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Abstract: Keratitis is a global health issue that claims the eye sight of millions of people every
year. Dry eye, contact lens wearing and refractive surgeries are among the most common causes.
The resistance rate among fluoroquinolone antibiotics is >30%. This study aims at formulating a
newly synthesized ciprofloxacin derivative (2b) niosomes and Solulan C24-, sodium cholate- and
deoxycholate-modified niosomes. The prepared niosomal dispersions were characterized macroscop-
ically and microscopically (SEM) and by percentage entrapment efficiency, in vitro release and drug
release kinetics. While the inclusion of Solulan C24 produced something discoidal-shaped with a
larger diameter, both cholate and deoxycholate were unsuccessful in forming niosomes dispersions.
Conventional niosomes and discomes (Solulan C24-modified niosomes) were selected for further
investigation. A corneal ulcer model inoculated with colonies of Pseudomonas aeruginosa in rabbits
was developed to evaluate the effectiveness of keratitis treatment of the 2b-loaded niosomes and
2b-loaded discomes compared with Ciprocin® (ciprofloxacin) eye drops and control 2b suspension.
The histological documentation and assessment of gene expression of the inflammatory markers (IL-6,
IL1B, TNFα and NF-κB) indicated that both 2b niosomes and discomes were superior treatments and
can be formulated at physiological pH 7.4 compatible with the ocular surface, compared to both 2b
suspension and Ciprocin® eye drops.
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1. Introduction

Bacterial keratitis is a primary cause of corneal blindness [1]. Being non-vascular,
cornea receives no blood supply; therefore, the infection of the cornea can be consid-
ered a medical emergency that requires prompt action. Bacterial keratitis could progress
rapidly and can cause ocular damage such as irreversible corneal melt, endophthalmitis
and ultimately lead to loss of vision [1,2]. Diseases that can be associated with corneal
neovascularization include inflammatory disorders, corneal graft rejection after transplan-
tation, infectious keratitis, contact lens-related hypoxia, alkali burns, stromal ulceration or
limbal stem cell deficiency [3].

The contagions responsible for bacterial keratitis are surprisingly alike worldwide;
however, the predominance of each microbial etiology changes according to many factors
including patients’ general health, the nature of precursor optical trauma resulting from
from surgery or lesions, environmental factors and the type of the pathogen [2]. Over
1.5 million people worldwide could develop blindness from infectious corneal ulceration
each year [4]. The relatively scarce attention given to infectious corneal ulceration does not
reflect the impact of the condition on the most vulnerable, many of whom live in poverty.

Common causative bacteria include Staphylococcus pneumoniae and Pseudomonas
aeruginosa [5]. Pseudomonas aeruginosa is the most common bacteria involved in microbial
keratitis, especially among contact lens users [5,6]. Narayanan et al. showed that a history
of surface eye diseases, “most notably dry eye”, was a common factor linked to bacterial
keratitis. For many years, controlling of bacterial keratitis has been a diagnostic and
therapeutic deadlock depending on many factors: pathogens’ susceptibility to antibiotics,
topical application of verifiable antibiotics and adapting the treatment course according to
the outcomes of the microbiology reports [2]. The bacterial resistance to commonly used
antibiotics (fluoroquinolone and penicillin derivatives) eye drops has been reported to be
very common among, as it exceeds 30% among those using in vitro antibiotic resistance
profiles from ocular bacterial isolates of the different microorganisms Staphylococcus
aureus, Hemophilus influenzae and Pseudomonas aeruginosa [7,8].

Infectious keratitis is a preventable and treatable ocular disease. One possible solution
to infectious corneal ulceration could lie in the delivery of a simple, safe and effective
community-based strategy. In addition, the early administration of topical drugs with a
low level of bacterial resistance has been proven to be an effective strategy [9].

Ciprofloxacin hydrochloride (CIP) is one of fluoroquinolone antibiotics; CIP eye drops
are widely prescribed by the ophthalmologists to treat bacterial keratitis and corneal
ulcers [10]. CIP exerts its killing properties on susceptible bacterial strains by inhibiting the
bacterial topoisomerase and gyrase enzymes required for the multiplication and growth
of the bacteria [11,12]. The solubility of CIP varies according to the pH of the medium.
While CIP is soluble in aqueous acid up to pH 4.5, CIP is poorly soluble at the physiological
pH 7.4 and has been associated with the formation of crystalline deposits, especially from
solution eye drops where the pH of the commercial Ciloxan® eye drops is adjusted at pH
4.5 to ensure maximum solubility.

Upon administration to the ocular surface with pH 7.4, the disruption of the precorneal
residence tear film is likely to happen, and CIP can deposit on the corneal surface, forming
white deposits in corneal tissues due to poor solubility and precipitation at the physiological
pH of the eye surface [13,14].

Due to the poor in vivo dissolution of ciprofloxacin topical eye drops at physiological
tear fluid pH, limited penetration to eradicate Gram-positive bacteria in the anterior cham-
ber has been recorded [15]. Other reported ocular side effects from using ciprofloxacin
eye drops include burning, stinging and corneal perforation [15]. These indicate that both
the ocular safety and efficacy of using ciprofloxacin eye drops need further optimization.
Both chemical and formulation approaches are required to ameliorate the inherent poor
solubility at the physiological pH of the tear film.

A new and promising derivative of CIP is ciprofloxacin Mannich base [16], which is
superior to CIP with regard to its wide bacterial spectrum. This CIP Mannich derivative



Pharmaceuticals 2022, 15, 44 3 of 16

was studied on different bacterial strains and it exhibited a killing activity on Pseudomonas
aeruginosa [17]. Pseudomonas aeruginosa has been proved as the main causative microor-
ganism for keratitis. The chemical structures of CIP and ciprofloxacin Mannich derivative
(2b) are shown in Figure 1.
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Niosomes, the carrier of choice, are spherical vesicular aggregates of non-ionic sur-
factants [18]. Niosomal dispersions have favorable attributes, especially for ocular drug
delivery. Span 60-based niosomes are tolerable on ocular tissues, relatively more viscous
and more spreadable vehicles on the eye surface compared to aqueous buffer solutions [19].

Thus, niosomes are better off for enhancing drug permeability and prolonging ocular
residence time [20]. Discomes are basically non-ionic surfactant vesicles, but they can be
generated by replacing the extremely hydrophobic cholesterol molecules (the membrane
stabilizer) with the water-soluble cholesteryl ether of poly (24) oxyethylene (Solulan C24).
The result is non-spherical vesicles with a larger diameter known as discomes [21]. Bile
salts are commonly used solubilizers and permeation enhancers [22].

Three membrane additives, two bile salts (sodium cholate and sodium deoxycholate)
and Solulan C24, were investigated as bilayer membrane modifying niosomes for EE%,
size, in vitro release and in vivo characteristics. The main aim of this work is to enhance the
in vivo dissolution and permeation of the novel CIP derivative (2b) into the cornea via ap-
plication of novel niosomal systems. In order to achieve this goal, 2b-loaded niosomes were
prepared, adopting the thin film hydration method. The effect of these three membrane
additives on vesicle characteristics was investigated. In addition, in vitro drug release
studies across intact semipermeable membrane as well as in-vivo studies, histological
documentation and gene expression of the inflammatory mediators in the cornea were
conducted for the optimal niosomal evaluation.

2. Results and Discussion

Previous studies on ciprofloxacin indicated that the encapsulation of ciprofloxacin in
liposomes has been more effective and reduced the treatment period against Bacillus an-
thracis [23]. Prolonging ocular release and using penetration enhancers with ciprofloxacin
Carbopol and HPMC gels showed superior corneal penetration and antibacterial efficacy
compared to ciprofloxacin solution eye drops [24].
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2.1. Preparation of 2b-Loaded Niosomes an Discomes

Five different niosomal formulations were prepared, employing the thin film hydra-
tion method based on an optimized masses (mg) equivalent to the molar ratio 7:3 of the
surfactant forming niosomes (Span 60) and the membrane stabilizer (cholesterol). This
optimized ratio could offer residual thermal transition at the ocular surface for enhanced
ocular tolerability and bioavailability [19,20].

Three different membrane additives were investigated, namely, Solulan C24, sodium
cholate and sodium deoxy cholate. The inclusion of Solulan C24 into niosomes produces
a more favorable version for ocular delivery compared with the conventional spherical
niosomes [21]. Discomes have relatively larger size and discoidal shape that can be retained
longer on the surface of the eye for better ocular bioavailability compared to conventional
niosomes [21]. Sodium cholate and deoxycholate have been reported to produce a special
type of surfactant vesicles called bilosomes that have desirable characteristics for enhanced
permeation and skin tolerability [19].

Figure 2 shows a collective photograph of the five different prepared formulations.
Apart from F3 and F4, 3 out of 5 formulations show uniform, homogeneous and milky
dispersion, indicating the formation of niosomal dispersion vesicles, while F3 (containing
sodium cholate) showed milky dispersions, but numerous non-hydrated large lipid aggre-
gates were observed. On the contrary, cracked and phase separations were obtained with
F4 (containing sodium deoxycholate).
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These findings contradict our previous findings upon using a water-soluble drug (nal-
trexone hydrochloride) [25]; the results indicate that both sodium cholate and deoxycholate
are poor membrane additives when used with a poorly soluble drug like 2b. The lower
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panel of Figure 2 shows the size distribution curves of F1 (niosomes) and F2 (discomes),
with average particle sizes of 5 and 10 µm, respectively.

2.2. Characterization of the Prepared 2b Niosomes and Discomes

The entrapment efficiency percentages (EE%) for F1, F2 and F5 were in the following
order: 91 ± 2.5%, 97 ± 4% and 81 ± 3.5%, respectively. In general, high EE% recorded
for the prepared niosomal formulation could be ascribed to the hydrophobic nature of
the drug; therefore, it is more happily partitioned into a surfactant bilayer than a bulk
aqueous environment. Further, the EE% for discomes (F2) was superior compared to the
conventional niosomes. The inclusion of cholesterol into F5 significantly affected the EE%
in a negative way. For example, F5 containing 10% of cholesterol lowered the EE% by 16%
compared to that of F2. Cholesterol is an extremely hydrophobic moiety that aligns itself
parallel to the bilayer membrane [17]. Hence, it competed with the hydrophobic drug 2b at
the limited available sites with the bilayer membranes of the vesicles.

Figure 3 demonstrates SEM micrographs for F1 (the conventional niosomes) and F2
(discomes) at 3 different magnifications: ×350, ×750 and ×1000. Spherical niosomes with
smooth surfaces and an approximate diameter of 5 µm were recorded for F1. On the other
hand, relatively larger sizes (>>10 µm) with discoidal shaped vesicles and irregular surfaces
were recorded for F2. These findings confirm the formation of niosomes and discomes for
F1 and F2, respectively.
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Figure 3. Scanning electron micrographs for F1 (conventional niosomes) and F2 (discomes) at different
magnifications.

From SEM and EE% studies, discomes with larger sizes and irregular surfaces could
stay longer on the surface of the eye compared to small and spherical vesicles. These lend
discomes more favorable features for ocular delivery than the conventional niosomes [21,26].

Figure 4 shows different release profiles for 2b from the three selected niosomes
and were compared with that for control 2b suspension formulation. The lowest release
rate (1 %.h−1 and extent (less than 5%) of cumulative drug release were recorded with
the control 2b suspension formulation. On the other hand, all of the selected niosomal
formulations (F1, F2 and F5) showed significantly higher drug release rates and extents
(from approx. 40% to 80%). These results could be assigned to the availability of 2b in
soluble forms in the bilayer membranes of niosomes and are ready to partition; however,
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more time was required for the solubility and dissolution of drug particles in the control
suspension formulation. Among the selected three different niosomal formulations, the
typical spherical niosomal formulation F1 showed the highest drug release compared
to discomes F2 and F5. The rigidity of the bilayer membrane of conventional niosomes
that included the highest percentage of cholesterol (the extremely hydrophobic and rigid
molecule) could be the possible reason of ejecting, i.e., ‘’kicking”, the hydrophobic drug
molecules out of the bilayer membranes [27].
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Figure 4. In vitro release of the ciprofloxacin Mannich derivative (2b) from some selected niosomal
formulations and control 2b suspension.

Similar results were reported elsewhere. Carvedilol niosomes composed of Span
60:Tween 60:cholesterol at a 25:25:50 ratio showed faster release rates compared to those
composed of a lower ratio of cholesterol (Span 60:Tween 60:cholesterol of 35:35:30) [28].

Six release kinetics models were studied to understand the drug release mechanisms
from the selected formulations. The regression coefficients and release rate constants
estimated from the used models were demonstrated in Table 1. The results showed that
the best fitting model, as indicated from r values > 0.99, was the Higuchi model/diffusion
release mechanism from the vesicles. The release rate constants estimated for F1, F2 and F3
by the Higuchi model were 4.3, 2.5 and 2.3 %.min−0.5, respectively.

Table 1. Regression coefficient (R) and release rate constant (K) generated from different kinetics models.

Formula
Zero First Higuchi Hixon-Crowel Baker & Lonsdal Korysmayer-Peppas

R K0 R K R KH R KHC R K3 R n

F1 0.79 0.72 −0.79 −1.6 0.999 4.3 0.79 0.72 0.98 0.0004 0.99 0.5

F2 0.8 0.74 −0.81 −1.7 0.995 2.5 0.81 0.74 0.987 0.0001 0.98 0.4

F5 0.81 0.74 −0.81 −1.7 0.999 2.3 0.81 0.74 0.993 0.0001 0.98 0.44

Release rate constants were in good accordance with the release profiles (Figure 4).
F5 recorded q slightly lower release rate compared to that for F2. However, there were no
statistically significant (p > 0.5) differences between the release rate constants for F2 and
F5. The main difference in the composition of the two discomes formulations was that
F5 contained 10% of cholesterol. This cholesterol level slightly decreased the release rate
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but was not significant. Therefore, both F1 (niosomes) and F2 (discomes) were selected for
further in vivo studies.

2.3. In Vivo Study

The included rabbits’ corneas in each group were evaluated over 4 days from inducing
corneal ulcer, inoculating with Pseudomonas aeruginosa and starting the treatment 24 h
post-infection (Figure 5). The corneas were photographed and the size of the ulcer was
evaluated by measuring the ulcer area in mm2. The measurements were evaluated and
analyzed with ImageJ software, with 64-bit Java 1.8.0_172.
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In group A (the untreated group), the size of the ulcer progressively increased and
the cornea became totally opacified within 4 days of the follow up. The ulcer size ranged
between 8.23 and 13 mm2 (the mean ulcer size was 10.878 ± 2.10 mm2).

In group B (treated with Ciprocin® eye drops), the corneal ulcer gradually improved
and the corneas became clear by the fourth day of follow up. The size of the ulcer ranged
between 8.93 mm2 before treatment and 0 after treatment (mean 4.8276 ± 3.43 mm2). In
group C (treated with 2b suspension), the ulcer progressively increased and the corneas
became totally affected by the end of follow up.

The ulcer size ranged between 8.87 and 13 mm2 (mean 10.8924 ± 1.35 mm2). In group
D (treated with niosomes), the ulcer gradually improved and decreased in size, with total
improvement by the fourth day. The size of the ulcer ranged between 0 (after treatment)
and 8.77 mm2 before treatment (mean 5.1792 ± 3.09 mm2).

In group E (treated with discomes), the ulcer decreased in size and complete improve-
ment was evident in the 3rd day of follow up. The size of the ulcer ranged between 0 (before
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treatment) and 8.78 mm2 after treatment (mean 5.6576 ± 3.27 mm2). Group E (treated with
discomes) showed marked improvement on the 2nd day of treatment in comparison to
other groups that showed improvement. Moreover, the complete resolution of the ulcer
area was reached in group E on the 3rd day in comparison to the 4th day in groups B & D.
Discomes have more ocularly favorable characteristics than conventional niosomes. This is
due to them having larger sizes and non-spherical (discoidal) shapes that can resist tears
flushing and stay longer on the surface of the eye compared with the smaller size and
spherical-shaped niosomes [21,26].

2.4. Histological Documentation of the Rabbits’ Corneas

Figure 6a shows histological micrographs of normal cornea; the outer covering is
non-keratinized stratified squamous epithelium (star), the underlying Bowman’s mem-
brane (asterisk), the stromal collagen fibers (red arrows) and keratocytes (black arrows).
Figure 6b,c shows infected cornea, intrastromal bacterial colonies (circle), dilated and con-
gested blood capillaries (black arrows), inflammatory polymorphonuclear cells infiltration
(yellow arrows) and disorganized collagen bundles (asterisks). Hydropic swelling of some
of the covering epithelial cell and basement membrane was absent and replaced by in-
flammatory cells. Figure 6c shows corneal ulcer (arrow head) and stromal neutrophil cells
infiltration (inset).
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Figure 6. Histological micrographs of the excised rabbits’ corneas for negative untreated control (a)
and untreated positive (infected) control (b,c), hematoxylin and eosin stain × 200 & 400.

Figure 7A shows the synthetic drug suspension-treated group; the corneal epithelium
appeared as multi-layered squamous-like cells, the basal and supra-basal layers show
hydropic swelling and others showed apoptosis (blue and red arrows). The stroma shows
fewer inflammatory cells infiltrate (circle), moderate edema (rectangle) and minor disor-
ganized collagen (asterisk). Figure 7C shows the niosomes-treated group; apoptotic and
mitotic figures (red & black arrows) are seen among the hyperplastic epithelium (star). The
stromal edema is very minimal (blue arrows), and the Descemet’s membrane (DM) is thick.
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Figure 7. Histological micrographs of the excised rabbits’ corneas for 2b suspension (A), Ciprocin®

eye drops (B), niosomes (C), discomes (D) and hematoxylin and eosin stain × 200 & 400.

Figure 7B shows the commercial ciprofloxacin (Ciprocin®) eye drops-treated group;
the epithelium is about five layers thick (star), the Bowman’s membrane is attenuated at
certain sites (thick arrow), the stroma shows fibroblast cell proliferation (inset) and the DM
has normal thickness. Figure 7D shows the discomes-treated group, normal epithelium
(star) and intact Bowman’s membrane (blue arrow). The corneal stroma shows no edema,
normal keratocytes (black arrows), well-organized collagen fibers and DM with normal
thickness.

In addition to the superior healing rates recorded for both 2b niosomes and 2b dis-
comes, histological documentation could indicate that niosomes and discomes drug deliv-
ery systems are well-tolerated, effective and safe carriers for 2b. This is because the normal
structure of the cornea was obtained even after complete wound healing. These results are
in favour of the good ocular tolerability and safety of the prepared niosomes and discomes.

2.5. Gene Expression of IL-6, IL-1B, TNFα, and NF-κB

Keratitis is the inflammation of the cornea. NF-κB plays a central role in the induc-
tion and regulation of pro-inflammatory cytokines in both innate and adaptive immune
response [29,30]. In response to inflammation, macrophages become activated and secrete
the cytokines (e.g., IL-1B, IL-6 and TNFα) [31].

IL-6 and IL-1B are pleiotropic cytokines that mediate the inflammation in tissues and
organs including the cornea. TNF-α showed proinflammatory and immunoregulatory
characteristics, for instance, and TNFα exhibited immunoregulatory activity on the dif-
ferentiation of B-cells, T cells and dendritic cells. The expression of IL-6, IL1B, TNFα and
NF-κB was investigated in the present study.

The mRNA levels of IL-6, IL1B, TNFα and NF-κB in the negative control, untreated
positive control and treated groups are shown in Figure 8. The quantitative real-time find-
ings revealed that all of the treated groups demonstrated statistically significant (p < 0.05)
lower expressions of the four inflammatory mediators measured. Ciprocin® eye drops
significantly (p < 0.05) lowered the mRNA levels of NF-κB and IL-6 when compared to the
infected untreated animals.
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Figure 8. Expression of IL-6, IL1B, TNFα and NF-κB in normal untreated control (NC) and different
groups after treatments. Data presented as means ± SEM. Significant differences were analyzed
through one-way ANOVA. Where * p < 0.05; ** p < 0.01; *** p < 0.001, compared to infected untreated
group and ## p < 0.01; ### p < 0.001, compared to discomes (F2).

Also, the marketed ciprofloxacin eye drops showed a notable (p < 0.01) decrease in
TNFα when compared to infected untreated animals. While Ciprocin® eye drops showed
non-significant (p > 0.05) activity on IL-1B. The drug exerted a significant (p < 0.05) decrease
on NF-κB, a notable (p < 0.01) decrease on TNFα and non-significant (p > 0.05) activity on IL-
6 and IL-1B when compared to infected untreated animals. 2b niosomes exerted significant
(p < 0.05) inhibition on IL-1B and notable (p < 0.01) decreases of the mRNA levels of IL-6,
TNFα and NF-κB when compared to infected untreated animals. 2b discomes exhibited
significant (p < 0.01) inhibition on IL-6, IL-1B and NF-κB and substantial inhibition on
TNFα gene expression when compared to infected untreated animals, as shown in Figure 8.

Since 2b discomes formulation showed better characterization in the above-mentioned
findings, the significance of 2b discomes (F2) on the modulation of gene expression against
2b niosomes (F1), 2b suspensions and Ciprocin® eye drops was compared. There was no
significant (p > 0.05) difference in different gene expression between discomes and niosomes
formulations. However, discomes (F1) exerted lower (p < 0.01) mRNA levels in TNFα and
NF-κB, and notable decreases (p < 0.001) in IL-6 gene expression, when compared to the 2b
suspension, while discomes exerted a significant (p < 0.01) decrease in IL-6 gene expression
when compared to Ciprocin® eye drops.

3. Materials and Methods

Sodium cholate, sodium deoxycholate, cholesterol and cellulose membrane (molecular
weight cut-off 12,000–14,000 Da) were obtained from Sigma–Aldrich Chemical Co. (Poole,
UK). Solulan C24 was donated from Lubrizol, France. Sodium cholate and Span 60 were
purchased from Fisher Chemical, (Loughborough, Leicestershire, UK).

3.1. Chemistry

We have recently published a new ciprofloxacin-Mannich derivative that has been
given the abbreviation (2b). 2b was synthesized at the organic chemistry lab, Faculty of
pharmacy, Deraya University according to the previously published method [16]. The
selected compound (2b) was synthesized in good yield through Mannich reaction between
ciprofloxacin and 2-naphthol by refluxing the two components with formaldehyde in
ethanol. The compound was confirmed and checked by 1H- NMR &13C-NMR spectral
data as well as Mass spectrometry and elemental analysis.

3.2. Bacteria

Pseudomonas aeruginosa bacteria were grown from the Persian-type culture. The
bacteria were sub-cultured using Muller- Hinton agar plates and incubated at 37 ◦C.
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Pseudomonas aeruginosa PAO1 was obtained from the Microbiology Department, Deraya
University.

3.3. Methods
3.3.1. Preparation of 2b-Loaded Niosomes and Discomes

Various 2b-loaded niosomes based on the design shown in Table 2 were generated
using the thin film hydration method. Span 60 was the surfactant-forming vesicles; bilayer
membrane additives, namely, cholesterol, Solulan C24, sodium cholate and sodium deoxy-
cholate were used [25]. The drug, surfactant and membrane additives were transferred
into a 50 mL flask with a round bottom. The surfactant/lipid powder was dissolved in
5 mL of methanol:chloroform mixture (1:1 v/v). The solvent was rotary evaporated under
a vacuum, and the formed lipid film on the bottom of the flask was dispersed in 10 mL of
phosphate buffer saline of pH 7.4 for 60 min at 60 ◦C.

Table 2. Composition (molar ratio) of various 2b-loaded niosomes.

Formulation Drug
(%) Span 60 Cholesterol Solulan

C24
Sodium
Cholate

Sodium
Deoxycholate

F1 0.3 7 3 - - -

F2 0.3 9 - 1 - -

F3 0.3 9 - - 1 -

F4 0.3 8 1 - - 1

F5 0.3 8 1 1 - -

3.3.2. Characterization of Synthesized CIP-Loaded Niosomes
Entrapment Efficiency (EE) %

The EE% of niosomes for 2b was determined by centrifugation. The niosomes were
spun at 5000 rpm for 1 h (h). Thereafter, the drug amount in the supernatant was determined
using an ultraviolet-visible spectrophotometer (JENWAY, Shanghai, China) at a wavelength
of 272 nm. The EE% of 2b niosomes was estimated through Equation (1):

EE% =
W initial drug− W drug in supernatant

W initial drug
× 100 (1)

where W denotes the mass (mg) of drug.

Scanning Electron Microscope (SEM)

The size and morphology of some selected niosomes were studied using the SEM
(KYKY EM 3200, China). The prepared niosomes were diluted (1:10) with deionized water.
The diluted niosomes were dropped on an amorphous polycarbonate grid, allowed to dry
and were sputter coated with gold and examined with accelerating voltage at 200 kV.

In Vitro Release

In vitro release was studied using in-house modified-Franz diffusion cells. The re-
ceptor compartment was thermostated by immersion in a shaking water bath (MESB-1A,
Labomiz, Scientific limited, Farmingdale, NY, USA) at 50 strokes per minute and adjusted
at 35 ± 0.5 ◦C. The receptor compartment (50 mL) was filled with the phosphate buffer
saline containing 0.1% Tween 80 (pH 7.4) and constantly stirred by small magnetic bars.

A dialysis membrane with MW of 12,000–14,000 Dalton separated the donor com-
partment and receptor tube. One mL of each niosomal dispersion or 2b suspension was
transferred into the donor compartment; one mL was withdrawn from receptor compart-
ment at specified time points: 15, 30, 60, 120, 180, 240 and 300 min. The experiment was
repeated thrice, and the cumulative drug release was analyzed spectrophotometrically at
272 nm, as described above.
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Release Kinetics

Release data were fitted into different mathematical models (Equations (2)–(7)) for
studying the release mechanisms from the selected niosomes [32]:

Zero order:
Qt = Qo + Kot (2)

First order:
dQt
dt

= K1Qo (3)

Equation (3) can be simplified as:

logQt = logQo −
tK1

2.303
(4)

where Qt and Qo are the amounts of drug released at time t and time = 0, respectively; Ko
and K1 are the zero order and first order rate constants, respectively.

Higuchi diffusion:
Q = KHt0.5 (5)

where kH is the release constant
Hixon Crowell:

Q1/3
o −Q

1
3
t = tKHC (6)

where kHC is the Hixon-Crowell release rate constant.
Baker–Lonsdale:

2
3

[
1− (1− Mt

M∞
)

2/3
]
− Mt

M
= tK3 (7)

Korsmeyer–Peppas:
Mt

M∞
= k tn (8)

whereas Mt/M∞ refers to the percentage cumulative drug release at t; n is the release
exponent.

In Vivo Studies

• Preparation of bacteria

Pseudomonas aeruginosa PAO1 was obtained from Deraya University. Muller Hinton
agar (Merck, Germany) was employed for growing the bacteria. The concentration of
bacterial suspension was adjusted to 105 CFU mL−1.

• Animals and grouping

Twenty-five New Zealand rabbits weighting 1.5–2.5 kg were obtained from the animal
house (Deraya University). The rabbits were divided into four groups (5 rabbits for each
group). Each left eye was treated as follows.

Group A was negative control (no infection; no treatment); group B was positive
control and treated with Ciprocin® 0.3% eye drops; group C was positive control and
treated with 2b 0.3 suspension; group D was positive control and treated with F1 niosomes;
and group E was positive control and treated with F2 discomes. The right eyes were left
untreated as positive untreated control.

The corneas were photographed, and the size of the ulcer was evaluated by measuring
the ulcer area in mm2. The measurements were evaluated and analyzed with the ImageJ
software. This in vivo study was approved by the Ethical Review Board of Faculty of
Pharmacy (Approval no. 2/2021), Deraya University. The study protocol complied with all
national and international guidelines for the care and the use of animals.

• Induction of experimental pseudomonas-infected corneal ulcer (compounded bacterial
keratitis)
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Corneal ulcers in rabbits were induced in both eyes, as previously mentioned, using
alcohol 70% v/v [33]. The surgically induced corneal epithelial ulcers were infected with the
spreading one CFU of Pseudomonas aeruginosa on the affected ulcer lesion. The treatment
was initiated 24 h post-ulcer formation and bacterial inoculation to allow for bacterial
virulence and keratitis induction. Each left eye was treated, as mentioned above, three
times daily by a single instillation of drop of each treatment for four days. The rabbits’ eyes
were stained with sodium fluorescein solution (2% w/v) for ulcer assessment purposes
and then photographed. At the end of the 4-day experimental period, the animals were
sacrificed and the corneas were dissected for subsequent histological examination in 10%
formalin and molecular analysis stored at −80 ◦C.

Histology and Immunohistochemistry

The affected corneal tissues of rabbits’ eyes from the in vivo studies were excised and
placed in 10% formalin in PBS pH 7. 5 and dehydrated using absolute ethanol. Small
sections (5 mm) of the fixed corneal tissues were sectioned and H&E stained for 5 min. The
histological sections were visualized using the Olympus Biological Trinocular microscope,
Model: CX31, Tokyo, Japan and connected With HD digital Camera model: XCAM, Tokyo,
Japan (HD5mega pixel).

RNA Isolation and qPCR Assay

RNA extraction was performed for all tissue homogenate using Branson digital soni-
cator (Emerson, St. Louis, MO, USA) with TRIzol (ThermoFisher Scientific, Inc., Waltham,
MA). The samples were treated with DNase I; cDNA synthesis was achieved with cDNA Re-
verse Transcription Kit (ThermoFisher Scientific, Inc., Waltham, MA, USA). The expression
of IL-6, IL-1B, TNFα and NF-κB genes was assessed by real-time qPCR. Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as a control [34]. The sequences of the
primers, National Center for Biotechnology Information, are mentioned in Table 3. The
quantification of mRNA was achieved using Biosystems StepOne TM PCR (ThermoFisher,
Waltham, MA, USA).

Table 3. Sequences of the primers generated from NCBI.

Primer Sequence of the Primer

IL6 Forward: 5’-GGCACTGGCGGAAGTCAATC-3′

Reverse: 5′-ACTCCATCAGCCCCGAAGTG-3′

IL-1B Forward: 5′-AGC TTC TCC AGA GCC ACA AC-3
Reverse: 5′-CCT GAC TAC CTT CAC GCA CC-3′

TNFα Forward: 5′-GAG AAC CCC ACG GCT AGA TG-3′

Reverse: 5′-TTC TCC AAC TGG AAG ACG CC-3′

NF-κB Forward: 5′-TGGGGACAGCGTCTTACACC-3′

Reverse: 5′-TGCCAAGTGCAAGGGTGTCT-3′

GAPDH Forward: 5′-GTC AAG GCT GAG AAC GGG AA-3′

Reverse: 5′-ACA AGA GAG TTG GCT GGG TG-3′

Triplicate RT-PCR reactions were performed for each sample. Cycle threshold (CT)
was determined in treated cells relative to untreated ones, and their respective CT values
were estimated through Equations (9)–(11) [35].

∆CT = CTtarget gene − CTre f erence gene (9)

∆∆CT = ∆CTtreated sample − ∆CTuntreated control (10)

Ratio = 2∆∆CT (11)
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The CT value obtained the gene of interest from the internal control GAPDH (∆CT = CT,
target—CT, control). To exclude the generation of non-specific compounds and to character-
ize the obtained amplified mixture with the avoidance of contamination, a melting curve
analysis was achieved between 60–95 ◦C at 1 ◦C intervals with the Rotor-Gene 6000 Series
Software 1.7 (QIAGEN, the Netherlands) using the SYBR Green fluorescent dye.

3.4. Statistical Analysis

Significant differences among different formulations and animal groups were analyzed
by one-way ANOVA using GraphPad Prism 5.03 software, San Diego, CA, USA.

4. Conclusions

Antibiotic resistance among the isolates of bacterial keratitis alarmingly increases and
is now routinely reported by the ophthalmologists. In addition, the epidemiology of bacte-
rial keratitis is spirally on the rise due to increasing demand on refractive surgeries, increas-
ing of number of dry eye patients and contact lens users. A newly synthetized ciprofloxacin
derivative based on Mannich base (2b) has been reported to show antimicrobial activi-
ties. Three membrane additives, two bile salts (sodium cholate and deoxycholate) and a
non-ionic surfactant, were investigated to modify bilayer membranes’ vesicles. Among
the three additives used, only Solulan C24 produced a special version of non-spherical
niosomes called discomes.

A Pseudomonas aeruginosa-infectious ulcerative corneal model in rabbits was em-
ployed to study the antibacterial activity of 2b-loaded niosomes and discomes. The antibac-
terial activities and corneal wound healing rates of niosomes and discomes were compared
with 2b suspension and Ciporcin eye drops. The histological documentation and gene
expression of inflammatory markers IL-6, IL1B, TNFα and NF-κB indicated the superior
antibacterial and complete healing of the prepared 2b niosomes and discomes.

The developed niosomes and discomes were tolerable and effective, as they were
formulated at the physiological pH 7.4, compared to Ciprocin® (ciprofloxacin) eye drops,
which were formulated at low pH 4.5 to ensure complete solubility. These findings warrant
the use of the newly synthetized ciprofloxacin derivative for the treatment of Pseudomonas
aeruginosa keratitis.
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Abbreviation
CIP Ciprofloxacin hydrochloride
CFU Colony-forming unit
cDNA Complementary DNA
CT Cycle threshold
DNase I Deoxyribonuclease I
DM Descemet’s membrane
EE% Entrapment efficiency percentage
GAPDH GlyceraSldehyde 3-phosphate dehydrogenase
HPMC Hydroxypropyl methyl cellulose
IL-6 Interleukin 6
IL1B Interleukin 1 beta
min minute
mm millimeter
mRNA messenger ribonucleic acid
NF-κB Nuclear factor kappaB
NMR Nuclear Magnetic Resonance
qPCR Quantitative polymerase chain reaction
RT-PCR Real time-polymerase chain reaction
SEM Scanning electron microscope
TNF-α tumor necrosis factor alpha
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