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Abstract: The mechanisms of transport of substances in the brain parenchyma have been a hot topic
in scientific discussion in the past decade. This discussion was triggered by the proposed glymphatic
hypothesis, which assumes a directed flow of cerebral fluid within the parenchyma, in contrast to
the previous notion that diffusion is the main mechanism. However, when discussing the issue
of “diffusion or non-diffusion”, much less attention was given to the question that diffusion itself
can have a different character. In our opinion, some of the recently published results do not fit into
the traditional understanding of diffusion. In this regard, we outline the relevant new theoretical
approaches on transport processes in complex random media such as concepts of diffusive diffusivity
and time-dependent homogenization, which expands the understanding of the forms of transport of
substances based on diffusion.

Keywords: brain fluids; extracellular space; diffusion

1. Introduction

The question of the nature and mechanisms of the transfer of substances in the inter-
cellular space of the brain parenchyma is very important, both for finding ways to deliver
drugs and for understanding how the brain gets rid of harmful metabolites. By the first
decade of our century, there was a consensus among experts that, under special condi-
tions, cerebrospinal fluid can penetrate deep into the parenchyma [1–3], and then enter
the bloodstream [4,5]. The driving force of this movement was considered to be a slight
hydrostatic pressure created by the secretion of fluid through the blood-brain barrier [6] or
the movements of the walls of the arteries [7].

Since 2012, these issues have been actively discussed in connection with the so-called
glymphatic hypothesis proposed in [8–11]. According to this hypothesis, the transport
of substances through the parenchyma is provided by a directed flow of cerebral fluid
maintained by a pressure gradient. However, a number of researchers do not share this
point of view and argue in favor of the diffusion mechanism.

As far as the authors know, at the moment there is no experimental evidence of the
presence of a directed fluid flow through the parenchyma under normal physiological
conditions. In a number of works [12–17] the thesis is supported that diffusion is the main
and sufficient mechanism for the delivery of substances in the parenchyma. In [14], the
purely diffusion nature of the transport of substances in the parenchyma was confirmed
experimentally. Theoretical estimates predict that flows generated by achievable hydrostatic
pressure drops will be negligible compared to the diffusion effect [13–16,18]. A recent
review [19] analyzed the current situation and formulated a list of problematic points of
the glymphatic hypothesis. At the same time, in [20], the authors present a number of
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arguments in favor of the glymphatic mechanism, somewhat clarifying (softening) the
wording. In particular, they acknowledge that “whether advection is appreciable in the
interstitial compartment remains an open question”.

Thus, there is general agreement that diffusion is, if not the exclusive, then the main
mechanism of transport in the extracellular space (ECS) of the brain parenchyma. However,
in the course of the discussion described above (diffusion or non-diffusion), the question of
the characteristics of the diffusion process itself received much less attention.

The features of diffusion in the ECS of the brain parenchyma have been purposefully
studied by Nicholson with collaborators over the past 20 years [21–28]. Typical properties
and features of ECS as a medium for the propagation of molecules, including a complex
shape, dead spaces (traps), etc., are revealed. With regard to the diffusion process itself, in
these works, a line is drawn for taking into account all the features of the ECS by means of
(i) the tortuosity of the medium, which describes the lengthening of the random walk path
of molecules and (ii) the effective diffusion coefficient, which phenomenologically takes
into account the slowdown of the real diffusion process in respect to the idealized process
due to the above reasons.

At the same time, the fact that the diffusion process itself can have different properties
is still beyond the attention of researchers. In recent years, new approaches to the theory
of transport processes in complex random media, such as concepts of diffusive diffusivity
and time-dependent homogenization, have been proposed and developed, which expands
the understanding of the forms of transport of substances based on diffusion [29].

The purpose of this paper is to draw attention to this issue and to the fact that already
published experimental data may have an alternative interpretation in terms of the so-
called Brownian-yet-not-Gaussian diffusion. New theoretical models can be of real benefit
in studies of molecular transport in the brain only if the experimental methods provide
the necessary accuracy and spatiotemporal resolution. For this reason, in our work, we
briefly discuss methods for studying diffusion using magnetic resonance imaging (MRI),
as well as single particle tracking (SPT), which, in our opinion, are capable to provide
relevant information.

2. ECS Transport Assessment

There are well-known and well-described approaches as studying the marker’s spread
in the ECS as registering the diffusion process by means of fluorescent optical method
and the real-time iontophoresis technique. On these topics, we refer readers to a number
of already existing reviews. Among them, we can list the comprehensive description of
the super-resolution fluorescent optical methods aimed in highlighting ECS structures in
living brain [30] as well the respective topics in comprehensive review [31]. Respectively, to
iontophoresis and its interpretation for the brain’s ECS structure, nobody would describe
this topic better the inventor of the method, C. Nicholson. We cited most related his
works in Introduction. Finally, it is worth noting the review [32], which highlights variety
of methods adjusted to such carriers of markers’s clouds (flurescent, radiocontrast, etc.)
as nanoparticles.

The present review is aimed to be focused on some non-trivial features, which may
be overlooked within the conventional analysis of transport processes in the brain’s
parenchyma. Thus, in the following subsections, we draw attention to two experimental
techniques, which have potential to provide data of a special interest related to non-
conventional kinds of diffusion.

2.1. MRI-Based Diffusion Studies

Magnetic resonance imaging (MRI) has certain advantages over other methods of
studying transport processes in the brain due to the possibility to access deep layers and
obtain 3D images than is either hard realisable or impossible by optical methods [33–35].
The particular problem of determining the apparent diffusion coefficient can be solved by
applying the “pulsed gradient spin-echo” method, which utilizes a pair of narrow gradient
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pulses and relates the phase change of the responses to the phase change of an ensemble
of spins due to the random transport of particles carrying them during the used diffusion
time. As a result, the diffusion-weighed MRI (DW-MRI) provides information on different
scales of tissues, from the structure-related diffusional features to the global mapping of
organoids, see, e.g., for review, the Special Issue of the journal “NeuroImage” [36].

The conventional DW-MRI operates with proton spins of water molecules. Thus, the
measured diffusion rate (as well as other transport coefficients) relates primarily to water
transport, which coexists intracellularly and extracellularly, depends on the membrane
permeability of the brain’s compartments, an action of water-transporting proteins, etc. All
these factors complicate the assessment of diffusion specifically in ECS.

An improved method was proposed about a decade ago [37,38] based on an injection
of a Gadolinium-based contrast agent (e.g., Gadolium-diethylenetriaminepentaacetic acid
(Gd-DTPA), Gd-chelates such as Dotarem®, ultra-small Gd-enhanced super-paramagnetic
iron oxide nanoparticles, or even emulsions incorporating some tenth thousands of Gd
atoms), which do not permeate cellular membranes and spread mainly in the extracellular
space. This spread is registered as a time sequence of T1-weighted images (i.e., using
short Time-to-Echo and repetition time intervals) with the subsequent their conversion
to concentration maps, respectively, to the initial image registered before introducing a
Gd-based agent.

Among the recent works, one can note a set of measurements in vivo carried out with
this method [39,40], which indicated not a perfect reconstruction of the contrast agents
infused in animal’s brain. We will consider possible implications of these data within the
context of non-standard diffusion further in Section 4.2.

2.2. Single Particle Tracking

Among modern methods which recently gain importance in the study of transport
processes in complex media, a special place takes the single-particle tracking (SPT) because
it allows direct accessing paths of marker particles in heterogeneous labyrinthine structures,
structures with dead ends and traps, among multiple obstacles, etc. In particular, obtaining
real detailed tracks provide an opportunity of mapping the actual topology of spaces avail-
able for transport and highly-localised quantification of transport-supporting properties.
Since such media are especially typical for biophysical objects, the main developments of
the SPT approach accompanied by the developing methods of super-resolution in optical
microscopy is tightly related to biophysical problems, see reviews [41,42], which give a
general overview of general physical principles and examples of case studies.

One of the useful features of SPT is a variety of usable markers that includes organic
dyes (about 1–2 nm in the characteristic size) and fluorescent proteins (about 2–4 nm),
quantum dots (about 5–8 nm before their biofunctionalization), or significantly bigger gold
nanoparticles (about 400 nm). The variety of markers’ sizes and types of their interaction
with the surrounding allows specifying accurately ranges transport gaps and taking into
account interactions with cells’ membranes surrounding these gaps.

Respectively, to the exploration of the brain’s ECS, SPT methods gave reconstruc-
tion of the ECS’s topology and characteristic distances between cell providing transport
channels [43–47]. Another usage is the SPT-based data is related to the fact of mutual inter-
changeability of studying mean-squared displacement (MSD) of random walker exploring
either one long track or the evolution of the concentration distribution of a large ensemble
of markers in the case of classic diffusion process (ergodicity). The MSD in this case directly
gives the value of the diffusion coefficient. Thus, analysing tracks of single particles in
different locations of the brain’s ECS, it is possible to get a map of the distribution of local
diffusion coefficients, which as revealed widely varies across the ECS [45,47–49].

A very recent review [50] provides a comprehensive overview of methods based
on the single particle tracking for the optical imaging-enabled diffusion measurement in
the brain ECS, as well as technical details of the method’s implementation. A ground-
breaking work [51] describes the proposed and realised methods for the quantification of
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distributions of spaces available for diffusive transport in brain’s ECS, local diffusivities and
viscosities of the interstitial liquid. The method is based on the intraventricular injections of
near-infrared luminescent single-walled carbon nanotubes (SWCNTs) in the brain of living
rats with the subsequent preparing neocortex slices, where the transport of nanotubes
was monitored.

The SPT method may have certain advantages for studying transport processes in the
brain’s ECS since a single particle tracked during its random walk in the intercellular space
directly highlights the shape and permeability of the latter. This opens two perspectives:
(i) when one operates with diffusivities considered as almost constant in limited spacial
regions but having different values in spatially separated places, one can plot a map of
diffusivities [52]; (ii) when the mean-squared displacement of the walker exhibit anomalous
(slower than linear) time dependence, exploration of single tracks allows characterising the
particular type of this process distinguishing e.g., between waiting time distribution due
to trapping in dead ends and walks in significantly highly inhomogeneous (say, fractal)
structures, see [53]. In more detail, we will consider some particular features of results
obtained via the SPT in Section 4.3.

3. Physics of Diffusion: What Can Be Searched for in Brain’s ECS?

From the physical point of view, the process of diffusive transport can be considered
either macroscopically or microscopically. In many cases, these two approaches do not
contradict each other. These cases belong to so-called ergodic processes: ergodicity means
that there is no difference between averaging observable quantities over an ensemble of
elements or over time averaging for one element observes sufficiently long time. The usual
diffusion is an ergodic process, and one can characterize it with a single diffusion coefficient
D, either typical for a medium or an effective one. It is possible to calculate the value of
D from the mean-squared displacement (MSD) as MSD(t) = 2NDt considering a single
track in N-dimensional space

MSDt(t) =
1

T − t

T−t∫
0

∣∣r(t′ + t)− r(t)
∣∣2dt′.

where t is called the lag time and T is the length of positional time series r(t).
Respectively, when there is distribution of positions of random walkers belonging to

an ensemble, the second moment of this distribution is MSDe(t) = 〈|r(t)− r(0)|2〉.
When the diffusivity (i.e., diffusion-related medium features) is spatially inhomo-

geneous, the relations above may be less trivial. However, if inhomogeneity is formed
by patches with locally uniform properties, the relation between the local macroscopic
diffusion coefficient and the value determined by the SPT is still valid. In this case, one
simply needs to consider segmentation of the full track in shorter subintervals for analysis,
see the more detailed discussion in [52].

If medium inhomogeneity has the form of some complex structure and the marker’s
spread covers such an area, new specific features of the diffusion process can be observed,
as recently revealed in modern physical considerations.

3.1. Gaussian (Fickian) Diffusion and Point-Source Paradigm

Macroscopically, one considers the flux q = −D∇n of the concentration n combined
with the continuity equation ∂t = ∇ · q. For the constant diffusion coefficient D that gives
the standard (Fickian) diffusion equation

∂n
∂t

= D∇2n. (1)
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In an unbounded domain in a point parameterised by the vector of coordinates r, it
has the solution as

n(r) =
∫

n0(r′)
e− |r−r′ |2

4Dt

(4πDt)N/2 dr′dΩ(r′), (2)

where N is the dimension of space and dΩ(r′) is its volume element, n0(r′) is the initial dis-
tribution of the spreading marker. In the case of a point source, when n0(r′) = δ(r′), i.e., the
initial condition is the Dirac delta-function, this solution reduces to the Gaussian function
in the integrand of Equation (2). On this basis, the “point-source paradigm” was introduced
by C. Nicholson [22] for studying transport processes in brain tissues. This method is
based on the assessment of the structural properties of the extracellular space through the
parameters of the Gaussian function fitted to the concentration distribution data.

Within this approach, an influence of the possible volume heterogeneities and proper-
ties of interstitial fluid in the brain’s extracellular space are counted with the concept of
tortuosity [25], which is defined as the square root of the ratio of the diffusion coefficient
of the same marker in a free medium to the considered effective diffusion coefficient and
λ =

√
D f ree/D.

Figure 1A,B illustrates this situation in terms of single particle trek. Note, the specific
trek between points A and B may be shorter (faster) for obstacled medium (panel (b)) in
respect to panel (a), but in average (over many particles)—it is longer (slower). The typical
range of λ in ECS is about 1.4–1.7 when, say, a diluted agar gel is taken as the reference
medium. Note that the tortuosity is a unified phenomenological quantity, which takes into
account the free volume between cells, volume topology, cumulative effects of viscosity of
the interstitial liquid, etc. [23,54].

Figure 1. (A) The free diffusion process represented by a single particle trek (random walk) from
point A to point B; (B) The random walk through obstacles can be treated as free diffusion over a
longer distance using effective diffusion coefficient and tortuous parameter; (C) The theoretical model
of trapping implies the existence of low-potential sites which are difficult for a particle to escape.
It may be represented either by the locally charged molecules or by ”dead ends” of extracellular
space; (D) The theoretical model of the barrier assumes the presence of a region that requires high
energy to overcome it. In extracellular space, it may have the form of large charged molecules of the
extracellular matrix.
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Thus, recently it is the main method characterising transport parameters for different
small and macromolecules in the brain parenchyma, see, e.g., the reviews [15,27,31].

It is also worth noting the recent active interest among specialists in material science
to the experiments and modelling of transport processes in porous media considered a
hindered diffusive spread characterized by the medium’s tortuosity. It was studied by
the nanoparticle tracking inside of fibrous and porous media [55] or related to different
expressions of the tortuosity as a function of the porosity [56]. These studies seem to be
promising for brain-related problems since such media can play the role of a phantom
mimicking the brain’s parenchyma tissue, the issue of the high recent demand for clarifying
physical mechanisms of molecular and nanoparticles transport as highlighted in the recent
reviews [57–59].

It should be pointed out that accessing diffusivity in the brain’s parenchyma not in
specially prepared laboratory systems but realistic conditions of distributed infusion of
marker substances, e.g., due to permeability of the blood-brain barrier, may make the point-
source paradigm inapplicable. However, the usage of the full integral form of Equation (2)
and fitting of registered concentration distributions to a set of trial solutions with different
D with the choice of the best value, makes this problem of determining an effective diffusion
coefficient solvable as shown in the work [60].

Note also that while completely impenetrable boundaries of obstacles, between which
ECS transport occurs, are modelled by boundary conditions supplying Equation (1), an
explicit spatial distribution of diffusivity within the flux-based approach leads to the form

∂n
∂t

= ∇ · (D(r)∇n), (3)

which allows also addressing average properties of complex fractal structures of some
regions of the brain’s parenchyma, in particular, cerebellum, where anomalous (non-
Gaussian) diffusion has been detected experimentally [61].

Within the point-source paradigm, one can consider the isotropic radius-dependent
diffusion coefficient D(r) = Dθr−θ , which been substituted in Equation (3) results in
the O’Shaughnessy-Procaccia equation [62] with solution describing anomalous diffusion
(i.e., the second moment of the concentration’s distribution scales as σ2 ∼ t2/(2+θ) on
fractals with the scaling index θ (for the normal diffusion θ = 0). The algorithm of image
processing, which compares the experimentally-detected distribution of markers with trial
solutions of the O’Shaughnessy-Procaccia equation allows quantitatively reveal the fractal
dimension of the ECS in this case [63].

3.2. Non-Gaussianity in Diffusion

The highly irregular structure of the space, where the diffusion occurs, may result in
types of diffusion, which are beyond the conventional diffusion process. Recent discoveries
related to such and similar non-conventional kinds of diffusion in complex media are
reviewed in [64]. Specifically, the authors list biophysical systems, where non-Gaussian
diffusion is observed (e.g., the transport in viscoelastic intracellular environments and
on the cells’ surface, in a non-homogeneous landscape hindering the random walk by
the interactions of moving particles (“walkers”), for example, molecules or nanoparticles,
with proteins, etc.), mathematical methods of quantifying non-Gaussianity and the basic
mathematical approaches for modelling such a behaviour.

In this section, we address some of these findings from the microscopic point of
view, i.e., describe diffusive spread in terms of dynamics of the spatial probability den-
sity function of a walker’s position associated with the concentration in the macroscopic
consideration. In this case, one starts from the Langevin equation

ṙ =
√

2D(r)ξ(t), (4)

where ξ(t) is the uncorrelated Gaussian noise.
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3.2.1. Ito versus Hänggi–Klimontovich Interpretation

When D = const, the probability density function (the concentration distribution)
satisfies Equation (1) and the whole picture in the macroscopic level is the same as described
above. On the contrary, when D(r) is position-dependent, the correspondent Fokker-
Planck equation depends on the interpretation of random walks realizations and has the
general form

∂n
∂t

= ∇ · [(1− α)∇D(r) + D(r)∇]n, (5)

where e.g., α = 0 for Ito processes, when the diffusivity is taken in the random jump’s
starting point, and α = 1 for the Hänggi–Klimontovich interpretation when diffusivity in
considered in the jump’s target point. Note, only the Hänggi–Klimontovich interpretation,
i.e., the case of α = 1, leads to the phenomenological second Fick’s law (3), while Ito’s case
results in the equation

∂n
∂t

= ∇2[D(r)n], (6)

with its solution not coinciding with Equation (2).
Remarkably, it was revealed that Equation (6) is the better choice to describe the

diffusion in the gelatinous liquid [65]. This substance is similar to those, which are used as
phantoms mimicking brain tissue [66–68]. Thus, it gives a hint for processing data obtained
in experiments with the real biological ECS.

Another feature distinguishing between solutions of Equations (2) and (6) in a complex
medium with random (but locally correlated) diffusivities was revealed in the work [69],
see Figure 2: the case of Ito process results in a patchy concentration distribution in contrast
to Hänggi–Klimontovich’s. When operating with data for distributions in real biological
brain tissue (see e.g., figures in the work [39]), one would see certain patchiness too.

Figure 2. Examples of concentration distributions of a marker spreading from a single point within
Hänggi–Klimontovich’s (A) and Ito’s (B) realisations of the random walk in the medium with Gamma-
distributed and then locally correlated (with the correlation length ` = 10 lattice sites) local diffusivity.
Reproduced from [69] (published there under Creative Commons Attribution 4.0 licence).

Thus, some attentional analysis, aimed at the distinction between instrumental noise
and possible manifestations of features of the transport and ECS’s structure, makes sense.
This may reveal biophysically relevant features of the extracellular space specificity because,
as proven in the work [70] these two kinds of transport processes have clear different
microscopic interpretations:

Ito’s model originates from the existence of trap, while Hänggi–Klimontovich’s orig-
inates from the existence of barriers for spreading walkers, see Figure 1, panels (C) and
(D), respectively. Both these types of obstacles exist in the ECS: the typical traps affecting
the diffusion in the brain’s extracellular space are dead ends [23] while barriers can be
associated with the loss of diffusing material described by the kinetic interaction with ECS
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channels’ walls [26]. Thus, quantifying the type of concentration distribution can reveal
the prevalence of obstacles of a particular kind. Moreover, their combination addresses
the general form given by Equation (5) with 0 < α < 1. This also can provide important
insights into the biophysical mechanisms of extracellular transport on a molecular level of
resolution despite the fact that such microscopic interactions are not accessible for direct
observations.

3.2.2. Subdiffusion

Note, the Gaussian noise is not obligatory as a source of displacements in Equation (4).
Another kind of random walk may lead to anomalous diffusion when the growth of the
mean-squared displacement is scaled as σ2 ∼ tβ with β 6= 1. Specifically, the case of
viscoelastic media or/and the existence of traps leads to subdiffusion with β < 1.

It should be pointed out that the same index of subdiffusion β can correspond to
different microscopic physical mechanisms of transport, for example, the continuous time
random walk originated from trapping for random time intervals, a viscoelastic character
of the carrier fluid, which induces retardation of the motion due to the memory effects,
geometric reasons such as a random walk in fractal structures as well as a combination
of different origins. Methods which allow distinguishing between the mechanisms listed
above are reviewed and explained in the work [53]. Comparative analysis of different
algorithms for the classification of types of diffusive transport based on the individual
tracks’ recordings and well as their segmentation can be found also in [71].

There is no yet clear experimental evidence of anomalous diffusion in the brain’s
ECS (in contrast to intracellular transport and transport of water molecules [45,72,73]),
although some primary recent observations can be noted, e.g., [74]. For this reason, we
simply refer to some classic reviews of anomalous diffusion considered from the random
walk point of view [75,76], including the special attention to the processes, which occur in
complex (including labyrinthine) environments [77], without the detailed consideration of
such mechanisms.

3.2.3. Brownian Yet Non-Gaussian Diffusion: Diffusing Diffusivity and Quenched
Spacial Heterogeneity

As a more valuable and prospective idea for the area of study of transport processes
in the brain’s ECS, there is another phenomenon that was discovered not long ago: the
Brownian yet non-Gaussian diffusion (BnG) [78]. Its key feature is that even if the macro-
scopic MSD follows the regularity typical for the usual Brownian motion σ2 ∼ t, the
probability distribution function (equivalent to the registered concentration distribution
detectable in experiments with the initial point source) follows not the Gaussian but the
Laplace distribution

n(r, t) ∼ 1
〈D〉tN/2 exp

(
− |r|
〈D〉t1/2

)
(7)

with the effective diffusivity 〈D〉.
Note that this phenomenon does not originate from a special kind of unique random

motion but rather from the complexity of a medium that leads to the case of superstatistics
as pioneered by Beck & Cohen [79]; see also a review of the recent state of the art is given
by R. Metzler [29]. The essence of this idea is that walkers move inside a complex media
with local properties determining the diffusive spread and significantly fluctuating either
in space or in time. This results in operating with an ensemble with a distribution of
mobilities, the Laplace distribution emerges due to averaging

n(r, t) =
∞∫

0

p(D)
e− |r−r′ |2

4Dt

(4πDt)N/2 dD (8)

with local diffusivities D satisfying some appropriate probability density function p(D).
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One of the possible mechanisms of randomness in D is the model of diffusing diffusivity
proposed in [80] and analysed in details in [81]. Within this concept, the diffusion coefficient
exhibits slow temporal fluctuations. This implies that the evolution of the respective
distribution of diffusivities p(D(t)) itself satisfies some kind of the diffusion (or advection-
diffusion) equation that explains the terms “diffusing diffusivity”. The consideration of
the effective diffusion coefficient as a stochastic process itself matches some examples of
biological media [78,82].

Another variant considered in detail in the work [69] refers to a random locally
correlated static landscape, i.e., when diffusion coefficients are slowly varying in space
(quenched disorder) but not in time. The principal difference from the case of diffusing
diffusivity is that when a random walker visits the same place of a heterogeneous medium
again, it crosses the region with the same diffusion coefficient as at previous encounters
of the same spatial location. At the same time, by recording the instant diffusivities at
each time moment along a single trajectory, one will see the fluctuating time series and
the BnG-type behaviour at short time scales is evolving too. At large times, the trajectory
covers a significant part of space formed by the random but stationary landscape and
one can apply the theory of homogenization to get an asymptotic effective diffusion
coefficient for the resulting normal diffusion. Simulations revealed such non-Gaussianity
in compartmentalized media [83], which mimic micro-organoids (like cells) separated by
inter-organoid (intercellular) spaces.

4. Evidence of Non-Classical Diffusion in Brain
4.1. Where Can It Be Caught

It should be pointed out that the majority of works representing analysis of transport
processes assume a priory that the registered distribution of spreading markers should be
fitted by an appropriate Gaussian function. However, as it is discussed above, diffusion in
a complex medium can exhibit a wider variety of types. Thus, it is worth reconsidering
with a fresh eye images of the markers’ spread in the brain tissue published in a number of
experimental works.

In particular, one can note a difference between cases when the Gaussian function fits
the marker distribution in the reference substance—agarose—and in the cortex provided in
one of the groundbreaking early works [24]. For the initial distribution, e.g., narrow-spread
shortly after injection, the Gaussian function fits perfectly concentration distributions in
agarose. However, there are visible deviations in the case of the cortex.

Although it is hard to judge about the significance of such small deviations in the cited
and several subsequent works based on the iontophoretic and fluorescence-based experi-
ments, e.g., [84], the experiments, which used MRI technique, e.g., [39,40], demonstrates
the significant deviations from Gaussianity.

This opens the question, of whether simple diffusion with a unique effective diffusion
coefficient is always adequate to the description of the transport processes in the brain’s
ECS, and maybe one needs to revisit these experiments from the point of view of modern
views on the Brownian yet non-Gaussian diffusion. An additional argument for such
reconsideration is provided by the single-particle tracking experiments, which indicate that
the local diffusivities in the ECS are wide-range distributed [48], see also the review [50].
However, this is the key premise of the BnG models discussed above. In addition, it should
be pointed out that the single-particle tracking experiments may reveal specific features,
which are “masked” in the case of large ensembles of markers [71].

4.2. MRI Results: Brownian Yet Non-Gaussian Diffusion?

A more detailed exploration of results obtained via this approach can be found in the
works [39,40].

Note that authors of all these investigations a priory assumed the Gaussian distribution
of the marker’s concentration as following the from the normal diffusion process within
their analysis of results of such measurements. At the same time, even the visual explo-
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ration of the plots given in the cited papers induces some questions as to their relevance.
In particular, the fitting Gaussian functions reproduce mainly the intermediate part of
experimental distributions exhibiting significant deviations in the central part and the tails.
The central part looks like a peak, which disappears very slow in comparison with the
more distant parts of the distribution. Simultaneously, the tails deviate from the Gaussian
fit for small times of the process and the correspondence starts to be better with time (in
particular, authors of Ref. [40] use two Gaussians for fitting the central and the tail parts of
distributions, for this reason).

However, these features resemble recently analysed cases of the diffusion process in a
random environment [69,85] when one can approximate the diffusion coefficient by some
averaged (homogenised) value only asymptotically. Otherwise, the process belongs to
the class of “Brownian yet non-Gaussian diffusion”. Although this process results in the
mean-squared displacement growing linearly with time, the distribution function is rather
Laplacian than Gaussian for moderate time intervals and transit to the latter only when the
range of random walkers’ displacements of random walkers overcomes the characteristic
range of disordered inhomogeneities of the local diffusion coefficients. The reason of a high
heterogeneity of local diffusion coefficients, respectively, to the transport of Gd-enhanced
markers has also direct experimental evidence as reported in Ref. [86].

Remarkably, a quite similar picture was detected during simulations of the model
of a particle’s motion in a random landscape of random diffusion coefficients slowly
varying in space (quenched disorder) [69], see Figure 3A. Such evolution of the probability
distribution function for a marker’s position, Laplace’s for short times and tending to
Gaussian with the narrowing localised central peak (this feature, seen also in Figure 4B,
was explored in detail in Ref. [85]) originates from the Gamma-distribution of the local
diffusion coefficients (see Figure 3B). Note also that such behaviour was attributed to the
Ito scheme of random walks with locally symmetric steps in space. Within this scheme,
the spatial change of the diffusivity can is attributed to coordinate-dependent waiting
times of a walker catches by randomly distributed traps [70] that looks reasonably from the
point of view of complicated anatomy and topology of the brain’s extracellular space. This
picture gains also recent attention for the simulation of a transport model in an explicitly
compartmentalised medium, which comprises domains, where a particle can move freely,
separated by rarely permeable corridors [83]. It is worth noting that the experimental
work [87], where spatial locally correlated inhomogeneity was prepared by applying a
special speckle pattern that allowed to track the transition from the normal diffusion of
traced beads at very short times (within locally uniform patches) via a subdiffusion to the
Brownian yet non-Gaussian diffusion at longer times.

4.3. SPT Results: Anomalous Diffusion of Transient Processes?

The movement of elongated nanoparticles was studied in [51] along and across their
axis for MSD of individual tracks. While MSD⊥ of perpendicular displacements is linear
with time, the axial displacements MSD‖ as a function of time typical for a subdiffusive
process. This may indicate specific viscoelastic properties of the interstitial liquid retarding
the random walks. However, this time interval is short and then MSD⊥ + MSD‖ behaves
linearly as should be for the normal Brownian motion. On the contrary, MSDxy determined
for movements of the centre of mass in the laboratory frame is linear as a function of time
during relatively short time intervals, approximately up to about 200 ms, see the dashed
line in Figure 5 that allows to authors of [51] define this time interval as characteristic
for exploration of local sub-domains and get spatial maps and distributions of local free
volumes of ECS subdomains and coefficients of diffusion inside of them. The latter are
determined as log-normal distributed.
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Figure 3. (A) Examples of evolution of probability density function for the Brownian yet non-Gaussian
diffusion in 2D heterogeneous media simulated accordingly to the equilibrated Ito scheme for two
time moments (t = 10, red line, and t = 100, black line) adapted from [69] (published there under
Creative Commons Attribution 4.0 licence) (A) and the Gamma-distribution of diffusion coefficients
mimicking the heterogeneity of the medium, respectively, to the uniform value D0 (B).

Figure 4. Examples of digitized data (markers) of two distributions taken from [39], for 59 s (A) and
72 s (B) and their fits by the Laplace (red lines) and the Gaussian (black parabola) functions.
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Figure 5. The digitized data for 2D movements in the laboratory frame (markers) taken from [51], dig-
itized and replotted in double logarithmic co-ordinates. The straight lines indicated the power-law de-
pendencies MSDxy ∼ tα with α = 1 (dashed line), α = 0.6 (solid line), and α = 0.5 (dash-dotted line).

At the same time, the quantitative properties of MSDxy for times t > 200 ms were
discussed only qualitatively. The corresponding plot, redrawn in the double logarithmic
coordinates, see Figure 5 indicates the typical subdiffusive behaviour with fractional power-
index α < 1. One can see that after a regime of normal diffusion acting when a nanoparticle
walks within local intercellular cages, the transport slows down to subdiffusion with α = 0.6
and further even more, to the case of α = 0.5. Such a behaviour perfectly corresponds
to the case of trapping within the frames of the continuous-time random walk (CTRW)
model. Moreover, it is worth noting the Comb model, which describes such trapping of
normally locally diffusing particles that leads to subdiffusion with α = 0.5 in a direction
orthogonal to local traps. The Comb model, which explains the emergence of subdiffusion
with the power of the MSD index 1/2 from a normal diffusion, when a walker can be
trapped in “teeth of combs” between displacements along it was proposed combinatorially
for comb structure in the work [88] and later reformulated on in a language of diffusion
equations [89]. The place of it and its generalizations place among the models of anomalous
diffusion within the context of tracing individual trajectories is discussed in [90].

In the work [48], also operating with the single particle tracking of nanotubes in the
ECS, the time range of tracks was extended up to decades of seconds. Two regions of the
MSD separated by the interval looking as subdiffusion were revealed: short-time inter-
vals, which allowed to plot the spatial distribution of instantaneous diffusion coefficients
characterising transport properties within local cages separated by more narrow channels,
and the asymptotic regime of large times (tenths of seconds) giving the global large-scale
diffusion coefficient.

Remarkably, similar behaviour of the sequential change “normal diffusion”—“transient
subdiffusion”—“asymptotic normal diffusion” was detected in another irregular porous
medium, mucus [91]. The authors of the cited work also proposed the consider the time-
varying MSD in the form

MSD(t) =

(
1− D0

De f f

)
MSDL(t) + De f f (t)
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to cover both asymptotic regimes of the diffusion within local cavities of the size L and
the global large scale/large time effective average diffusion, which can be detected in
macroscopic observations; both diffusivities, D0 and De f f can differ by orders.

Another example is the results of simulation studies for tracers spreading in polymer
gels with irregular voids and tortuous paths [92]. The three-stage evolution of the MSD
quite similar to Figure 5 and with the close value of α can be observed there. Note that kind
of materials attracts recently attention as phantoms mimicking brain tissue [57].

It should be pointed out that the type of diffusive spread studied at the level of
individual random walkers depends also on the characteristic size of the latter. In particular,
the usage of quantum dots and quantum dots incorporated in small molecules of wheat
germ agglutinin (smaller than nanotubes discussed above) indicates the MSD linear in
time up to seconds that is typical for the normal Brownian motion [45]. However, the
local diffusion coefficients are not uniform over the explored space in this case too, the
probabilistic density distribution for them as well as for the local viscosities and local ECS
dimensions are found. The dependence of the diffusion type on the coordination of walkers’
and paths’ seize is highlighted by the MDSs in ECS and within brain cells. In the second
case, the subdiffusion originated from the complex tightly packed properties of intracellular
components is detected already.

The spatial dimension of the walking space can also affect the value of the diffusion
coefficient; recent development of super-resolution imaging, based, in particular, on the
self-interference scheme allows 3D tracing of particles [93]; for the walking quantum dots,
the Brownian type of diffusion is confirmed. Although the probability density functions
for the diffusion coefficients along trajectories at different depths of slice differ to a certain
extent, the averaged values for the 3D case are comparable with the value for 2D studies.
This means that one can operate with measurements and simulations in thin slices when
discussing the local diffusional properties.

5. Time-Dependent Diffusivity in the Physiological Conditions

Above, we showed that diffusion can have a non-classical character due to the prop-
erties of the propagation medium. However, a similar, if not greater, contribution to the
change in the efficiency of molecular transport is made by a change in the proportion of ECS
in the total volume of neural tissue, which occurs in response to changes in ionic concentra-
tions, in particular, during the transition between sleep and wakefulness [9]. In recent years
there have been more and more studies are emerging on changes in extracellular space
volume affecting the transport of molecules, with changes in ES volume value varying
according to the physiological state of the brain. A recent study showed a difference in the
rate of diffusion of water during sleep and while awake [94,95]. It has been shown that
the two components, slow and fast, of the apparent diffusion coefficient (ADC) change
simultaneously with the volume of cerebrospinal fluid (CSF). Sleep versus wakefulness
was associated with an increase in the slow component of ADC in the cerebellum and left
temporal pole and a decrease in fast ADC in the thalamus, insula, parahippocampus, and
striatum, and sleep awakening density was inversely associated with changes in ADC. CSF
volume also increased during sleep and was associated with sleep-induced ADC changes in
the cerebellum. There were no differences in ADC with wakefulness after sleep deprivation
compared with wakefulness at rest. Thus results revealed both an increase in the slow
part of ADC (mainly in the cerebellum) and a decrease in the fast part of ADC, which may
reflect the different biological significance of fast and slow ADC values in relation to sleep.

Generally, a change in the volume of the extracellular space is associated with any
change in the ionic composition of intercellular fluid during sleep and wakefulness, which is
caused by transport processes through the membrane [96]. The transition from wakefulness
to sleep has been shown to be accompanied by a marked and sustained change in the
concentration of key extracellular ions and the volume of extracellular space. Arousal leads
to a rapid increase in potassium with a simultaneous decrease in calcium, magnesium
and protons and a decrease in extracellular space. Normal sleep or anaesthesia causes
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the opposite change in extracellular ion concentration and is accompanied by an increase
in extracellular space volume. At the same time, changes in potassium concentration in
both cases occurred within a few seconds, while the dynamics of changes in calcium and
magnesium were rather slow in the transition from sleep to wakefulness. It was also shown
that the differences in concentrations of key ions were maintained in different states for
quite a long time in freely behaving animals.

Besides sleep-wake transition, it has been shown that ECS volume changes dynami-
cally in response to physiological and pathological neuronal activity and that these changes
have important functional consequences [27,97–100]. In this case, characteristics such as
diffusion and volume changes can be markers of brain conditions. When the volume of
the ECS decreases—neurotransmitters and neuromodulators affect a large population of
cells, increasing the extra-synaptic and volumetric connectivity between brain cells, which
can lead to serious disturbances. In particular, a recent review [98] on the relationship
between ECS changes and seizures provides evidence that sudden or prolonged shrink-
ing of the ECS may create the conditions for seizure initiation, as well as contribute to
seizure maintenance. This is because ECS volume is one of the key factors affecting the
increase/decrease of neuroactive substances such as ions and neurotransmitters and an
increase in ephaptic interactions. For example, a reduction in ECS can simultaneously
concentrate surrounding glutamate and K+ and cause a greater overlap of electric fields of
neighbouring neurons. All these cascading changes will both promote greater neuronal
excitation and, if the contraction occurs over a large area at the same time, will promote
synchronous discharge, which can lead to a seizure. The mechanisms that can lead to such
a pathological condition are ultimately controlled by the ECS, such as electrolyte imbalance
in the ECS or increased non-synaptic/ephaptic interactions between neurons.

A study [99] of epileptic seizures in a mouse experimental model has shown that the
extracellular space volume is reduced by almost 15% in vivo. Different pharmacological
blockers were used to eliminate epileptic activity and stop the reduction of the ECS volume.
The authors argue that the results obtained in vitro and in vivo, about the relationship be-
tween epileptic seizures and changes in ECS volume allows to target research on inhibition
of changes in ECS volume, which will help in the future treatment of patients with epilepsy
resistant to current treatments.

It should be noted that viscoelasticity of the extracellular matrix should not be excluded
from a role in changes in ECS volume. An extensive review [101] of numerous studies in the
past two decades of the extracellular matrix discusses its overall influence on fundamental
cellular processes, including proliferation, growth, proliferation, migration, differentiation
and organoid formation. From this perspective, the elasticity and stiffness of the matrix
are worth considering when assessing the qualitatively different types of the spread’s
behaviour in the brain. In addition, we can also mention the recent work [102], where the
effects of viscoelasticity of biomimetic matrices are discussed in relation to properties of
biological tissues in general, applications as scaffolds for cellular cultures and for physical
models of related structure-transport interrelations in general.

6. Conclusions

Since our article has a dual character, the Conclusions are also addressed to researchers
in two different fields.

To biologists and physiologists who study the living brain, we address the above
information that diffusion processes are by no means always characterized by Gaussian
statistics and obey Fick’s law. This means that when statistically processing experimental
data, it makes sense, for example, to compare the approximations of the Gaussian and
exponential functions, and when analyzing the transport of substances in brain tissues, at
least keep in mind alternatives from the Brownian yet non-Gaussian diffusion area.

In turn, we would like to draw the attention of physicists studying stochastic processes
to experimental studies of the processes of substance transport in brain tissues. Nicholson’s
with colleagues long series of work on diffusion in the brain, combined with the recent (and
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unfinished) scientific discussion about the mechanisms of drug transport in the parenchyma,
provide a good basis for developing advanced theoretical models of diffusion itself. Namely,
the combination of the complex shape of the intercellular space, the presence of traps (dead
spaces) and obstacles in the form of large molecules, as well as the dynamic regulation of
this volume, for example, during the transition between sleep and wakefulness—all these
properties deserve theoretical and model studies, the main result which it may be possible
to determine the features of the structure of the intercellular space of the brain parenchyma
by the measured characteristics of the transport of molecules in it.
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27. Nicholson, C.; Hrabětová, S. Brain Extracellular Space: The Final Frontier of Neuroscience. Biophys. J. 2017, 113, 2133–2142.

[CrossRef]
28. Nicholson, C. The secret world in the gaps between brain cells. Phys. Today 2022, 75, 26–32. [CrossRef]
29. Metzler, R. Superstatistics and non-Gaussian diffusion. Eur. Phys. J. Spec. Top. 2020, 229, 711–728. [CrossRef]
30. Tønnesen, J.; Inavalli, V.V.G.K.; Nägerl, U.V. Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue. Cell

2018, 172, 1108–1121. [CrossRef]
31. Soria, F.N.; Miguelez, C.; Pe nagarikano, O.; Tønnesen, J. Current techniques for investigating the brain extracellular space. Front.

Neurosci. 2020, 14, 570750. [CrossRef] [PubMed]
32. Yokel, R.A. Nanoparticle brain delivery: A guide to verification methods. Nanomedicine 2020, 15, 409–432. [CrossRef] [PubMed]
33. Kiselev, V.G. Fundamentals of diffusion MRI physics. NMR Biomed. 2017, 30, e3602. [CrossRef] [PubMed]
34. Novikov, D.S.; Fieremans, E.; Jespersen, S.N.; Kiselev, V.G. Quantifying brain microstructure with diffusion MRI: Theory and

parameter estimation. NMR Biomed. 2019, 32, e3998. [CrossRef] [PubMed]
35. Assaf, Y.; Barazanyc, D. Chapter Diffusion as a Probe of Tissue Microstructure. In Advances in Magnetic Resonance Technology and

Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 157–173. [CrossRef]
36. Stikov, N.; Alexander, D.C.; Pike, G.B. Neuroimage special issue on microstructure—Editorial. NeuroImage 2018, 182, 1–2.

[CrossRef]
37. Marty, B.; Djemaï, B.; Robic, C.; Port, M.; Robert, P.; Valette, J.; Boumezbeur, F.; Le Bihan, D.; Lethimonnier, F.; Mériaux, S.

Hindered diffusion of MRI contrast agents in rat brain extracellular micro-environment assessed by acquisition of dynamic T1
and T2 maps. Contrast Media Mol. Imaging 2013, 8, 12–19. [CrossRef]

38. Han, H.; Shi, C.; Fu, Y.; Zuo, L.; Lee, K.; He, Q.; Han, H. A Novel MRI Tracer-Based Method for Measuring Water Diffusion in the
Extracellular Space of the Rat Brain. IEEE J. Biomed. Health Inform. 2014, 18, 978–983. [CrossRef]

39. Mériaux, S.; Conti, A.; Larrat, B. Assessing Diffusion in the Extra-Cellular Space of Brain Tissue by Dynamic MRI Mapping of
Contrast Agent Concentrations. Front. Phys. 2018, 6, 38. [CrossRef]

40. Conti, A.; Magnin, R.; Gerstenmayer, M.; Tsapis, N.; Dumont, E.; Tillement, O.; Lux, F.; Le Bihan, D.; Mériaux, S.; Della Penna, S.;
Larrat, B. Empirical and Theoretical Characterization of the Diffusion Process of Different Gadolinium-Based Nanoparticles
within the Brain Tissue after Ultrasound-Induced Permeabilization of the Blood-Brain Barrier. Contrast Media Mol. Imaging 2019,
2019, 6341545. [CrossRef]

41. Manzo, C.; Garcia-Parajo, M.F. A review of progress in single particle tracking: From methods to biophysical insights. Rep. Prog.
Phys. 2015, 78, 124601. [CrossRef] [PubMed]

42. Shen, H.; Tauzin, L.J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C.F. Single particle tracking: From theory to
biophysical applications. Chem. Rev. 2017, 117, 7331–7376. [CrossRef]

43. Hrabetova, S.; Cognet, L.; Rusakov, D.A.; Nägerl, U.V. Unveiling the extracellular space of the brain: From super-resolved
microstructure to in vivo function. J. Neurosci. 2018, 38, 9355–9363. . [CrossRef] [PubMed]

http://dx.doi.org/10.1085/jgp.201611684
http://dx.doi.org/10.7554/eLife.27679
http://www.ncbi.nlm.nih.gov/pubmed/28826498
http://dx.doi.org/10.1021/mp300495e
http://www.ncbi.nlm.nih.gov/pubmed/23298378
http://dx.doi.org/10.1073/pnas.1706942114
http://dx.doi.org/10.1038/srep15024
http://dx.doi.org/10.1096/fj.201700999
http://dx.doi.org/10.1186/s12987-021-00282-z
http://dx.doi.org/10.1016/S0166-2236(98)01261-2
http://dx.doi.org/10.1088/0034-4885/64/7/202
http://dx.doi.org/10.1016/j.neuint.2003.11.011
http://www.ncbi.nlm.nih.gov/pubmed/15186912
http://dx.doi.org/10.1073/pnas.0509425103
http://dx.doi.org/10.1152/physrev.00027.2007
http://dx.doi.org/10.1007/s00791-012-0185-9
http://www.ncbi.nlm.nih.gov/pubmed/23172993
http://dx.doi.org/10.1016/j.bpj.2017.06.052
http://dx.doi.org/10.1063/PT.3.4999
http://dx.doi.org/10.1140/epjst/e2020-900210-x
http://dx.doi.org/10.1016/j.cell.2018.02.007
http://dx.doi.org/10.3389/fnins.2020.570750
http://www.ncbi.nlm.nih.gov/pubmed/33177979
http://dx.doi.org/10.2217/nnm-2019-0169
http://www.ncbi.nlm.nih.gov/pubmed/31999236
http://dx.doi.org/10.1002/nbm.3602
http://www.ncbi.nlm.nih.gov/pubmed/28230327
http://dx.doi.org/10.1002/nbm.3998
http://www.ncbi.nlm.nih.gov/pubmed/30321478
http://dx.doi.org/10.1016/B978-0-12-822479-3.00021-X
http://dx.doi.org/10.1016/j.neuroimage.2018.07.061
http://dx.doi.org/10.1002/cmmi.1489
http://dx.doi.org/10.1109/JBHI.2014.2308279
http://dx.doi.org/10.3389/fphy.2018.00038
http://dx.doi.org/10.1155/2019/6341545
http://dx.doi.org/10.1088/0034-4885/78/12/124601
http://www.ncbi.nlm.nih.gov/pubmed/26511974
http://dx.doi.org/10.1021/acs.chemrev.6b00815
http://dx.doi.org/10.1523/JNEUROSCI.1664-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30381427


Int. J. Mol. Sci. 2022, 23, 12401 17 of 19

44. Gao, Z. Advances in surface-coated single-walled carbon nanotubes as near-infrared photoluminescence emitters for single-
particle tracking applications in biological environments. Polym. J. 2018, 50, 589–601. [CrossRef]

45. Wang, Z.G.; Wang, L.; Lamb, D.C.; Chen, H.J.; Hu, Y.; Wang, H.P.; Pang, D.W.; Liu, S.L. Real-time dissecting the dynamics of drug
transportation in the live brain. Nano Lett. 2020, 21, 642–650. [CrossRef] [PubMed]

46. Yoshida, S.; Kisley, L. Super-resolution fluorescence imaging of extracellular environments. Spectrochim. Acta Mol. Biomol.
Spectrosc. 2021, 257, 119767. [CrossRef] [PubMed]

47. McKenna, M.; Shackelford, D.; Ferreira Pontes, H.; Ball, B.; Nance, E. Multiple Particle Tracking Detects Changes in Brain
Extracellular Matrix and Predicts Neurodevelopmental Age. ACS Nano 2021, 15, 8559–8573. [CrossRef] [PubMed]

48. Paviolo, C.; Soria, F.N.; Ferreira, J.S.; Lee, A.; Groc, L.; Bezard, E.; Cognet, L. Nanoscale exploration of the extracellular space in
the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods 2020, 174, 91–99.
[CrossRef] [PubMed]

49. Soria, F.N.; Paviolo, C.; Doudnikoff, E.; Arotcarena, M.L.; Lee, A.; Danné, N.; Mandal, A.K.; Gosset, P.; Dehay, B.; Groc, L.; Cognet,
L.; Bezard, E. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan
remodeling. Nat. Commun. 2020, 11, 3440. [CrossRef] [PubMed]

50. Xu, X.; Ge, X.; Xiong, H.; Qin, Z. Toward dynamic, anisotropic, high-resolution, and functional measurement in the brain
extracellular space. Neurophotonics 2022, 9, 032210. [CrossRef]

51. Godin, A.G.; Varela, J.A.; Gao, Z.; Danné, N.; Dupuis, J.P.; Lounis, B.; Groc, L.; Cognet, L. Single-nanotube tracking reveals the
nanoscale organization of the extracellular space in the live brain. Nat. Nanotechnol. 2017, 12, 238–243. [CrossRef]

52. Postnikov, E.B.; Sokolov, I.M. Reconstruction of substrate’s diffusion landscape by the wavelet analysis of single particle diffusion
tracks. Phys. A 2019, 533, 122102. [CrossRef]

53. Meroz, Y.; Sokolov, I.M. A toolbox for determining subdiffusive mechanisms. Phys. Rep. 2015, 573, 1–29. [CrossRef]
54. Rusakov, D.A.; Kullmann, D.M. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc.

Natl. Acad. Sci. USA 1998, 95, 8975–8980. [CrossRef]
55. Wu, H.; Schwartz, D.K. Nanoparticle tracking to probe transport in porous media. Accounts Chem. Res. 2020, 53, 2130–2139.

[CrossRef] [PubMed]
56. da Silva, M.T.Q.S.; do Rocio Cardoso, M.; Veronese, C.M.P.; Mazer, W. Tortuosity: A brief review. Mater. Today Proc. 2022, 58,

1344–1349. [CrossRef]
57. Axpe, E.; Orive, G.; Franze, K.; Appel, E.A. Towards brain-tissue-like biomaterials. Nat. Commun. 2020, 11, 3423. [CrossRef]
58. Rauti, R.; Renous, N.; Maoz, B.M. Mimicking the Brain Extracellular Matrix in Vitro: A Review of Current Methodologies and

Challenges. Israel J. Chem. 2020, 60, 1141–1151. [CrossRef]
59. Kajtez, J.; Nilsson, F.; Fiorenzano, A.; Parmar, M.; Emnéus, J. 3D biomaterial models of human brain disease. Neurochem. Int.

2021, 147, 105043. [CrossRef] [PubMed]
60. Postnikov, E.B.; Namykin, A.A.; Semyachkina-Glushkovskaya, O.V.; Postnov, D.E. Diffusion assessment through image processing:

Beyond the point-source paradigm. Eur. Phys. J. Plus 2021, 136, 480. [CrossRef]
61. Xiao, F.; Hrabe, J.; Hrabetova, S. Anomalous Extracellular Diffusion in Rat Cerebellum. Biophys. J. 2015, 108, 2384–2395. [CrossRef]
62. O’Shaughnessy, B.; Procaccia, I. Analytical Solutions for Diffusion on Fractal Objects. Phys. Rev. Lett. 1985, 54, 455. [CrossRef]

[PubMed]
63. Postnikov, E.B.; Postnov, D.E. An image processing method for characterizing diffusivity in brain’s parenchyma: A case study

of significantly non-uniform structures. In Proceedings of the 2019 International Conference on Intelligent Informatics and
Biomedical Sciences (ICIIBMS), Shanghai, China, 21–24 November 2019; pp. 21–22. [CrossRef]

64. Metzler, R.; Chechkin, A.V. Non-Gaussianity in stochastic transport: Phenomenology and modelling. arXiv 2022, arXiv:2204.01048.
65. Van Milligen, B.P.; Bons, P.D.; Carreras, B.A.; Sanchez, R. On the applicability of Fick’s law to diffusion in inhomogeneous

systems. Eur. J. Phys. 2005, 26, 913. [CrossRef]
66. Bauman, M.A.; Gillies, G.T.; Raghavan, R.; Brady, M.L.; Pedain, C. Physical characterization of neurocatheter performance in a

brain phantom gelatin with nanoscale porosity: Steady-state and oscillatory flows. Nanotechnology 2004, 15, 92–97. [CrossRef]
67. Navarro-Lozoya, M.; Kennedy, M.S.; Dean, D.; Rodriguez-Devora, J.I. Development of phantom material that resembles

compression properties of human brain tissue for training models. Materialia 2019, 8, 100438. [CrossRef]
68. Higgins, M.; Leung, S.; Radacsi, N. 3D Printing Surgical Phantoms and their Role in the Visualization of Medical Procedures.

Ann. 3D Print. Med. 2022, 6, 100057. [CrossRef]
69. Postnikov, E.B.; Chechkin, A.; Sokolov, I.M. Brownian yet non-Gaussian diffusion in heterogeneous media: From superstatistics

to homogenization. New J. Phys. 2020, 22, 063046. [CrossRef]
70. Sokolov, I.M. Itô, Stratonovich, Hänggi and all the rest: The thermodynamics of interpretation. Chem. Phys. 2010, 375, 359–363.

[CrossRef]
71. Mu noz-Gil, G.; Volpe, G.; Garcia-March, M.A.; Aghion, E.; Argun, A.; Hong, C.B.; Bland, T.; Bo, S.; Conejero, J.A.; Firbas, N.; et al.

Objective comparison of methods to decode anomalous diffusion. Nat. Commun. 2021, 12, 6253. [CrossRef]
72. Mogre, S.S.; Brown, A.I.; Koslover, E.F. Getting around the cell: Physical transport in the intracellular world. Phys. Biol. 2020, 17,

061003. [CrossRef]

http://dx.doi.org/10.1038/s41428-018-0052-8
http://dx.doi.org/10.1021/acs.nanolett.0c04216
http://www.ncbi.nlm.nih.gov/pubmed/33290082
http://dx.doi.org/10.1016/j.saa.2021.119767
http://www.ncbi.nlm.nih.gov/pubmed/33862370
http://dx.doi.org/10.1021/acsnano.1c00394
http://www.ncbi.nlm.nih.gov/pubmed/33969999
http://dx.doi.org/10.1016/j.ymeth.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/30862507
http://dx.doi.org/10.1038/s41467-020-17328-9
http://www.ncbi.nlm.nih.gov/pubmed/32651387
http://dx.doi.org/10.1117/1.NPh.9.3.032210
http://dx.doi.org/10.1038/nnano.2016.248
http://dx.doi.org/10.1016/j.physa.2019.122102
http://dx.doi.org/10.1016/j.physrep.2015.01.002
http://dx.doi.org/10.1073/pnas.95.15.8975
http://dx.doi.org/10.1021/acs.accounts.0c00408
http://www.ncbi.nlm.nih.gov/pubmed/32870643
http://dx.doi.org/10.1016/j.matpr.2022.02.228
http://dx.doi.org/10.1038/s41467-020-17245-x
http://dx.doi.org/10.1002/ijch.201900052
http://dx.doi.org/10.1016/j.neuint.2021.105043
http://www.ncbi.nlm.nih.gov/pubmed/33887378
http://dx.doi.org/10.1140/epjp/s13360-021-01487-9
http://dx.doi.org/10.1016/j.bpj.2015.02.034
http://dx.doi.org/10.1103/PhysRevLett.54.455
http://www.ncbi.nlm.nih.gov/pubmed/10031520
http://dx.doi.org/10.1109/ICIIBMS46890.2019.8991518
http://dx.doi.org/10.1088/0143-0807/26/5/023
http://dx.doi.org/10.1088/0957-4484/15/1/018
http://dx.doi.org/10.1016/j.mtla.2019.100438
http://dx.doi.org/10.1016/j.stlm.2022.100057
http://dx.doi.org/10.1088/1367-2630/ab90da
http://dx.doi.org/10.1016/j.chemphys.2010.07.024
http://dx.doi.org/10.1038/s41467-021-26320-w
http://dx.doi.org/10.1088/1478-3975/aba5e5


Int. J. Mol. Sci. 2022, 23, 12401 18 of 19

73. Wang, W.; Metzler, R.; Cherstvy, A.G. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional
Gaussian noise: Overview of related experimental observations and models. Phys. Chem. Chem. Phys. 2022, 24, 18482–18504.
[CrossRef] [PubMed]

74. Joseph, A.; Simo, G.M.; Gao, T.; Alhindi, N.; Xu, N.; Graham, D.J.; Gamble, L.J.; Nance, E. Surfactants influence polymer
nanoparticle fate within the brain. Biomaterials 2021, 277, 121086. [CrossRef] [PubMed]

75. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339,
1–77. [CrossRef]

76. Klafter, J.; Sokolov, I.M. First Steps in Random Walks: From Tools to Applications; Oxford University Press: Oxford, UK, 2011.
[CrossRef]

77. Sokolov, I.M. Models of anomalous diffusion in crowded environments. Soft Matter 2012, 8, 9043–9052. [CrossRef]
78. Wang, B.; Kuo, J.; Bae, S.C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater. 2012, 11, 481–485. [CrossRef]
79. Beck, C.; Cohen, E.G.D. Superstatistics. Physica A 2003, 322, 267–275. [CrossRef]
80. Chubynsky, M.V.; Slater, G.W. Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett. 2014, 113,

098302. [CrossRef]
81. Chechkin, A.V.; Seno, F.; Metzler, R.; Sokolov, I.M. Brownian yet non-Gaussian diffusion: From superstatistics to subordination of

diffusing diffusivities. Phys. Rev. X 2017, 7, 021002. [CrossRef]
82. Manzo, C.; Torreno-Pina, J.A.; Massignan, P.; Lapeyre Jr, G.J.; Lewenstein, M.; Parajo, M.F.G. Weak ergodicity breaking of receptor

motion in living cells stemming from random diffusivity. Phys. Rev. X 2015, 5, 011021. [CrossRef]
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