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Objective: Due to the information-rich nature of positron emission tomography/computed tomography (PET/CT) images, the
authors hope to explore radiomics features that could distinguish metastatic lymph nodes (LNs) from hypermetabolic benign LNs, in
addition to conventional indicators.
Methods: PET/CT images of 106 patients with early-stage cervical cancer from 2019 to 2021 were retrospectively analyzed. The
tumor lesions and LN regions of PET/CT images were outlined with SeeIt, and then radiomics features were extracted. The least
absolute shrinkage and selection operator (LASSO) was used to select features. The final selected radiomics features of LNs were
used as predictors to construct a machine learning model to predict LN metastasis.
Results: The authors determined two morphological coefficient characteristics of cervical lesions (shape – major axis length and
shape – mesh volume), one first order characteristics of LNs (first order – 10 percentile) and two gray-level co-occurrence matrix
(GLCM) characteristics of LNs (GLCM – id and GLCM – inverse variance) were closely related to LN metastasis. Finally, a neural
network was constructed based on the radiomic features of the LNs. The area under the curve of receiver operating characteristic
(AUC-ROC) of the model was 0.983 in the training set and 0.860 in the test set.
Conclusion: The authors constructed and demonstrated a neural network based on radiomics features of PET/CT to evaluate the
risk of single LN metastasis in early-stage cervical cancer.
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Introduction

Cervical cancer (CC) is the fourth most common cancer in
women, with 604 000 new cases annually worldwide, resulting in
342 000 deaths[1]. The treatment and management of CC is
usually guided by the International Federation of Gynecology
and Obstetrics (FIGO) staging system, which is based on tumor
size, parametrial involvement and pelvic organ invasion without

lymph node (LN) involvement. Lymph node metastasis (LNM)
has an independent prognostic factor of CC. Therefore, LNM
was included for the first time as a key factor in the 2018 update
of the FIGO staging system. The updated FIGO staging places
greater emphasis on MRI or PET/CT as an accurate measure of
LN involvement. If a preoperative examination indicates pelvic
LNM, surgery is not necessary and chemoradiotherapy is the first
treatment[2,3]. Thus, a preoperative and noninvasive test to
determine LN status is significant to select the most appropriate
treatment option and avoid unnecessary surgical intervention for
CC patients.

Currently,MRI and 2-deoxy-2-fluorodeoxyglucose (18F-FDG)
PET/CT have been widely used to assess LN status. Nevertheless,
bothmodalities have their limitations. PET/CT has been shown to
be more accurate than MRI in diagnosing LNM[4–6]. However,
the ability of PET/CT to discriminate betweenmetastatic LNs and
hypermetabolic benign LNs is barely satisfactory[7–9]. In order to
improve the accurate of diagnosis, many researchers desire to
extract more information from medical images for application in
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oncology. Radiomics is automated high-throughput extraction of
quantitative imaging features, followed by the selection of
radiomics features related to outcome events to construct a
model. Radiomics features are statistical or model-based metrics
to quantify tumor intensity, shape, and heterogeneity, which have
been shown to reflect intertumoral histopathological properties
and to provide prognostic information[10–12]. Compared to
commonly used semiquantitative parameters from 18F-FDG PET/
CT, such as the standardized uptake value at maximum
(SUVmax), recent studies in radiomics have shown the potential
added value in the identification and prognostic evaluation of
CC[13,14].

Hence, we attempted to discover indicators associated with
LNM by PET/CT radiomics and to develop a model to improve
the accuracy of the preoperative diagnosis of single LNM.

Methods

Patients

In this retrospective study, we included a total of 106 patients
with early-stage CC [IA1 with lymph-vascular space invasion
(LVSI), IA2-IIA2].

The inclusion criteria were as follows: (1) patients had no
chemotherapy or radiation before PET/CT; (2) the diameter of
LN greater than or equal to 2 mm in PET/CT images; (3)
pathologic reports indicated the location of metastatic LNs.

The exclusion criteria were as follows: (1) no obvious cervical
lesions in PET/CT images; (2) pathologic reports indicated LNM
as an isolated tumor cell metastasis; (3) pathologic reports
showed that the patient had carcinoma in situ of the cervix.

The patients underwent surgery at the Obstetrics and
Gynecology Hospital of Fudan University from 2019 to 2021,
who had undergone PET/CT in the 30 days before surgery. All
patients performed pelvic LN dissection. However, not all
patients performed para-aortic LN dissection. The pathology
report at least included metastatic outcomes in the bilateral
common iliac LNs and pelvic LNs. All private and image infor-
mation was kept strictly confidential and only used for the pur-
pose of this research. The ethics committee of the Obstetrics and
Gynecology Hospital of Fudan University approved this study.

PET/CT

In this study, we reviewed PET/CT (Biograph-64, Siemens) of CC
patients within 30 days before surgery, intercepting images from
the first lumbar vertebra to the root of the thigh. Before 18F-FDG
injection (2.9–5.6 MBq/kg body weight), the blood glucose level
of patients was controlled at less than 10.0 mmol/l. We measured
the maximum standardized uptake value of the tumor
(tSUVmax), maximum standardized uptake value of the lymph
node (nSUVmax), and tumor size in PET/CT. If there was no
significant increase in 18F-FDG uptake of the tumor and LNs on
PET/CT images, the default SUVmax value was 0. The patholo-
gical results served as the gold standard.

Radiomics

The location and metastasis of LNs greater than or equal to 2 mm
in diameter and primary cervical lesions in the images were
labeled in conjunction with postoperative pathology and
SUVmax. According to the description of the number and

location of metastatic LNs in the pathology report, metastatic LN
regions were localized in PET/CT images. Since previous studies
had shown that LNs with a diameter of greater than or equal to
10 mm or high 18F-FDG uptake (especially SUVmax≥2.5) had a
higher risk of metastasis in PET/CT, metastatic LNs were iden-
tified in the localized areas according to the above criteria. Two
experienced radiologists will jointly acquire and label the images,
but they will independently analyze and interpret LN status in
PET/CT before being informed of the pathology results.

In this study, three-dimensional regions (ROIs) of primary CC
lesions and labeled LNs based on 18F-FDG PET/CT images were
manually outlined and radiomics features were extracted by SeeIt
(Version 0.80; https://www.medaifan.net), and radiomics fea-
tures were extracted. First order features based on histogram
analysis were measured by identifying the intensity distribution
on the original images, includingmean, variability, and skewness.
Morphological coefficient features were measured according to
the shape, size, and volume of the regions. Higher-order features
were measured through parameters such as GLCM, gray-level
dependence matrix (GLDM), and gray-level tour matrix
(GLRLM). The LASSO analysis further selected radiomics fea-
tures. Each value contained in each rectangle of the heat map are
indicated by a color. In this study, heat maps were used to show
the differences between the radiomics features of LNs.

Edge (Version 0.40; https://www.medaifan.net) randomly
assigned all LNs to the training sets and test sets in a 7:3 ratio, and
built a machine learning model for predicting the risk of LNM
based on the radiomics features of LNs. In this study, AUC-ROC
was used to assess the diagnostic ability of the model for LNM.
We also compared the diagnostic accuracy of independent PET/
CT and model for each group of LN status.

The workflow of radiomics was shown in SDC, Figure 1,
(Supplemental Digital Content 1, http://links.lww.com/MS9/A302).

Statistical analysis

Edge (Version 0.40; https://www.medaifan.net) were used for
statistical analysis. Continuous variables were expressed as mean
with SD, and categorical variables were described as frequency
with percentage. The correlation between selected radiomic
characteristics of cervical lesions and LNs and LNM was inves-
tigated through univariate analysis. The results of the univariate
analysis to express the strength of the correlation. P<0.05 was
statistically significant.

Result

The characteristics of patients were shown in Table 1. A total of
106 patients were included in the study, of whom 54 had negative
LNM and 52 had positive LNM. Among patients with negative
LNM, 42 (77.8%) patients had a pathologic type of squamous
cell carcinoma. The mean (SD) of preoperative SCCA was 2.9
(3.4) ng/ml in patients with negative LNM and 12.5 (16.1) ng/ml
in positive LNM patients. Among patients with positive LNM,
the mean (SD) of nSUVmax was 7.9 (5.2).

When Lambda was 14.51, the result of LASSO showed that
two morphological coefficient features (shape –major axis length
and shape – mesh volume) were associated with LNM (Fig. 1).
The mean (SD) of shape – major axis length and shape – mesh
volume was lower in patients with negative LNM than in patients
with positive LNM (Table 1).
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This study labeled 193 LNs in the PET/CT images. We
extracted 107 radiomics features in the outlined LN regions.
When the lambda was 11.50, the result of LASSO showed that

one first order feature (first order – 10 percentile) and two higher-
order features (GLCM – id and GLCM – inverse variance) were
associated with LNM (Fig. 2). The heat map showed the differ-
ences in the distribution of three radiomics features in the LNs
(SDC, Fig. 2, Supplemental Digital Content 2, http://links.lww.
com/MS9/A303).

The radiomics features of the LNs were shown in Table 2. The
training set contained 135 LNs and the test set included 58 LNs.
In both data sets, the mean (SD) of first order – 10 percentile in
positive LNMwas higher than that in negative LNM,whereas the
mean (SD) of GLCM – id and GLCM – inverse variance in
positive patients were lower than that in negative patients. First
order – 10 percentile, GLCM – id and GLCM – inverse variance
were selected as predictors to construct a neural network to assess
the risk of single LNM in CC.

The AUC-ROC of the neural network was 0.983 (95% CI:
0.966–1.000) in the training set and 0.860 (95% CI:
0.738–0.982) in the test set, indicating that the neural network
had strong discriminative (Fig. 3).

The sensitivity, specificity, positive predictive value, negative
predictive value, and accuracy of PET/CT for 193 LNs were 77.0,
83.9, 77.2, 83.7, and 80.3%, respectively. Compared with PET/
CT alone, the neural network exhibited higher sensitivity (98.3
and 85.7%) and accuracy (94.8 and 84.5%) in the training set
and test set, but slightly lower specificity (75.0%) than PET/CT
alone (83.9%) in the test set (Table 3).

Discussion

CC with LNM not only affects prognosis, but also is a pointer to
accept radiotherapy. Previous studies have shown that multiple
LN metastases increase the risk of recurrence in CC[15,16].
Therefore, clinicians have taken various measures to improve the
accuracy of preoperative assessment of LNM, including imaging
and LN biopsy[3,17]. The accuracy of diagnostic imaging varies
widely across studies, especially as the imaging of benign LNs
may appear similar to that of metastatic LNs[18]. Thus, a simple
and effective method to predict the risk of LNM can provide

Table 1
Characteristics and univariate analysis of the risk of LNM

Node negative Node positive

Variable (n= 54) (n= 52) P

Age (year), n (%) 0.320
< 50 27 (50.0) 21 (40.4)
≥ 50 27 (50.0) 31 (59.6)

Menopause, n (%) 0.860
No 30 (55.6) 28 (53.8)
Yes 24 (44.4) 24 (46.2)

Number of pregnancies, n (%) 0.532
< 3 24 (44.4) 20 (38.5)
≥ 3 30 (55.6) 32 (61.5)

Tumor histology, n (%) 0.808
Squamous cell cancer 42 (77.8) 44 (84.6)
Adenocarcinoma 7 (13.0) 4 (7.7)
Adenosequamous cancer 4 (7.3) 3 (5.8)
Others 1 (1.9) 1 (1.9)

2018 FIGO stage, n (%) 0.055
IA 2 (3.7) 0 (0.0)
IB 32 (59.3) 22 (42.3)
IIA 20 (37.0) 30 (57.7)

SCCA(ng/ml), mean (SD) 2.9 (3.4) 12.5 (16.1) ＜0.001
Tumor size in PET/CT (cm), mean
(SD)

2.7 (1.2) 4.7 (1.4) ＜0.001

tSUVmax, mean (SD) 9.5 (6.3) 13.6 (5.7) ＜0.001
nSUVmax, mean (SD) 0.0 (0.0) 7.9 (5.2) ＜0.001
Radiomic features of cervical lesion
shape – major axis length, mean
(SD)

24.2 (10.0) 43.9 (14.1) ＜0.001

shape – mesh volume, mean
(SD)

3491.4 (4353.6) 14168.3 (12311.0) ＜0.001

LNM, lymph node metastasis; nSUVmax, SUVmax of lymph node; PET/CT, positron emission
tomography/computed tomography; SCCA, squamous cell carcinoma associated antigen; tSUVmax,
SUVmax of tumor.

Figure 1. LASSOwas used to select radiomics features of primary cervical lesions. When lambda was 14.51, the binomial deviations had the minimum number and
two features were selected.
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physicians with important prognostic information and help in the
development of treatment. Radiomics, as a new approach, aims
to assess tumor heterogeneity by extracting high-throughput
features from medical images that reflect underlying
pathophysiology[19–21]. In the present study, we constructed and
demonstrated a neural network model to evaluate the risk of
single LNM in early CC by radiomics.

Recently, radiomics of PET/CT, as an emerging tool, was used
for diagnosing tumors, assessing treatment efficacy and predict-
ing prognosis[19,21–23]. The intrinsic biological heterogeneity of
malignant tumors leads to changes in radiomics features of the
corresponding tumors on PET images. Thus, PET image-based
radiomics of primary tumor lesions can reflect the degree of
tumor malignancy and correlate with LNM[24–27]. Li et al. con-
ducted a retrospective study of 94 patients with early-stage
squamous CC. They found that radiomics features of 18F-FDG
PET/CT combined with the expression level of vascular endo-
thelial growth factor (VEGF) had significant value in predicting
LNM[16]. Similarly, Shen et al. confirmed the value of a model-
based on the integration of GLCM parameters with SUVmax for
the prediction of LNM[28]. The radiomics features in both studies
are high-order texture features. In addition to the higher-order
texture features, the predictors of our neural network include the
first order features.

In our study, shape – major axis length and shape – mesh
volume were used as morphological features of primary cervical

lesions associated with LNM. Shape-based features describe the
geometry of ROIs, which help predict tumor malignancy and
treatment response. These features are extracted from the 3D
structure of ROIs to measure the shape and size of tumors. It is
evident that larger and irregular tumor lesions have a higher risk
of LNM. The study also proved that the neural network estab-
lished by first order – 10 percentile and GLCM parameters
(GLCM – id and GLCM – inverse variance) of LN could improve
the accuracy of predicting LNM. First order features are based on
intensity. The intensity-based approach converts 3D ROIs into
individual histograms (describe the distribution of pixel inten-
sity), from which simple features are derived. High-order texture
features capture the spatial relationships between adjacent pixels,
which have an important part in the studies of tissue hetero-
geneity. GLCM simulates the spatial distribution of pixel inten-
sity, and from whom the features extracted are the most
commonly used texture features[29,30]. The neural networks
based on radiomics features of LNs can predict the risk of indi-
vidual LNM and localize metastatic LNs. If the neural network
diagnoses single or multiple LN metastases on PET/CT images, it
can guide clinicians to choose radical radiotherapy as the pre-
ferred treatment option. It can also develop a radiotherapy plan
based on the number and location of metastatic LNs.

Radiomics is a promising approach, but it has some draw-
backs. First, the reproducibility of radiomics features varies
widely. Most radiomics features are influenced by multiple

Figure 2. LASSO was used to select radiomics features of lymph nodes. When lambda was 11.50, the binomial deviations had the minimum number and three
features were selected.

Table 2
Radiomics features of lymph nodes and univariate analysis

Train set Test set

Negative Positive Negative Positive

Variable (n= 77) (n= 58) P (n= 16) (n= 42) P

first order – 10 percentile, mean (SD) 134.8 (134.9) 472.9 (290.6) ＜0.001 224.8 (146.9) 472.2 (271.8) ＜0.001
GLCM – id, mean (SD) 0.7 (0.2) 0.3 (0.2) ＜0.001 0.5 (0.2) 0.3 (0.1) ＜0.001
GLCM – inverse variance, mean (SD) 0.5 (0.2) 0.2 (0.2) ＜0.001 0.4 (0.2) 0.2 (0.1) ＜0.001
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factors, such as scanners, reconstruction algorithms, tumor seg-
mentation methods, and quantization processes[4,31,32]. The
standardization of image acquisition and feature extraction is one
of the prerequisites for the application of radiomics in clinical
practice. The accurate delineation of the lesion is an important
step in the extraction of radiological features as the features come
from the delineated region[10,33]. In our study, we chose to
delineate the target area manually. Secondly, the naming, defi-
nition, and analysis methods of radiomics features are not con-
sistent in various clinical studies, which makes it difficult to
compare the results of various studies[34–36]. Meanwhile, some
researchers emphasize that most published radiomics models
have never been validated in an external multicenter setting.
Addressing these issues is crucial for the future successful appli-
cation of radiomics in clinical practice.

Similarly, our study has some limitations. First, as a single-
center retrospective study, we need a multicenter large-sample
prospective study to further confirm the findings. Second, the
collected pathologic data did not accurately report the anatomical
relationship of metastatic LNs to the surrounding vascular tissue,
which may lead to errors when labeling LN status on PET/CT
images. Finally, the predominant tissue type of CC was squamous
cell carcinoma in our research. Adenocarcinoma, adenosquamous
carcinoma and rare types of CC require further study.

Despite these limitations, we were the first study to construct a
neural network to predict the risk of single LNM in early-stage
CC based on the radiomics features of LNs. Both the training and
test set showed potential associations between LNM and radio-
mics features in CC. Finally, it was found that first order – 10
percentile, GLCM – id and GLCM – inverse variance in 18F-FDG

PET/CT were predictors of LNM. These radiomics features of
PET/CT are available in daily practice and more valuable than
independent PET/CT, which is another advantage. After identi-
fying patients at high risk with LNM through the model, clin-
icians can individualize treatment, including increasing the dose
of radiotherapy and expanding the scope of radiotherapy.

Conclusion

Above all, we demonstrated that radiomics features of PET/CT
had the potential to predict LNMand could be used as a predictor
of LNM. Meanwhile, the neural network model can stratify
patients with high and low risk of LNM to avoid unnecessary
treatment and improve postoperative quality of life.
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Table 3
Accuracy values of PET/CT and neural network in LNM

Neural network

Variable PET/CT Train set Test set

Sensitivity (%) 77.0 98.3 85.7
Specificity (%) 83.9 93.5 75.0
Negative predictive value (%) 77.2 98.6 66.7
Positive predictive value (%) 83.7 91.9 90.0
Accuracy (%) 80.3 94.8 84.5

Figure 3. The AUC-ROC of the neural network in the training set (A) and test set (B).
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