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Objective
To assess automatic computer-aided in situ recognition of the morphological features of pure and mixed urinary stones
using intra-operative digital endoscopic images acquired in a clinical setting.

Materials and Methods
In this single-centre study, a urologist with 20 years’ experience intra-operatively and prospectively examined the surface
and section of all kidney stones encountered. Calcium oxalate monohydrate (COM) or Ia, calcium oxalate dihydrate (COD)
or IIb, and uric acid (UA) or IIIb morphological criteria were collected and classified to generate annotated datasets. A deep
convolutional neural network (CNN) was trained to predict the composition of both pure and mixed stones. To explain the
predictions of the deep neural network model, coarse localization heat-maps were plotted to pinpoint key areas identified
by the network.

Results
This study included 347 and 236 observations of stone surface and stone section, respectively; approximately 80% of all
stones exhibited only one morphological type and approximately 20% displayed two. A highest sensitivity of 98% was
obtained for the type ‘pure IIIb/UA’ using surface images. The most frequently encountered morphology was that of the
type ‘pure Ia/COM’; it was correctly predicted in 91% and 94% of cases using surface and section images, respectively. Of
the mixed type ‘Ia/COM + IIb/COD’, Ia/COM was predicted in 84% of cases using surface images, IIb/COD in 70% of
cases, and both in 65% of cases. With regard to mixed Ia/COM + IIIb/UA stones, Ia/COM was predicted in 91% of cases
using section images, IIIb/UA in 69% of cases, and both in 74% of cases.

Conclusions
This preliminary study demonstrates that deep CNNs are a promising method by which to identify kidney stone
composition from endoscopic images acquired intra-operatively. Both pure and mixed stone composition could be
discriminated. Collected in a clinical setting, surface and section images analysed by a deep CNN provide valuable
information about stone morphology for computer-aided diagnosis.
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Introduction
Modern endoscopic treatment of urinary stones now relies on
laser (holmium:YAG) fragmentation of stones, which can be
performed using ‘popcorn’ [1], ‘dusting’ modes [2], or more
recently by means of thulium fibre laser (TFL) [3,4]. Laser
fragmentation may destroy the morphology of the targeted

stone [5], however, analysis of stone morphology is crucial
for the aetiological diagnosis of stone disease [6–8] and for
the development of novel immediate postoperative treatment
strategies that will eliminate potential residual stone
fragments with a lower probability of relapse [9]. For
example, calcium oxalate monohydrate (COM [or Ia]), or
calcium oxalate dihydrate (COD [or IIb]), criteria would
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support the prescription of an immediate diet containing
potassium citrate, as reported in Soyg€ur et al. [10].
Recognition of uric acid (UA [or IIIb]) morphological criteria
would steer the medical decision towards postoperative
urinary alkalinization with potassium citrate or sodium
bicarbonate to dissolve residual fragments [11].

The complete morphological analysis workflow may typically
include the following two complementary steps:

1. An intra-operative step, which is conducted by a urologist
and involves an endoscopy-based examination of the
morphology of entire stones in situ before their
destruction. This step is commonly referred to as
endoscopic stone recognition (ESR) [12]. Endoscopic
images can be conveniently obtained before (surface
image) and after (section images) fragmentation, thus
providing valuable morphological information. Estrade
et al. [12] recently showed that ESR allowed the
identification of the following morphologies: COM, also
referred to as types Ia, Ib, Id or Ie (subscripts in the Latin
alphabet differentiate morphological subtypes, each being
associated with a specific aetiology), COD (or IIa/IIb), UA
(or IIIa/IIIb), carbapatite (or IVa1), carbapatite and
struvite (or IVb), brushite (or IVd), and cystine (or Va).

2. A postoperative step, which is performed by a biologist
and consists of collecting morpho-constitutional stone
information based on both microscopic morphological, i.e.,
binocular magnifying glass, and spectrophotometric
infrared recognition (Fourier transform infrared
spectroscopy [FTIR] analysis) [6–8].

The international morpho-constitutional classification of
urinary stones includes seven groups (denoted by roman
numerals ‘I’ to ‘VII’), each being associated with a specific
crystalline type (I = whewellite, II = weddellite, III = uric acid
and urates, IV = calcium and non-calcium phosphates, and V
= cystine. Groups VI and VII are devoted to other stones).
Each group comprises several subgroups that differentiate
morphologies and aetiologies for a given crystalline type.
Furthermore, urinary stones have mixed morphologies, that
is, they include at least two morphologies (almost half of all
cases are concerned). The interested reader is referred to
Corrales et al. [13] for additional information about the
international morpho-constitutional classification of urinary
stones.

Recently, an artificial intelligence (AI) algorithm applied to
various types of microscopic images of stones ex vivo proved
to be a promising asset for automatic ESR using both peri-
and postoperative images. While Serrat et al. [14] fed texture
and colour features of stones into a random forest classifier,
Black et al. [15] obtained much improved scores using a deep
convolutional neural network (CNN). However, both
approaches used ex vivo stone fragments placed in a
controlled environment. Images were not disturbed by

motion blur, specular reflections or scene illumination
variations, as occurs in common practice during an intra-
operative endoscopic imaging session. More recent works
demonstrated the potential of automated ESR approaches
using in vivo images acquired in clinical conditions with
ureteroscopes on three types of pure stones – Ia/COM, IIb/
COD, and IIIb/UA – from 125 kidney stone images [16,17].

Morphological examinations of the entire stone before its
destruction provide the best diagnostic agreement [6–8,12,13].
Moreover, Corrales et al. [13] showed that almost half of all
urinary stones are of mixed morphologies with two or even
three different crystalline components. AI applications must
therefore be improved to meet this challenge. The present
study has three objectives. Firstly, we aimed to report the
preliminary results of the automatic ESR of the
morphological components of both pure and mixed urinary
stones (these mixed stones being composed of two
morphologies in the scope of this study), in situ, and using
intra-operative endoscopic images acquired in a clinical
setting; the images used in this project were captured in an
uncontrolled environment by means of ureteroscopes. In
addition, the overall performance of a deep neural network
was assessed in this setting. Secondly, we aimed to analyse
the diagnostic scores computed from images obtained before
and after laser fragmentation. Thirdly, we attempted to
understand decisions made by a deep neural network in this
setting. Specifically, a common problem of deep CNNs is
their inability to explicitly display what the model has
learned, hence, they are often named ‘black box’ algorithms.
Predictions computed from deep CNNs are in turn hard to
explain. Currently there is a growing interest in the
development of robust validation procedures to address this
key issue. In the present study, we illustrate the usefulness of
providing deep CNN-algorithm based ‘attention’ maps to
understand where the algorithm was ‘looking’ in the
endoscopic image when it took its decision.

Materials and Methods
Study Design

A urologist (V.E.; 20 years’ experience) prospectively
examined the intra-operative endoscopic digital images of
stones acquired between January 2018 and November 2020 in
a single centre using a flexible digital ureterorenoscope
(Olympus URF-V CCD sensor). The endoscopic examination
included a visual observation of the stone surface. Then, a
laser-induced stone split in two parts was performed (laser
[holmium:YAG] parameters: frequency = 5 Hz; energy = 1.2–
1.4 J; power = 6–7 W; pulse length = short; fibre diameter =
230 or 270 µm). A second visual observation of the section
was then performed. An additional fragmentation session was
carried out when needed, thus allowing fragmentation of all
types of pure and mixed stones. Subsequently, ESR was
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confirmed by means of microscopic observations of laser-
fragmented stones based on both morphological (binocular
magnifying glass) and infrared (FTIR) analyses. The study
adhered to all local regulations and data protection agency
recommendations (National Commission on Data Privacy
requirements). Patients were informed that their data would
be used anonymously.

Morphological Criteria

Morphological criteria were collected and classified according
to recommendations outlined in Estrade et al. [12]. Stones
composed of Ia/COM, IIb/COD and IIIb/UA morphologies
were selected. Hence, five morphology classes were included
in this study, with three pure stones (Ia/COM, IIb/COD and
IIIb/UA) and two mixed stones divided into two
morphologies (Ia/COM + IIb/COD and Ia/COM + IIIb/UA).

Computer-Assisted Endoscopic Stone Recognition
Analysis

Generation of Annotated Datasets

Two annotated datasets were generated: the first comprised
surface images (referred to as the ‘surface dataset’ hereafter)
and the second contained section images (referred to as the
‘section dataset’ hereafter). All images were automatically
cropped and resampled to an equal size of 256 by 256 pixels,
then served as input of the automatic ESR algorithm.

Automatic Endoscopic Stone Recognition
Algorithm

A deep CNN was trained to predict the composition of both
pure and mixed stones. Used as a multiclass classification
model, the deep CNN was a ResNet-152-V2 [18]. The
optimizer algorithm for training the deep-learning model was
Adam (learning_rate = 0.001) [19]. The loss function was a
categorical cross-entropy (). The batch size was eight, and 100
epochs were performed. To improve the ability of the
network to generalize, the training dataset was expanded
through data augmentation. In our implementation,
horizontal/vertical flips and affine transformations, including
random combinations of scaling (range = 0.3), rotation (range
= 50°), and translation (range = 0.2 of total width/height)
were applied during training.

Two networks were built separately: one using the surface
dataset and the other using the section dataset.

Activation Maps

To explain the predictions of the deep CNN, coarse localization
heat-maps were plotted to pinpoint key areas identified by the
network. To this end, activation maps using the gradient-

weighted class activation mapping (or Grad-CAM) method
were displayed, as discussed by Selvaraju et al. [20].

Implementation Details

Our implementation was performed using TensorFlow 1.4
and Keras 2.2.4. The Keras image preprocessing tools
available at https://keras.io/api/preprocessing/image/ were
applied for data augmentation.

Statistical Analysis

Quantitative Assessment of Automatic Endoscopic
Stone Recognition

For both the surface dataset and the section dataset, stones
were randomly divided into complementary training (70%)
and testing (30%) subsets (stratified split/no redundancy). A
cross-validation step was repeated 10 times with randomly
shuffled combinations for training and testing. The full
process was also repeated with different random initialization
seeds for the deep CNN algorithm. Average test metrics were
reported for each step: accuracy, area under the ROC curve
(AUROC), specificity, sensitivity, positive predictive value,
negative predictive value, false predictive rate and false-
negative rate. For additional information about these test
metrics, see Kohavi et al. [21] and Cantor et al. [22].
Concerning mixed stones, test metrics were evaluated when at
least one of the pure morphologies was predicted (note that
mixed stones were composed of two pure morphologies in
the scope of this study) and when both morphologies were
predicted.

Qualitative Assessment of Activation Maps

A qualitative (visual) observation of the activation maps was
carried out for surface and section images individually. The
amount of correctly classified and misclassified images was
calculated when the hot spots in the activation maps were
located: (i) in the stone, (ii) outside the stone and (iii) over
the tip of the endoscope.

Results
Stone Characteristics

The study included 347 observations of stone surface (pure
stones: Ia = 191/150 [number of images/number of unique
stones], IIb = 53/48, IIIb = 29/23; mixed stones: Ia + IIb =
64/54, Ia + IIIb = 10/9) and 236 observations of stone section
(pure stones: Ia = 127/96, IIb = 30/29, IIIb = 25/22; mixed
stones: Ia + IIb = 31/26, Ia + IIIb = 23/15).

Figure 1 shows representative examples of in situ endoscopic
images obtained for each pure stone morphology before laser
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fragmentation (surface image). Images acquired after laser
fragmentation (section images) are shown in Fig. 2. The three
pure stone morphologies (first three rows of Figs 1,2) had the
following visual characteristics:

• Ia/COM: before laser fragmentation (1a): a smooth or
mammillary, dark-brown surface; after laser fragmentation
(2a): compact concentric layers with a radiating
organization starting from a nucleus.

• IIb/COD: before laser fragmentation (1c): a yellowish or light-
brown surface with smooth, long bi-pyramidal crystals (like
small desert roses); after laser fragmentation (2c): a compact
poorly organized pale brown-yellow crystalline section.

• IIIb/UA: before laser fragmentation (1e): a rough, porous
surface with heterogeneous, beige to orange-red colour;

after laser fragmentation (2e): poorly organized, porous
ochre to orange structure.

Representative examples of in situ endoscopic images of Ia +
IIb and Ia + IIIb mixed stones are also shown (Figs 1,2, last
two rows). For each, the combinations of the corresponding
two of the three pure morphologies mentioned above are
visible.

Diagnostic Performance of Automatic Endoscopic
Stone Recognition

The testing subset of the surface dataset included 105 urinary
stones (pure stones: Ia = 57, IIb = 16, IIIb = 9; mixed stones:
Ia + IIb = 20, Ia + IIIb = 3). The testing subset of the section

Ia
(n=191)

True positive

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

False negative

IIb
(n=53)

IIIb
(n=29)

Ia + IIb
(n=64)

Ia + IIIb
(n=10)

Fig. 1 Representative automatic endoscopic stone recognition results obtained before laser fragmentation (surface image). Examples of both correctly

(left panel) and misclassified images (right panel; type reported on far left is not recognised by network) are shown. In situ surface images (left image

of each panel) are reported for each stone composition. Ia/calcium oxalate monohydrate, IIb/ calcium oxalate dihydrate and IIIb/uric acid pure

morphologies are reported in first three rows. For each mixed stone (last two rows), a mixture of the corresponding pure morphologies is visible.

Activation maps (right image of each panel) show areas where network concentrates attention.
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dataset included 70 urinary stones (pure stones: Ia = 38, IIb =
9, IIIb = 7; mixed stones: Ia + IIb = 9, Ia + IIIb = 7).

Table 1 details the diagnostic performance of the deep CNN
classifier for each tested pure type. The best sensitivity was
obtained for the type IIIb using surface images (98% of IIIb
stones correctly predicted). The most frequently encountered
morphology was the type ‘pure Ia’; it was correctly predicted
in 91% and 94% of cases using surface and section images,
respectively. On average, the accuracy was higher than 87%
for both pure and mixed stones.

Table 2 details the diagnostic performance of the deep
CNN classifier for each tested mixed type. Concerning Ia

+ IIb stones, Ia was predicted in 84% of cases using
surface images, IIb in 70% of cases, and both types in
65% of cases. Concerning Ia + IIIb stones, Ia was
predicted in 91% of cases using section images, IIIb in
69% of cases, and both types in 74% of cases. These
findings are also displayed in the confusion matrices
shown in Fig. 3: at least one of the two morphologies
constituting mixed stones is preferably detected as a
secondary choice, as indicated by off-diagonal values in
Fig. 3. Overall, percentages of valid predictions using
surface and section images were equal to 83% and 81%,
respectively (see blue cells in confusion matrices in
Fig. 3).

Ia
(n=127)

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

True positive False negative

IIb
(n=30)

IIIb
(n=25)

Ia + IIb

(n=31)

Ia + IIIb

(n=23)

Fig. 2 Representative automatic endoscopic stone recognition results obtained after laser fragmentation (section images). Examples of both correctly

(left panel) and misclassified images (right panel: type reported on far left is not recognised by network) are shown. In situ section images (left image

of each panel) are reported for each stone composition. Ia/calcium oxalate monohydrate, IIb/calcium oxalate dihydrate and IIIb/uric acid pure

morphologies are reported in first three rows. For each mixed stone (last two rows), a mixture of the corresponding pure morphologies is visible.

Activation maps (right image of each panel) show areas where network concentrates attention.
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Qualitative Performance of Activation Maps

Figures 1 and 2 also show image areas where the
classification network concentrated attention in the surface
(Fig. 1) and section datasets (Fig. 2), respectively. Activation
maps were overlaid on the digital endoscopic image in order
to establish whether the classification model relied on relevant
urological regions in the decision-making process. For
example, a hot spot was usually observed Ia on a mammillary
dark-brown area, which is a hallmark of Ia. Hot spots were
found on characteristic stone features in 98% of the correctly
classified images (using either surface or section images, see
‘true-positive’ columns in Figs 1,2). Hot spots outside the
stone were found in 33% and 25% of misclassified surface
and section images, respectively (Fig. 1d). Similarly, the tip of
the endoscope was present in the image field of view in 5%
and 2% of misclassified surface and section images,
respectively (red arrow in Fig. 1h).

Discussion
In the present study, we evaluated a deep-learning model to
predict in situ the morphology of pure and mixed stones
based on intra-operative endoscopic digital images acquired
in a clinical setting. A learning curve is needed to acquire the
ESR skills, which may limit its translation to practical use,
especially when mixed stone morphologies are involved [12].
A computer-assisted approach can deliver reproducible results
and minimizes operator dependency while assisting visual
interpretation of stone morphologies.

As reported in the studies by Estrade et al. [812], ESR may be
beneficial before fragmentation to preserve an aetiological
approach in lithiasis. The motivation is twofold. Firstly, laser
fragmentation (holmium:YAG and TFL), whether performed
with ‘popcorn’ [1] or ‘dusting’ modes [2], irreversibly destroys
the stone morphology. Postoperative FTIR examinations of
the stone powder itself may not provide sufficient

Table 1 Diagnostic performance of implemented deep convolutional neural network classifier for pure stones (i.e., Ia/calcium oxalate monohydrate,
IIb/calcium oxalate dihydrate and IIIb/uric acid morphologies).

Stone type Accuracy, % AUROC Sensitivity, % Specificity, % PPV, % NPV, % FPR, % FNR, %

Surface
Ia 90 � 3 0.90 � 0.03 91 � 5 90 � 4 92 � 3 90 � 4 10 � 4 9 � 5
IIb 93 � 2 0.86 � 0.04 77 � 7 95 � 2 76 � 9 96 � 1 5 � 2 23 � 7
IIIb 99 � 1 0.98 � 0.02 98 � 5 99 � 1 90 � 8 100 � 0 1 � 1 2 � 5

Section
Ia 94 � 2 0.94 � 0.02 94 � 2 93 � 5 94 � 4 94 � 3 7 � 5 6 � 2
IIb 94 � 3 0.83 � 0.09 69 � 18 97 � 2 77 � 13 96 � 3 3 � 2 31 � 18
IIIb 95 � 2 0.78 � 0.14 60 � 30 97 � 2 63 � 27 97 � 1 3 � 2 40 � 30

AUROC, area under the receiver operating characteristic curve; FNR, false-negative rate; FPR, false predictive rate; NPV, negative predictive value;
PPV, positive predictive value. Results obtained using surface and section images are reported after cross-validation (averaged indicators shown
with standard deviations). Accuracies, sensitivities, specificities, PPVs, and NPVs shown in percentages.

Table 2 Diagnostic performance of implemented deep convolutional neural network classifier for mixed stones (i.e., Ia/calcium oxalate monohydrate
(COM) + IIb/calcium oxalate dihydrate and Ia/COM + IIIb/uric acid morphologies).

Stone type Predicted
kidney type

Accuracy
(%)

AUROC Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

FPR
(%)

FNR
(%)

Surface
Ia + IIb At least Ia 89 � 2 0.88 � 0.03 84 � 4 91 � 2 85 � 4 91 � 2 9 � 2 16 � 4

At least IIb 90 � 2 0.82 � 0.03 70 � 6 94 � 2 70 � 6 94 � 1 6 � 2 30 � 6
Both Ia and IIb 87 � 3 0.78 � 0.05 65 � 10 92 � 3 65 � 8 92 � 2 8 � 3 35 � 10

Ia + IIIb At least Ia 94 � 1 0.93 � 0.02 89 � 4 96 � 1 91 � 3 96 � 2 4 � 1 11 � 4
At least IIIb 98 � 0 0.93 � 0.04 86 � 8 99 � 0 87 � 6 99 � 0 1 � 0 14 � 8
Both Ia and IIIb 98 � 1 0.75 � 0.14 50 � 28 100 � 1 71 � 32 99 � 1 0 � 1 50 � 28

Section
Ia + IIb At least Ia 91 � 2 0.90 � 0.02 86 � 4 93 � 2 86 � 4 93 � 2 7 � 2 14 � 4

At least IIb 91 � 2 0.78 � 0.06 60 � 13 95 � 1 64 � 8 94 � 2 5 � 1 40 � 13
Both Ia and IIb 88 � 2 0.72 � 0.08 51 � 17 93 � 2 51 � 10 93 � 2 7 � 2 49 � 17

Ia + IIIb At least Ia 94 � 2 0.93 � 0.02 91 � 3 95 � 2 90 � 4 96 � 1 5 � 2 9 � 3
At least IIIb 95 � 2 0.83 � 0.09 69 � 18 97 � 2 73 � 13 97 � 1 3 � 2 31 � 18
Both Ia and IIIb 94 � 2 0.85 � 0.09 74 � 18 97 � 2 74 � 16 97 � 2 3 � 2 26 � 18

AUROC, area under the receiver operating characteristic curve; FNR, false-negative rate; FPR, false-predictive rate; NPV, negative predictive value;
PPV, positive predictive value. Test metrics evaluated using surface and section images when at least one pure morphology is predicted (N.B. mixed
stones were composed of two pure morphologies in this study) and when both morphologies were predicted.
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information for the lithogenic stage [6–9]. Second, The
infrared (IR) spectra can be modified when the stone
fragmentation is achieved in dusting mode with high-
frequency TFL [2–5]. This may in turn bias FTIR dust
examinations: one can observe IR changes from COD
towards COM, IR changes towards an amorphous phase in
carbapatite, IR changes towards a differing and amorphous
crystalline phase in magnesium ammonium phosphate and IR
changes from brushite towards carbapatite [5].

We focused on pure and mixed stones involving Ia/COM,
IIb/COD and IIIb/UA morphologies. This strategy was driven
by the epidemiological distribution of the occurrence of
urinary stones to obtain a sufficiently large population for an
opposable statistical approach [23]. These morphological
types cover almost 85% of the most common stones that
urologists encounter in daily practice [6]. Our datasets of
endoscopic images will be supplemented by more pure and
mixed stone images in future studies (ongoing at our
institution) in order to increase the number of morphologies
to be predicted. In addition, the automatic ESR score will
likely improve if the network is able to train on a larger set
of data.

It should be noted that particles flying around in the saline
may disturb the morphological stone examination. To
properly recognize the colours and textures of the stone
surface, it is necessary to wait a few tens of seconds until the
saline solution has cleaned the urine in the kidney cavities.
Then, once the stone is split into two parts, a few seconds’
wait is again necessary before the saline solution has cleaned
microparticles of the stone. In the present study, a ureteral

access sheath was used to improve saline flow. However, in
practice, in the absence of a ureteral access sheath, only a few
additional seconds are needed for complete cleaning using the
saline serum. It should be emphasized that particles flying
around in the saline were not present in the images used for
training in the present study.

It should also be underlined that sufficient stability of the
endoscopic video image is required for a short duration (5–
10 s) to obtain good still frames. Any motion event is likely
to hamper the image quality and, in turn, to bias the
predictions of our trained network. In the present study, the
trained urologist (V.E.) made several attempts to obtain sharp
screenshot images (two attempts on average, maximum of
four). Several strategies may be investigated in future works
to improve the performance of the method when used on
motion-corrupted endoscopic images. Enhanced high-quality
images may be obtained from low-quality image series using
dedicated motion-compensated super resolution techniques
[24]. In addition, data augmentation techniques involving
simulated blur and motion events may further improve the
ability of the network to generalize for motion-corrupted
endoscopic images [25].

Any unobserved events/image artifacts during the training
step may, in turn, disturb the predictions of our trained
network. In future studies, automated and reliable quality
control on the input images must be developed in order to
detect potential failure modes of the network. The urologist
will then be advised to take laser-fragmented stones for a
postoperative infrared – FTIR – examination in a dedicated
laboratory.
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Fig. 3 Confusion matrices for implemented deep convolutional neural network classifier obtained using the surface (A) and section (B) datasets. Each

column of the matrices represents an actual stone type, while each line represents a predicted type. Green diagonal cells show number (averaged by

cross-validation) and percentage of correct predictions by trained network. Red off-diagonal cells correspond to wrongly predicted observations.

Column on far right shows positive predictive value (green numbers) and false discovery rate (red numbers). Bottom row shows sensitivity (green

numbers) and the false-negative rate (red numbers). Blue cell bottom right shows overall percentage of correct (green) and incorrect (red)

predictions.
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Processing of both surface and section images provides
valuable information about stone morphology for computer-
aided diagnosis. In practice, recognition of the morphological
hallmarks in surface images is easier than that in section
images (or even at the nucleus), as shown in Estrade et al.
[12] and Bergot et al.[26]. Consequently, our surface dataset
was generally more densely populated than our section
dataset (except for mixed Ia + IIIb stones, for which section
images better reveal the two morphological types). However,
the diagnostic performance of the surface dataset was found
to be comparable to that obtained in the section dataset
(Fig. 3; blue cells). By contrast, the diagnostic performance of
the section dataset was better than that obtained with the
surface dataset for pure IIIb/UA (Table 1). Surface and
section images may thus provide a source of cross-validation
of the diagnosis according to both complementary and
redundant information. We believe that paired surface and
section images for each stone may be incorporated into the
CNN in order to improve the accuracy of the predictions.

The annotated datasets must be accurate since any
subjectivity in ESR or potential bias of the urologist may be
transferred into the network model. A concordance study
between endoscopic digital pictures and microscopy may
provide a confirmed ESR image of stones corresponding to
specific aetiologies or lithogenic mechanisms [12]. In addition
to automatic ESR, activation maps could become an
important tool to test whether, during the decision-making
process, the classification model relied on relevant urological
regions. Moreover, the present study indicated that a hot spot
located outside the stone led to a misclassification.

Deep CNNs capable of processing a large number of specific
images efficiently are paving the way for automatic ESR on
videos, which would further improve the accuracy of
classification scores. This will require the development of
dedicated algorithms to remove ’on the fly’ irrelevant areas of
the image that are likely to bias the network, such as those
around the endoscope tip and surrounding tissue, among
others.

In conclusion, combined with endoscopic digital images
confirmed according to the criteria published in Estrade et al.
[12], AI is a good candidate for automatic ESR of the
morphological features of pure and mixed urinary stones
composed of two morphologies. This study is a preliminary
step towards the automatic ESR of mixed stones of several
morphologies. Activation maps may prove to be a great asset
for urologists to understand intra-operatively the predictions
made by the AI model. This is especially crucial in medical
applications where model accuracy is paramount. Combined
with didactic boards of confirmed endoscopic images, both
computer-aided diagnosis and associated activation maps may
be useful for urologists to recognize stones in situ using an
endoscopic examination before destruction. The combination

of automatic intra-operative ESR and postoperative infrared
(FTIR) examinations of laser-fragmented stones would
improve the aetiological approach to lithiasis.
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