Received: 30 November 2020 Revised: 07 January 2021 Accepted: 09 February 2021 © 2021 The Authors. Published by the British Institute of Radiology under the terms of the Creative Commons Attribution 4.0 Unported License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

van der Heyden B. The potential application of dual-energy subtraction radiography for COVID-19 pneumonia imaging. Br J Radiol 2021; 94: 20201384.

COMMENTARY

The potential application of dual-energy subtraction radiography for COVID-19 pneumonia imaging

BRENT VAN DER HEYDEN

KULeuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium

Address correspondence to: Dr Brent van der Heyden E-mail: brent.vanderheyden@kuleuven.be

ABSTRACT

X-ray imaging plays a crucial role in the confirmation of COVID-19 pneumonia. Chest X-ray radiography and CT are two major imaging techniques that are currently adopted in the diagnosis of COVID-19 pneumonia. However, dual-energy subtraction radiography is hardly discussed as potential COVID-19 imaging application. More advanced X-ray radiography equipment often supports dual-energy subtraction X-ray radiography. Dual-energy subtraction radiography enables the calculation of pseudo-radiographs, in which bones are removed and only soft-tissues are highlighted. In this commentary, the author would like to draw the attention to the potential use of dual-energy subtraction X-ray radiography (*i.e.* soft-tissue pseudo-radiography) for the assessment and the longitudinal follow-up of COVID-19 pneumonia.

COMMENTARY

Chest X-ray radiography imaging plays a crucial role in the confirmation of pneumonia in patients with severe respiratory symptoms caused by COVID-19.¹ X-ray radiography has already been suggested as first-line imaging modality of patients with suspected COVID-19 pneumonia in a pandemic scenario with a worldwide increasing number of inpatients.^{2,3} Alternatively, institutes adopted CT imaging as main or complimentary diagnostic tool for the assessment and the evaluation of COVID-19 pneumonia over time.⁴⁻⁷ Undoubtedly, CT imaging provides superior threedimensional diagnostic information in contrast to planar X-ray radiography. Nevertheless, the CT imaging workflow requires more time, involves a much larger radiation dose,^{8,9} and cannot be followed locally at the bedside. These are important aspects that should normally be considered in a pandemic scenario where health-care workers and hospitals work under constantly increased pressure.

The author would like to draw attention to the potential use of dual-energy subtraction chest X-ray radiography in the assessment or evaluation of COVID-19 pneumonia. Dual-energy subtraction radiography is a well-established imaging technique available in several commercial devices that acquires two imaging exposures at different X-ray energies in a relatively short time-interval between the successive exposures (~200 ms).^{10,11} Dual-energy radiography is performed at one low X-ray energy spectrum

(*e.g.* 70 kVp) and at one high X-ray energy spectrum (*e.g.* 130 kVp). Therefore, dual-energy subtraction radiography takes advantages of the more pronounced X-ray attenuation changes at lower X-ray energies in calcium-containing human tissues such as cortical bone. Applying dedicated weighted post-processing techniques on two X-ray exposures facilitates the calculation of two separate pseudo-radiographs representing the (i) soft-tissue content, and the (ii) bone content (Figure 1c–d).

It should be noted that dual-energy subtraction radiography leads to an increased radiation dose compared to conventional radiography when the medical device is operating in dual-shot mode. However, the radiation dose of dual-energy subtraction X-ray radiography (\sim 0.2 mSv) is still substantially lower than the dose given by a chest CT scan (\sim 7.0 mSv).⁹ Additionally, image artifacts could be introduced near the diaphragm or cardiac wall due to respiratory or cardiac motion within the 200 ms exposure timeframe.¹⁰ Often, this effect is minimal and can be resolved by post-processing software.

Publications on bone suppression X-ray chest radiography (*i.e.* soft-tissue pseudo-radiographs) have shown increased sensibility in other subtle imaging applications, such as the recognition of pulmonary nodules and interstitial lung diseases.^{13–15} Therefore, it could also be relevant to validate

Figure 1. The low (a) and high (b) energy X-ray radiographs, and the post-processed pseudo-radiographs representing the soft-tissue (c) and the bone content (d) in the chest of a patient diagnosed with COVID-19 pneumonia. (Data set: coronacases_002. nii.gz from Jun et al^{12})

the potential use of dual-energy subtraction X-ray imaging in the diagnosis of COVID-19 pneumonia.

To the author's best knowledge, public dual-energy radiography data sets of COVID-19 pneumonia are currently lacking, and for that reason, realistically simulated radiographs are presented in this commentary as example. The dual-energy X-ray chest radiographs are simulated from an open-access high-resolution CT data set of a patient diagnosed with COVID-19 pneumonia.¹² It is anticipated that the image quality of true pseudo-radiographs will outperform the quality of simulated radiographs due to computational restrictions. A detailed Monte Carlo simulation workflow is provided as Supplementary Material 1.

Figure 1(a-b) presents the 70 kVp and 130 kVp chest X-ray radiographs, and Figure 1(c-d) shows the soft-tissue and bone pseudo-radiographs obtained after dedicated post-processing and dual-energy subtraction. The author foresees that the lung volume after bone suppression (Figure 1c), and thus COVID-19 pneumonia, could be better visible in soft-tissue pseudo-radiographs than in conventional X-rays chest radiographs.

Especially in early stage COVID-19 pneumonia, the dense ribs could possibly mask essential anatomical information which would have stayed unnoticed in conventional X-ray radiography (*e.g.* Figure 1c, green arrow). The application of dualenergy subtraction radiograph has been confirmed in literature to provide superior soft-tissue pseudo radiographs in several radiological applications.^{13,14,16} Based on the available literature and the simulated imaging data presented in this commentary, it would be opportune to investigate the potential added value of soft-tissue pseudo-radiography in the diagnosis of COVID-19 pneumonia with prospective imaging trials.

ACKNOWLEDGEMENTS

Dr. Edmond Sterpin affiliated to KULeuven/UCLouvain is acknowledged for proof-reading this commentary, and Dr. Patrick Wohlfahrt from Siemens Healthineers is acknowledged for the fruitful discussions related to this work.

FUNDING

The simulation results presented in this commentary were calculated with research funding from Google Cloud.

REFERENCES

- Cleverley J, Piper J, Jones MM. The role of chest radiography in confirming covid-19 pneumonia. *BMJ* 2020; **370**: m2426. doi: https://doi.org/10.1136/bmj.m2426
- Vancheri SG, Savietto G, Ballati F, Maggi A, Canino C, Bortolotto C, et al. Radiographic findings in 240 patients with COVID-19 pneumonia: time-dependence after the onset of symptoms. *Eur Radiol* 2020; **30**: 6161–9. doi: https://doi.org/10.1007/s00330-020-06967-7
- Akl EA, Blažić I, Yaacoub S, Frija G, Chou R, Appiah JA, et al. Use of chest imaging in the diagnosis and management of COVID-19: a who rapid advice guide. *Radiology* 2021; 298: E63-E69. doi: https://doi.org/10.1148/radiol. 2020203173
- 4. :.Ma H, Zhang Y. Computed tomography of covid-19 pneumonia. *BMJ* 2020;: m1807m1807. doi: https://doi.org/10.1136/ bmj.m1807
- Hani C, Trieu NH, Saab I, Dangeard S, Bennani S, Chassagnon G, et al. COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. *Diagn Interv Imaging* 2020; 101: 263–8. doi: https://doi. org/10.1016/j.diii.2020.03.014
- Homayounieh F, Holmberg O, Al Umairi R, Aly S, Basevičius A, Costa PR, et al. Variations in CT utilization, protocols, and radiation doses in COVID-19 pneumonia: results from 28 countries in the IAEA study. *Radiology* 2020; 203453: 203453. doi: https:// doi.org/10.1148/radiol.2020203453
- Lang M, Som A, Mendoza DP, Flores EJ, Reid N, Carey D, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. *Lancet Infect Dis* 2020; 20: 1365–6. doi: https://doi. org/10.1016/S1473-3099(20)30367-4
- Smith-Bindman R, Lipson J, Marcus R, Kim K-P, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. *Arch Intern Med* 2009; 169: 2078–86. doi: https://doi.org/10.1001/archinternmed. 2009.427
- Mettler FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog.

BJR

Radiology 2008; **248**: 254–63. doi: https://doi. org/10.1148/radiol.2481071451

- Vock P, Szucs-Farkas Z. Dual energy subtraction: principles and clinical applications. *Eur J Radiol* 2009; 72: 231–7. doi: https://doi.org/10.1016/j.ejrad.2009.03. 046
- Shkumat NA, Siewerdsen JH, Dhanantwari AC, Williams DB, Richard S, Paul NS, et al. Optimization of image acquisition techniques for dual-energy imaging of the chest. *Med Phys* 2007; 34: 3904–15. doi: https://doi.org/10.1118/1.2777278
- Jun M, Cheng G, Yixin W, Xingle A, Jiantao G, Ziqi Y. COVID-19 CT lung and infection segmentation dataset (version 1.0. 2020;.
- Martini K, Baessler M, Baumueller S, Frauenfelder T. Diagnostic accuracy and added value of dual-energy subtraction radiography compared to standard conventional radiography using computed tomography as standard of reference. *PLoS One* 2017; 12: e0174285. doi: https://doi.org/ 10.1371/journal.pone.0174285
- Uemura M, Miyagawa M, Yasuhara Y, Murakami T, Ikura H, Sakamoto K, et al. Clinical evaluation of pulmonary nodules with dual-exposure dual-energy subtraction chest radiography. *Radiat Med* 2005; 23: 391–7.
- 15. Li F, Engelmann R, Pesce LL, Doi K, Metz CE, Macmahon H. Small lung cancers:

improved detection by use of bone suppression imaging--comparison with dual-energy subtraction chest radiography. *Radiology* 2011; **261**: 937–49. doi: https:// doi.org/10.1148/radiol.11110192

16. Kelcz F, Zink FE, Peppler WW, Kruger DG, Ergun DL, Mistretta CA. Conventional chest radiography vs dual-energy computed radiography in the detection and characterization of pulmonary nodules. *AJR Am J Roentgenol* 1994; **162**: 271–8. doi: https://doi.org/10.2214/ajr.162.2.8310908