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The aim of this retrospective, observational study was to examine the intraretinal locations of 
ruptured retinal arterial macroaneurysms (RMAs) and investigate the associations with the visual 
prognosis. Fifty patients (50 eyes) with untreated RMA rupture who visited the Department of 
Ophthalmology at Kyoto University Hospital (April 2014–July 2019) were included. The intraretinal 
position of the ruptured RMAs relative to the affected retinal artery was examined using optical 
coherence tomography (OCT) and color fundus photography (CFP). The relative RMA positions were 
anterior to (anterior type, 44%), at the same level as (lateral type, 20%), or posterior to (posterior 
type, 34%) the affected artery. At the initial visit, the posterior type showed greater subretinal 
hemorrhage thickness than did the lateral and anterior types (P = 0.016 and 0.006, respectively), and 
poorer visual acuity (VA) than did the anterior type (P = 0.005). At the final visit, the length of the 
foveal ellipsoid zone band defect was longer (P = 0.005) and VA was poorer (P < 0.001) for the posterior 
type than for the anterior type. The intraretinal positions of ruptured RMAs vary, affect the thickness 
of foveal subretinal hemorrhage and predict future damage to the foveal photoreceptors. The visual 
prognosis may be poor for posteriorly ruptured RMAs.

Retinal arterial macroaneurysm (RMA) is an acquired, focal dilation of a retinal artery, typically occurring 
within the first three bifurcations of the central retinal artery. It is relatively common in elderly women1–4. The 
pathophysiology of this disease is not completely understood; however, it is speculated that the decrease in the 
elasticity of the vessel wall due to arteriosclerosis may make it more susceptible to increased hydrostatic pres-
sure. The diagnosis, in most cases, is made when a patient experiences loss of vision due to acute hemorrhagic 
changes or the subsequent exudative changes involving the macula.

Rupture of RMA can cause hemorrhages in the vitreous cavity, various layers of the retina, and subretina, 
with a concomitant sudden decrease in the visual acuity (VA). Treatment includes direct photocoagulation of 
RMA5,6, vitrectomy using internal limiting membrane (ILM) peeling or tissue plasminogen activator (t-PA)7,8, or 
intravitreal injections of an anti-vascular endothelial growth factor (VEGF)9,10. However, patients with irrevers-
ible poor vision despite these aggressive treatments are occasionally encountered.

In a previous study of patients with ruptured RMA who underwent vitrectomy with t-PA, the postopera-
tive outcome was worse for patients with preoperative intraretinal hemorrhage than for patients without this 
hemorrhage11. However, the association of the visual prognosis with other types of hemorrhages has not been 
well studied. Moreover, there is little information regarding the relationship of the angiographic features and 
intraretinal locations of ruptured RMAs with the visual prognosis.

Therefore, the purpose of this study was to evaluate the positions of ruptured RMAs relative to the affected 
retinal artery using optical coherence tomography (OCT) and ophthalmoscopic findings, and to investigate the 
association of the intraretinal location with the pattern of retinal hemorrhage and visual prognosis.
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Methods
Patients.  This retrospective study was approved by the Institutional Review Board of Kyoto University 
Graduate School of Medicine (Kyoto, Japan) and adhered to the tenets of the Declaration of Helsinki. Written 
informed consent was obtained from each subject at the initial visit before study initiation.

The inclusion criterion was untreated RMA rupture, whereas exclusion criteria encompassed RMAs ruptured 
at a location more nasal than the optic disc, other ocular diseases (diabetic retinopathy, retinal vein occlusion, or 
uveitis), and patients with dense cataracts or vitreous hemorrhage that could degrade the image quality of OCT 
and interfere with the analysis. Eventually, 50 patients (50 eyes) with RMA rupture who visited the Department 
of Ophthalmology at Kyoto University Hospital between April 2014 and July 2019 met our eligibility criteria.

At the initial visit, in addition to a comprehensive ophthalmic examination including measurement of the 
best-corrected VA using a Landolt chart, 45° digital color fundus photography (CFP; TRC-50LX, Topcon, Tokyo, 
Japan; 3216 × 2136 pixels), fluorescein angiography, and indocyanine green angiography were performed after 
pupil dilation for each patient. Using OCT examinations (Spectralis HRA + OCT, Heidelberg Engineering, Hei-
delberg, Germany), we acquired horizontal and vertical scans through the center of the fovea, a 30° × 25° macular 
volume scan, and scans of RMA and the affected retinal artery. The VA measurement was performed at a distance 
of 5 m using a standard VA testing device (LED type) that complies with ISO 8596 and 8597. The brightness of 
the VA measurement room was 600 Lux, the illuminance of the optotype surface was 700 Lux, and the optotype 
contrast was approximately 98% (background luminance was approximately 240 cd/m2 and optotype luminance 
was approximately 3 cd/m2)12. In cases where the 0.1 index could not be answered correctly, VA was calculated 
based on the visual angle at the farthest distance where most correct responses to the 0.1 single optotype were 
obtained. RMA rupture was diagnosed by retinal specialists (YM, SO, TM) on the basis of the results of the 
comprehensive ophthalmic examination.

At each follow-up visit, the best-corrected VA was measured, and the macular area was examined using OCT 
and CFP for each patient.

Anatomical positions of the ruptured aneurysm relative to the affected retinal artery.  The 
anatomical position of RMA relative to the affected retinal artery was determined from both OCT scans and 
CFP images of RMA and the affected retinal artery (see supplementary Fig. 1 online). We used OCT scans of 
RMA to identify the position of RMA in relation to the affected retinal artery. We additionally used CFP images 
obtained at 3 to 12 months after rupture, when the vessel walls of RMAs became white and organized. Accord-
ingly, RMAs located above or anterior to the affected artery, those located below or posterior to the affected 
artery, and those located at the same level as the affected artery, which could not be classified as the anterior or 
posterior type, were classified as anterior, posterior, and lateral RMAs, respectively.

OCT evaluations of the hemorrhage pattern, foveal thickness, thickness of foveal subretinal 
hemorrhage, and length of the ellipsoid zone band defect.  We also judged hemorrhagic patterns as 
vitreous, preretinal, sub-ILM, intraretinal, and subretinal hemorrhages using ophthalmoscopic findings, includ-
ing CFP findings, and OCT scans passing through the fovea and RMAs [see Supplementary Fig. 2 online, which 
shows the different hemorrhage patterns in an eye with a ruptured retinal arterial macroaneurysm using optical 
coherence tomography; a: Vitreous hemorrhage (anterior to the posterior vitreous membrane), b: Preretinal 
hemorrhage (anterior to the inner limiting membrane and posterior to the posterior vitreous membrane), c: 
Sub-inner limiting membrane hemorrhage (confined below the inner limiting membrane), d: Intraretinal hem-
orrhage (inside the sensory retina), e: Subretinal hemorrhage (beneath the sensory retina)].

To measure the foveal thickness, a macular volume scan was acquired at each visit. For OCT, a whole-retinal 
thickness map centered on the foveal center was created using the Early Treatment Diabetic Retinopathy Study 
grid. The foveal thickness was defined as the average value calculated from the retinal thickness of the central 
grid. OCT measurements of the entire retinal thicknesses of each grid were performed using the manufacturer’s 
built-in software (Spectralis Acquisition and Viewing Modules, version 6.0, Heidelberg Engineering). We used 
automatic segmentation in Spectralis to evaluate the retinal thickness; however, if there was a segmentation 
error, we manually corrected the segmentation in that area to ensure that the retinal thickness could be evaluated 
correctly. Furthermore, at the first visit, the thickness of foveal subretinal hemorrhage was measured on vertical 
and horizontal OCT scans through the fovea, and the averaged value was used for analysis.

To assess the integrity of the foveal photoreceptor layer at the final visit, we quantified the disruption of the 
ellipsoid zone (EZ) band within the central 2-mm area on OCT images sectioned vertically and horizontally 
through the center of the fovea, and calculated the average value for each patient. The signal intensity of the EZ 
band was measured, and the EZ band was quantified using the plot profile function in ImageJ software (National 
Institutes of Health, Bethesda, MD, USA). According to previous reports13, the length of the EZ band defect was 
defined as the line on the grayscale image along which the EZ reflectivity diminished by two standard deviations 
relative to the reflectivity in the unaffected retina.

Classification of the bifurcation order from the central retinal artery.  Using the CFP images, we 
examined the order of the bifurcation (first to the third order) from the central retinal artery at the RMA site.

Measurement of the distance between RMA and the fovea.  Using infrared imaging in the Spec-
tralis HRA + OCT device, the distance between RMA and the fovea was measured at 3–12 months after rupture, 
when the associated hemorrhages were substantially absorbed.



3

Vol.:(0123456789)

Scientific Reports |          (2022) 12:503  | https://doi.org/10.1038/s41598-021-04500-4

www.nature.com/scientificreports/

Statistical analysis.  Statistical analysis was performed using PASW Statistics version 18.0 (SPSS, Chicago, 
IL). Values are presented as the mean ± standard deviation. For statistical analysis, VA measured with a Landolt 
chart was converted to the logarithm of the minimum angle of resolution (logMAR) unit.

Comparisons among the three different groups were adjusted for multiple testing by the Bonferroni method. 
One case with an unknown aneurysm location was excluded from the analysis. Significant differences in the 
sampling distributions were determined using chi-square tests.

To determine the coefficient of correlation between the final VA and other clinical findings, we used Pearson’s 
product-moment correlation. Stepwise forward multivariate linear regression analysis was performed to evaluate 
the associations of the angiographic features (intraretinal location of RMA and distance between RMA and the 
foveal center) and gender with the final VA and foveal subretinal hemorrhage thickness. A P-value of < 0.05 was 
considered statistically significant.

Results
This study included 50 eyes with RMA rupture (11 men and 39 women; mean age, 79.1 ± 7.8 years). Table 1 
shows the clinical characteristics of the included patients. At the initial visit, the mean duration of symptoms 
from onset was 12.2 ± 17.4 days (range: 1–35 days), mean logMAR VA was 0.77 ± 0.58 (Snellen equivalent: 
20/2000–20/16), and mean foveal thickness was 540 ± 276 μm. Twenty-two eyes had phakia; however, there 
were no patients with dense cataracts or vitreous hemorrhage, which could degrade the image quality of OCT 
and interfere with the analysis.

The follow-up period was 22.4 ± 22.9 months. As treatment for the ruptured RMA, eight eyes received direct 
laser photocoagulation, seven received both direct photocoagulation and intravitreal injections of anti-VEGF 
agents, nine received intravitreal injections of anti-VEGF agents, three received intravitreal injection of sulfur 
hexafluoride gas, and 18 received pars plana vitrectomy (with ILM peeling and t-PA injection as necessary) dur-
ing the observational period. The remaining five eyes did not receive any treatment during the follow-up period.

At the final examination, the mean logMAR VA was 0.34 ± 0.36 (Snellen equivalent: 20/200–20/16), mean 
foveal thickness was 292 ± 111 μm, and length of the EZ band defect was 489 ± 569 μm (Table 1).

Angiographic features of the ruptured retinal arterial macroaneurysms.  The order of the bifur-
cation from the central retinal artery at the RMA site was as follows: first order, 4 (8%) eyes; second order, 28 
(56%) eyes; and third order, 18 (36%) eyes. The distance from RMA to the fovea was 2774 ± 984 μm (range: 
774–4849 μm, Table 2).

According to the three-dimensional evaluations using OCT and CFP images, 22 (44%), 10 (20%), and 17 
(34%) RMAs were classified as the anterior, lateral, and posterior types, respectively (Table 2). For the remaining 

Table 1.   Characteristics of patients with ruptured retinal macroaneurysms. LogMAR = logarithm of the 
minimal angle of resolution. Data are expressed as mean ± standard deviation unless otherwise indicated.

Number of patients (men/women) 11/39

Mean age, years 79.1 ± 7.8

Systemic hypertension, n (%) 35 (70)

Diabetes mellitus, n (%) 2 (4)

Smoking, n (%) 10 (20)

At initial visit

Duration from the onset (days) 12.2 ± 17.4
Range 1–35

LogMAR visual acuity 0.77 ± 0.58

Snellen equivalent (range) 20/2000–20/16

Foveal thickness (μm) 540 ± 276

Treatment, n (%)

Direct photocoagulation 8 (16)

Direct photocoagulation and anti-vascular endothelial growth factor therapy 7 (14)

Anti-vascular endothelial growth factor therapy 9 (18)

Pars plana vitrectomy 18 (36)

Sulfur hexafluoride gas injection 3 (6)

Only observation 5 (10)

At the final examination

 Duration from the onset (months) 22.4 ± 22.9

LogMAR visual acuity 0.34 ± 0.36

Snellen equivalent, range 20/200–20/16

Foveal thickness (μm) 292 ± 111

Length of the ellipsoid zone band defect (μm) 489 ± 569
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RMA (2%), we were unable to determine the three-dimensional intraretinal location relative to the affected 
artery; this case was excluded from the statistical analysis.

Hemorrhagic patterns and the association with the aneurysm location.  At the initial visit, vitre-
ous hemorrhage was observed in 10 (20%) eyes, preretinal hemorrhage in three (6%) eyes, sub-ILM hemorrhage 
in 32 (64%) eyes, intraretinal hemorrhage in 50 (100%) eyes, and subretinal hemorrhage in 46 (92%) eyes.

We examined the associations between each hemorrhage pattern and the intraretinal location of RMAs; the 
detection rate for sub-ILM hemorrhage was not significantly associated with the depth of RMA, whereas that 
of subretinal hemorrhage was significantly lower in eyes with anteriorly ruptured RMAs (P = 0.033, chi-square 
test, Fig. 1).

Associations between the final visual acuity and other clinical findings.  Table 3 shows the clini-
cal parameters associated with the final visual outcome in the univariate analysis. The final logMAR VA showed 
a significant positive association with the initial logMAR VA (P = 0.006) and the distance between RMA and 
the fovea (P = 0.005). Among the initial anatomical parameters, the thickness of foveal subretinal hemorrhage 
showed the strongest association with a poor final visual outcome (P = 0.010).

Therefore, to determine the effects of angiographic features of RMAs on the visual outcome and thickness 
of foveal subretinal hemorrhage, we performed multivariate analysis with the intraretinal RMA location, the 
distance between RMA and the fovea, and gender as explanatory variables. In both analyses, the intraretinal 
locations of RMAs were more strongly associated with the final VA (β = 0.535, P < 0.001) and thickness of foveal 
subretinal hemorrhage (β = 0.462, P = 0.001).

Table 2.   Angiographic features of ruptured retinal macroaneurysms. RMA = retinal arterial macroaneurysm.

Bifurcation order from the central retinal artery: n, (%)

First order 4 (8)

Second order 28 (56)

Third order 18 (36)

Depth of the RMA lesion relative to the affected retinal artery, n (%)

Anterior, n (%) 22 (44)

Lateral, n (%) 10 (20)

Posterior, n (%) 17 (34)

Unknown, n (%) 1 (2)

Distance between the RMA and the fovea (μm) 2774 ± 984
Range 774–4849

Figure 1.   Association between the hemorrhagic pattern and the position of ruptured retinal arterial 
macroaneurysms relative to the affected retinal artery. The detection rate for sub-inner limiting membrane 
hemorrhage was not significantly associated with the depth of the ruptured retinal arterial macroaneurysm; 
however, the detection rate for subretinal hemorrhage was significantly lower for eyes with anteriorly ruptured 
RMAs (P = 0.033).
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Associations between the intraretinal locations of the aneurysms and other clinical find‑
ings.  Figures  2, 3, 4 and 5 show the initial and final clinical findings according to the intraretinal RMA 
locations. At the initial visit, the logMAR VA for the posterior type (1.04 ± 0.58) was not significantly different 
from that for the lateral type (0.93 ± 0.66), although it was significantly poorer than that for the anterior type 
(0.49 ± 0.40; P = 0.005). The thickness of subretinal hemorrhage for the posterior type (291 ± 139 μm) was greater 
than that for the lateral (125 ± 111 μm; P = 0.016) and anterior (124 ± 153 μm; P = 0.006) types. There were no 
significant differences in the foveal thickness among the three types.

The final logMAR VA showed a significant positive association with the length of the EZ band defect at the 
final visit (P < 0.001). At the final visit, the length of the foveal EZ band defect was greater for the posterior type 
(780 ± 570 μm) than for the anterior type (236 ± 348 μm; P = 0.005). The final logMAR VA for the posterior type 
(0.59 ± 0.39) was poorer than that for the anterior type (0.14 ± 0.16; P < 0.001). The length of the foveal EZ band 
defect and the logMAR VA for the lateral type were not significantly different from those for the other two types.

Table 3.   Association between the final visual acuity and other clinical findings examined by Pearson’s 
product-moment correlation. LogMAR = logarithm of the minimal angle of resolution. Data are expressed as 
mean ± standard deviation unless otherwise indicated.

R P value

Age 0.023 0.877

Time from the onset to the initial visit 0.041 0.803

Baseline

LogMAR visual acuity 0.394 0.006

Foveal thickness 0.298 0.042

Thickness of foveal subretinal hemorrhage 0.373 0.010

Distance between RMA and the fovea  − 0.407 0.005

Final visit

Foveal thickness  − 0.278 0.061

Defect length of the ellipsoid zone band 0.733  < 0.001

Figure 2.   Baseline and final foveal function and morphology according to the position of ruptured retinal 
arterial macroaneurysms relative to the affected artery. (A,B,C) Baseline findings. (D,E,F) Final findings. (A,D) 
Logarithm of the minimum angle of resolution (LogMAR) visual acuity (VA). (B,E) Retinal thickness at the 
fovea. (C) Thickness of subretinal hemorrhage at baseline. (F) Length of the ellipsoid zone band defect. VA and 
the subretinal hemorrhage thickness at baseline are poorer and greater, respectively, for patients with ruptured 
retinal arterial macroaneurysms (RMAs) located posterior to the affected artery (posterior type) than for 
patients with ruptured RMAs located anterior to the affected artery (anterior type). At the final visit, the length 
of the foveal ellipsoid zone band defect is greater and the final VA is poorer for patients with the posterior type.
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Discussion
In this study, we used OCT and CFP to examine the three-dimensional intraretinal locations of ruptured RMAs 
relative to the affected retinal artery and classified the lesions as anterior (anterior to the affected artery), lateral 
(at the same level as the affected artery), and posterior (posterior to the affected artery) RMAs (Supplementary 
Fig. 1). We then found that the positions of RMAs affected the initial VA, pattern of hemorrhage, degree of future 
damage to the foveal photoreceptors, and visual prognosis (Figs. 2, 3, 4, 5).

Histologically, retinal vessels are located in the inner retina and nourish the neuroglial cells in the correspond-
ing retinal layers. In clinical practice involving patients with chorioretinal diseases, preretinal, intraretinal, and 
subretinal hemorrhages can be differentiated according to the visibility of the retinal vessels traveling in the 
inner retina. Previous OCT examinations of the retinal vessels showed that retinal arteries ran straight in the 
inner retina without changing their own depth even at arteriovenous crossings, pushing the veins anteriorly or 
posteriorly14. In this study, we accordingly investigated the three-dimensional relationship between ruptured 
RMAs and the affected retinal arteries in detail, using both OCT scans and CFP images.

Retinal macroaneurysm is clinically defined as an aneurysm arising within the first three branches of the 
central retinal artery2. However, the precise pathologies have not been well determined. Previous studies involv-
ing trypsin digestion showed various types of aneurysmal changes. Among the suggested types, the blowout 
aneurysm involved linear splits along the vessel wall, through which the aneurysmal sac protruded15. Patho-
logical changes occurring in systemic arteries and aortic aneurysms and dissection, which are caused by the 
formation of cracks in the arterial wall from the intima to the tunica media, are well known16,17. The presence of 
retinal blowout aneurysms, pathologies of systemic arterial diseases, and lack of significant bias in the present 
study (anterior type, 44%; lateral type, 20%, and posterior type, 34%) might suggest that the accidental cracks in 
the retinal arterial walls would be involved in the initiation of the pathological changes associated with RMAs.

The present study showed that the morphological and functional prognoses of the fovea may differ accord-
ing to the intraretinal locations of ruptured RMAs (Figs. 3, 4, 5, Table 3). We speculated that, because anterior 
RMAs occur between the arterial wall and ILM, the tension of ILM may tend to restrict the extent of rupture. The 
longitudinal elasticity of ILM (Young’s modulus) is reported to be approximately 3000 to 30,000 times greater 
than that of the sensory retina18. In contrast, RMAs ruptured posterior to the arteries are less affected by ILM; 
thus, the extent of rupture may be larger and the subretinal hemorrhage may be more extensive. In cases with 
a larger amount of subretinal hemorrhage requiring a longer time to absorb, the foveal photoreceptors would 
be more susceptible to damage because of possible mechanisms such as reduced nutrition from the choroidal 
side19, oxidative stress20, iron toxicity21, and tearing of the outer segments of the photoreceptors by fibrin or 

Figure 3.   Representative case involving an 86-year-old woman with a ruptured retinal arterial macroaneurysm 
anterior to the affected artery (anterior type) in the right eye. Optical coherence tomography (OCT) performed 
in the acute phase shows a small amount of vitreous hemorrhage and a large amount of preretinal hemorrhage 
and sub-inner limiting membrane (ILM) hemorrhage. Subretinal hemorrhage is unremarkable (B). Eight 
days after onset, pars plana vitrectomy (PPV) with ILM peeling and direct photocoagulation of RMA were 
performed. On resolution of the hemorrhages, OCT shows that RMA is located anterior to the retinal artery 
(D, arrows), and color fundus photography (C) shows that the organized white RMA is interrupting the course 
of the affected artery. Thus, it can be classified as the anterior type. After 24 months, there is no damage to the 
foveal photoreceptor layer (E); the visual acuity was 20/16.
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fibrin degradation products22. These may have been involved in the more severe foveal photoreceptor damage 
and poorer visual prognosis for the eyes with posterior RMAs.

Recently, Doi et al. reported the results of vitrectomy using subretinal injection of t-PA in 23 eyes with sub-
macular hemorrhage due to RMA rupture11. The authors used swept-source OCT to detect intraretinal hemor-
rhage and found that patients with preoperative intraretinal hemorrhage (74%) had a poorer postoperative VA 
than did those without hemorrhage (26%). However, the authors did not describe the mechanism underlying 
the variations in the degree of hemorrhage. Moreover, because RMAs rupture in the inner retina, the rate of 
intraretinal hemorrhage might be inherently higher. The present study using OCT, and another previous study, 
found much higher rates of intraretinal hemorrhage23. However, we cannot deny the possibility that the amount 
of intraretinal hemorrhage would be positively correlated with that of subretinal hemorrhage. In patients with 
RMA rupture, intraretinal hemorrhage could result from the retrograde flow of subretinal hemorrhage into the 
retina at the center of the fovea11.

Several treatment strategies have been reported for ruptured RMAs5–10,24–26. Among these, direct photoco-
agulation of RMAs is often performed because it is relatively easy and the therapeutic effect is not low5,6. On the 
basis of our OCT findings, we consider that direct photocoagulation is not suitable for all patients with RMA 
because the posterior type is located below the affected artery and consequently difficult to coagulate. On the 
other hand, the anterior and lateral types can be coagulated more efficiently, which results in suppression of 
exudative changes. Thus, it would be necessary to pay attention to the relative position of RMA and the retinal 
artery at the time of planning treatment, especially direct photocoagulation. The possibility of increased risk of 
retinal arterial occlusion when the affected retinal artery is also coagulated is another concern in the treatment 
of posterior RMAs.

As limitations of this study, we noted several factors. First, because of the retrospective design, the treat-
ment regimen was not uniform. However, we consider that the final VAs were not significantly biased accord-
ing to the treatment protocols, and there were no significant associations between the treatment methods and 
intraretinal locations of RMAs (data not shown). Second, because we only measured the subretinal hemorrhage 
“height” using two B-scans sectioning the fovea horizontally and vertically, we could not accurately assess the 
total amount of subretinal hemorrhage, given that these hemorrhages probably spread two-dimensionally in the 
retinal plane and tangentially to the retinal plane. Third, accurate evaluation of the intraretinal location of RMA 
soon after onset is difficult because of the significant amount of associated hemorrhage. Therefore, in this study, 
we assessed the intraretinal location when the hemorrhages were substantially absorbed. Although we believe 
that the presumed intraretinal location is useful for selecting an appropriate treatment protocol even in the 

Figure 4.   Representative case involving a 71-year-old man with a ruptured retinal arterial macroaneurysm 
at the same level as the affected artery (lateral type) in the left eye. At the initial visit, the visual acuity was 
20/16. Optical coherence tomography (OCT) obtained in the acute phase shows sub-inner limiting membrane 
(ILM) hemorrhage and subretinal hemorrhage around the retinal arterial macroaneurysm (RMA) (B). The 
thickness of the foveal subretinal hemorrhage was 149 μm. At 5 days after onset, we treated RMA with direct 
photocoagulation and intravitreal injection of ranibizumab. A color fundus photograph (C) shows RMA 
protruding toward the center of the fovea without interfering with the course of the affected artery. OCT (D) 
shows RMA (dotted circle) located at approximately the same level as the artery (arrow). Thus, it was classified 
as the lateral type. At 24 months after onset, the length of the ellipsoid zone band defect at the fovea was 817 μm 
(E), and the visual acuity was 20/25.
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acute phase, the rupture depth evaluated at this time may not be very useful for predicting the visual prognosis 
in the acute phase. Lastly, the effects of age-appropriate cataracts and the results of cataract surgery on final VA 
cannot be completely ignored.

Despite the limitations, the results of the present study suggest that RMA may occur at various depths in 
the affected artery, and that variations in the intraretinal depth may affect the hemorrhagic pattern, volume of 
subretinal hemorrhage, and visual prognosis. These findings may be useful for selecting effective treatments. 
However, a prospective study with a uniform treatment regimen is necessary to confirm the reproducibility of 
the results of this study.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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