at the time of diagnosis, even
in patients with early stage disease [75]. In addition, a phase II trial is ongoing to investigate
the addition of olaparib following completion of surgery and chemotherapy in patients
with resected PDAC and pathogenic mutations in BRCA1, BRCA2, or PALB2 (The APOLLO
Trial, ClinicalTrials.gov Identifier: NCT04858334).

Another PARPi, rucaparib, was tested in a phase II study in patients with a pathogenic
germline or somatic variant in BRCA1, BRCA2, or PALB2. The results were promising, with
a 37% response rate in patients with somatic or germline variants in these genes [76]. PARPi
has also been investigated as a monotherapy or in combination with chemotherapy. In
phase II trials of patients with advanced PDAC and germline BRCA1 or BRCA2 mutations,
olaparib and rucaparib were associated with 21.1% and 21.7% ORR [77,78].

Veliparib was tested in association with gemcitabine and cisplatin in a phase I trial
of advanced untreated PDAC patients with BRCA1, BRCA2, and PALB2 mutations, with
no significant differences in terms of OS, PFS, or ORR in patients in the investigational

ClinicalTrials.gov


Cancers 2022, 14, 3239 7 of 17

arm (treated with veliparib) [79]. A randomized phase II trial of this regimen is currently
ongoing (ClinicalTrials.gov Identifier: NCT01585805).

Germline mutations in MMR genes account for around 1% of PDAC cases [80]. MMR
increases the fidelity of DNA replication by dealing with the misincorporation of nu-
cleotides [81,82] and relies on highly conserved proteins encoded by the mutS and mutL
homologue genes, such as MSH2 and MLH1 [82]. When MMR is defective (dMMR) due
to genetic or epigenetic inactivation of MMR genes, the inability to correct DNA repli-
cation errors leads to hypermutated genomes with a peculiar mutation pattern affecting
dinucleotide repeats, i.e., MSI. dMMR and MSI are observed in sporadic tumors due to
double somatic inactivation and also in the context of Lynch syndrome, which is caused
by germline mutation of one of the MMR genes (MLH1, MSH2, MSH6, or PMS2) or epi-
genetic silencing of MSH2 consequent to germline mutation in EPCAM [82]. Although
dMMR/MSI is rare in PDAC, it identifies a distinct subgroup of patients with unique
clinical, pathological, and genomic features. dMMR PDAC are enriched for several mark-
ers of immune activation (including high tumor mutational burden and neoantigen load,
chemokine signatures, and cytolytic activity), are less likely to have mutations in usual
PDAC driver genes like KRAS and SMAD4, but more likely to have mutations in genes
that drive cancers with microsatellite instability like ACV2RA and JAK1 [83].

Anti-PD-1 therapy pembrolizumab showed antitumor activity in dMMR/MSI malig-
nancies regardless of histotype and is now approved for the treatment of patients with
unresectable or metastatic dMMR/MSI-high solid tumors, including PDAC, after prior con-
ventional chemotherapies [64]. In a small phase II clinical trial, pembrolizumab achieved
an 18% ORR in advanced MSI-high PDAC [63].

There is also basic and translational evidence indicating the synergistic effects of PARPi
and ICIs. PARPi-mediated unrepaired DNA breaks modulate the tumor microenvironment
by several molecular and cellular mechanisms that might induce a response to ICIs. These
include increased genomic instability, activation of immune pathways, and induced PD-
L1 expression on cancer cells [84]. Following promising results from breast and ovarian
cancer, PARPi are being investigated in combination with ICIs in PDAC patients with
HRD, including those with germline mutations (ClinicalTrials.gov Identifier: NCT04666740,
NCT04409002).

In conclusion, pathogenic variants in several cancer susceptibility genes are therapeuti-
cally actionable with platinum, PARPi, and ICI therapy. Other potential therapeutic targets
need to be identified and tested in the clinic to improve the outcomes of patients carrying
germline pathogenic variants. There is substantial activity in exploring novel DDR agents
and combinations of agents to target these mechanisms in many cancer types. Most notably,
the potential ability to generate “synthetic” synthetic lethality, where a drug induces a
defect in DDR, can be exploited through the same mechanisms as inherited defects in DDR.
Whether non-BRCA mutations in HR genes confer PARPi sensitivity needs to be addressed
in the future, although the rarity of the non-BRCA pathogenic variants makes it difficult to
evaluate the clinical benefit for those patients.

A selection of interventional clinical trials currently recruiting PDAC patients with
germline mutations is reported in Table 1.

Table 1. Selection of interventional clinical trials for PDAC patients with germline mutations is
currently ongoing.

NCT Number Title Condition(s) Interventions Phase Start Date

NCT04493060

Niraparib and Dostarlimab
for the Treatment of Germline
or Somatic BRCA1/2 and
PALB2 Mutated Metastatic
Pancreatic Cancer

Metastatic
Pancreatic cancer

Drug: Niraparib
|Biological: Dostarlimab 2 December 2020

ClinicalTrials.gov
ClinicalTrials.gov
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Table 1. Cont.

NCT Number Title Condition(s) Interventions Phase Start Date

NCT04548752

Testing the Addition of
Pembrolizumab, an
Immunotherapy Cancer Drug
to Olaparib Alone as Therapy
for Patients With Pancreatic
Cancer That Has Spread With
Inherited BRCA Mutations

Metastatic
Pancreatic cancer

Drug:
Olaparib|Biological:
Pembrolizumab

2 December 2020

NCT03553004

Niraparib in Metastatic
Pancreatic Cancer After
Previous Chemotherapy
(NIRA-PANC): a Phase 2 Trial

Metastatic
Pancreatic
Cancer

Drug: Niraparib 2 January 2019

NCT04858334

A Randomized Study of
Olaparib or Placebo in
Patients With Surgically
Removed Pancreatic Cancer
Who Have a BRCA1, BRCA2
or PALB2 Mutation, The
APOLLO Trial

Resected
Pancreatic
Cancer
(Adjuvant
setting)

Drug: Olaparib|Drug:
Placebo Administration 2 April 2021

NCT04890613

Study of CX-5461 in Patients
With Solid Tumours and
BRCA1/2, PALB2 or
Homologous Recombination
Deficiency (HRD) Mutation

Advanced Solid
Tumor Drug: CX-5461 1 September 2021

NCT04171700

A Study to Evaluate
Rucaparib in Patients With
Solid Tumors and With
Deleterious Mutations in HRR
Genes(LODESTAR trial)

Advanced Solid
Tumor Drug: Rucaparib 2 November 2019

NCT04673448

Niraparib and TSR-042 for the
Treatment of BRCA-Mutated
Unresectable or Metastatic
Breast, Pancreas, Ovary,
Fallopian Tube, or Primary
Peritoneal Cancer

Advanced
Unresectable or
Metastatic Breast,
Pancreas, Ovary,
Fallopian Tube,
or Primary
Peritoneal
Cancer

Biological:
Dostarlimab|Drug:
Niraparib

1 November 2021

NCT04300114

A Study of Maintenance
Treatment With Fluzoparib in
gBRCA/PALB2 Mutated
Pancreatic Cancer Whose
Disease Has Not Progressed
on First Line Platinum-Based
Chemotherapy

Metastatic
Pancreatic
Cancer

Drug: Fluzoparib|Drug:
Placebo 3 August 2020

NCT04150042

A Study of Melphalan, BCNU,
Vitamin B12b, Vitamin C, and
Stem Cell Infusion in People
With Advanced Pancreatic
Cancer and BRCA Mutations

Metastatic
Pancreatic
Cancer

Drug: Melphalan|Drug:
BCNU|Drug: Vitamin
B12B|Drug: Vitamin
C|Drug: Ethanol|Device:
Autologous
Hematopoietic Stem Cells

1 January 2021
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4. Challenges in Targeting BRCA Mutations in PDAC

Despite encouraging results, treatment with PARPi in PDAC patients with germline
BRCA mutations is challenging due to the primary and secondary therapeutic resistance
that inevitably occurs. Inhibition of PARP activity generates DNA lesions, such as col-
lapsed replication forks, which are repaired by HR. Therefore, it is thought that BRCA1/2
deficient or HR-deficient cancer cells are selectively sensitive to PARPi because the col-
lapsed replication forks are not properly repaired in HR-deficient cancer cells. However,
the underlying molecular mechanism of how PARPi induces anti-cancer effects has not
been fully understood. In addition, the consequence of BRCA1/2 deficiency appears to
have a lineage-dependent effect, and it is likely to be seen in the context of other cancer
susceptibility gene mutations [85]. A recent study of the lineage dependency of BRCA-
mediated phenotypes highlights the possibility that a distinct epigenetic landscape from a
different lineage of cancer cells may influence therapeutic responses to PARPi. Likewise,
many epigenetic drugs, such as bromodomain inhibitors, HDAC inhibitors, and DNMT
inhibitors, sensitize cancer cells to PARPi, likely converting HR-proficient cancer cells
to HR-deficient cells, termed ‘induced BRCAness’ [86–90]. Similarly, genetic alterations
in epigenetic regulators, such as ARID1A deficiency and ETS fusion, result in increased
sensitivity to PARPi in breast and prostate cancer [91,92]. It is also important to note that
several epigenetic regulators are frequently mutated in PDAC, and it is therefore highly
possible that epigenetic regulators, transcription regulation, and DDR pathways converge
in the early stage of PDAC progression and may play a role in PARPi resistance.

Although several mechanisms of resistance to PARPi have been described in breast and
ovarian cancer patients, data on PDAC are still limited. The landscape of somatic mutations
in BRCA1/2-associated PDAC is essentially indistinguishable from that of sporadic cancers.
As it stands, the two types of disease might share the same evolutionary path, including an
estimated timeline of two decades from inception to metastatic disease [93–95]. Although
speculative, a possible implication would be that HR defects are indispensable founding
events for tumor maintenance in a subset of germline BRCA1/2 mutation carriers. If these
represent possible explanations of primary resistance, the clinical response profile of PDAC
patients to PARPi olaparib also suggests the rapid emergence of secondary resistance [12].
Given that patients received platinum prior to PARPi, it would be difficult to gauge the
specific contribution of PARPi to secondary resistance in this context. Unfortunately, the
confounding factor of prior therapy with platinum is constant in many clinical trials with
PARPi in PDAC, as well as in other BRCA1/2-associated cancer types.

HR deficiency is considered a prerequisite for response to PARP inhibition. Tumors
that have acquired resistance to PARP inhibition can be either HR deficient or HR proficient
(Figure 3). In HR-proficient tumors, the genetic mutation in the HR gene that results in
the HR-deficient phenotype is repaired by a reversion mutation. Secondary mutations
either remove the original pathogenic mutation or result in restoration of the open reading
frame [96–98]. Most of these mutations conferring therapeutic resistance are deletions
surrounded by sequence microhomologies, which can be explained by end-joining repair
mechanisms [99,100]. Mechanisms of resistance to PARP inhibition where the tumor is
still HR deficient are less well understood. Preclinical studies, including forward genetic
screens and patient xenograft models, have identified several potential pathways, including
loss of activity of the Shieldin complex, TP53BP1 or SLFN11, mutations in PARP1, resulting
in loss of PARPi binding, or enhanced drug efflux, resulting in loss of efficacy [101–103]. At
present, however, robust data corroborating these mechanisms in patients have not been
reported. It has been demonstrated that most tumors that develop resistance to PARPi have
a hyper-activated ATR/CHK1 pathway. PARP inhibition in BRCA-mutated cancer cells
increases reliance on the ATR/CHK1 pathway for genome stability [104]. This provides
the rationale for simultaneous inhibition of PARP and ATR/CHK1 pathway. A phase
II trial (ClinicalTrials.gov identifier: NCT03462342) is currently investigating olaparib in
association with a novel ART inhibitor, AZD6738.

ClinicalTrials.gov
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In conclusion, treatment with PARPi in PDAC patients with BRCA mutations presents
many challenges. Optimal approaches to selecting patients with PDAC for PARPi therapy
have yet to be described. Sensitivity to platinum chemotherapy is expected to enrich
PARPi sensitivity, although platinum chemotherapy elicits cell death through both HR-
dependent and non-HR-dependent mechanisms, thus reducing predictive power. The
presence of an inherited mutation in BRCA1/2 or another HR pathway gene may also
correlate sub-optimally to PARPi response due to incomplete penetrance. Alternative
approaches are based on the detection of the phenotypic consequences of HR deficiency,
either at the genomic or functional levels. The genomic scar of HR deficiency is highly
characteristic and is likely to represent a strong biomarker of PARPi sensitivity in treatment
naïve patients [105]. At present, however, this information can only be acquired through
sequencing of the entire, or a large proportion of the cancer genome, which is currently not
feasible in routine clinical care for most patients. Surrogate biomarkers for HR deficiency
have been reported, such as enumeration of genomic deletions using loss of heterozygosity;
however, the sensitivity, specificity, and inter-assay reproducibility of this approach has
yet to be determined and is currently the focus of an international harmonization project
(https://friendsofcancerresearch.org/hrd, accessed on 8 June 2022). Importantly, genomic
scar assays will not distinguish between the two main pathways to PARPi resistance (shown
in Figure 3), as tumors that have undergone secondary mutations to reactivate the HR
pathway will still carry the genomic scars of HR deficiency. An alternative approach is to
deploy a functional assay of HR competence, such as the detection of RAD51 foci in tumor
samples [106]. This approach has the potential to select patients for upfront PARPi therapy
and to distinguish the key pathways to PARPi resistance, which may be of relevance in
informing future lines of therapy.

Figure 3. Mechanisms of resistance to PARPi according to HR status. Homologous recombination
(HR) deficiency is considered a prerequisite for response to PARP inhibition. Tumors that have
acquired resistance to PARP inhibition can be either HR deficient or HR proficient. In HR-proficient
tumors, the genetic mutation in the HR gene that results in the HR-deficient phenotype is repaired
by a reversion mutation. Mechanisms of resistance to PARP inhibition where the tumor is still HR
deficient include loss of activity of the Shieldin complex, TP53BP1 or SLFN11, mutations in PARP1,
or enhanced drug efflux.

5. Preclinical and Translational Research in Hereditary PDAC

Preclinical and translational research is essential to improve our understanding of
PDAC susceptibility and to facilitate the development of therapeutic strategies for patients
with germline mutations. While approximately 10% of PDAC patients may harbor germline
mutations, only a few pre-clinical models are commercially available in this field. CAPAN1
is the most commonly used BRCA2-deficient PDAC cell line, harboring BRCA2 c.6774delT
truncating mutation [107]. In addition, PL11 and Hs766T harbor genetic alterations in the
Fanconi anemia pathway genes FANCC (null mutation) and FANCG (nonsense mutation),
respectively [108]. To our knowledge, there are no detailed genomic annotations associated
with commercially available PDAC cell lines or other preclinical models, and this hampers
the preclinical usage of PDAC cell lines in the context of FPC. Genetically engineered
mouse models have been critical for basic PDAC research and the preclinical evaluation of

https://friendsofcancerresearch.org/hrd
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therapeutic strategies. One of the representative PDAC GEMM is the KPC mouse model,
which harbors oncogenic KRAS G12D and a gain-of-function p53 R172H or R270H mutation
(equivalent to human TP53 R175H or R273H) or p53 null mutation specifically in pancreatic
epithelial cells driven by a Pdx1-Cre or Ptf1-Cre transgenic allele [109,110]. Since KRAS
and TP53 mutations are the most common genetic alterations in PDAC, putative tumor
suppressors or oncogenes have been modeled in the Kras mutant background or Kras/Trp53
double mutant background (reviewed by Guerra and Barbacid [111]). Although many
genes are associated with hereditary PDAC, a few genes have been experimentally shown
to contribute to PDAC progression in vivo using GEMM. Among cancer predisposing
genes, mutations in BRCA2 and ATM play a role in PDAC progression [112,113], whilst the
role of other genes remains to be defined. One of the challenges in modeling hereditary
PDAC with GEMM is that the generation of conditional knockout alleles for individual
cancer predisposing genes is time-consuming. In addition, PDAC mouse models need to
be crossed with multiple oncogenic alleles, such as Kras mutations and pancreas-specific
Cre alleles. Another critical issue related to hereditary PDAC is that genetic mutations
are introduced at the embryonic development stage, which complicates the question of
whether cancer predisposing genes play a role in the inception of key driver mutations,
such as oncogenic mutations in KRAS in other tumor suppressors. Available GEMMs only
allow us to address whether these mutations in cancer predisposing genes can cooperate
with oncogenic Kras mutations or other driver mutations for PDAC progression.

In conclusion, various preclinical models of human PDAC are available for basic and
translational research, including PDAC cell lines, patient-derived xenografts (PDXs), and
patient-derived organoids (PDOs) [114]. Each preclinical model has its own advantages
and disadvantages. Thus, the optimal model for each study should be determined based
on specific scientific and clinical questions. To evaluate the efficacy of PARPi and other
therapies for PDAC patients, a lack of detailed genomic annotations in the currently ex-
isting preclinical models is an issue that needs to be addressed. The use of isogenic cell
lines or other preclinical models with CRISPR or other genetic engineering approaches is
ideal for addressing a mutation-specific drug response in hereditary PDAC. In this way, the
possibility of confounding effects that may come from other genetic mutations or other back-
grounds can be excluded. In addition, the use of preneoplastic cells (e.g., PanIN-derived
organoids) could be useful to address the effect of cancer predisposing gene mutations
in the early stage of PDAC progression without generating new GEMM for hereditary
PDAC [115].

6. Conclusions

Germline pathogenic variants are prevalent and clinically relevant in PDAC. The
American Society of Clinical Oncology and the NCCN guidelines recommend risk assess-
ment and extended germline testing for all individuals with PDAC irrespective of personal
or family history of cancer, age, or ethnicity to maximize the opportunity for targeted
therapeutic interventions for patients and cancer prevention in the families. The proposed
algorithm for germline genetic testing in PDAC and high-risk subjects is shown in Figure 4.
Treatment implications include the use of ICI for MMR-d PDAC and PARPi therapy with
olaparib as a maintenance strategy in platinum-sensitive BRCA mutation carriers. Whether
mutations in other non-BRCA genes can be successfully targeted with PARPi therapies
remains to be addressed in both preclinical and clinical settings. Continued research on the
actionability of germline variants in PDAC, on the molecular mechanism of how PARPi
exerts anti-cancer effects, and on how germline variants contribute to PDAC progression
is essential to improve our understanding of PDAC and to facilitate the development of
therapeutic and preventative strategies for patients and their families.
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Figure 4. Suggested algorithm for germline testing for healthy individual at high risk of PDAC
and individuals diagnosed with PDAC. MSI-H: microsatellite instability–high; PARPi: poly-ADP
(adenosine diphosphate)-ribose polymerase inhibitors; ICIs: immune checkpoint inhibitors.
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