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Abstract

The sequences of proteins encoded by a genome evolve at different rates. A correlate of a protein’s evolutionary rate is its
expression level: highly expressed proteins tend to evolve slowly. Some explanations of rate variation and the correlation
between rate and expression predict that more slowly evolving and more highly expressed proteins have more favorable
equilibrium constants for folding. Proteins from thermophiles generally have more stable folds than proteins from
mesophiles, and it is known that there are systematic differences in amino acid content between thermophilic and
mesophilic proteins. I examined whether there are analogous correlations of amino acid frequencies with evolutionary rate
and expression level within genomes. In most of the organisms analyzed, there is a striking tendency for more slowly
evolving proteins to be more thermophile-like in their amino acid compositions when adjustments are made for variation
in GC content. More highly expressed proteins also tend to be more thermophile-like by the same criteria. These results
suggest that part of the evolutionary rate variation among proteins is due to variation in the strength of selection for
stability of the folded state. They also suggest that increasing strength of this selective force with expression level plays
a role in the correlation between evolutionary rate and expression level.
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Introduction
The forces that shape protein evolution are a central topic
in molecular evolution. Within-genome differences in rates
of protein evolution provide a window into these forces.
Correlations between evolutionary rate and several other
variables have been observed (Pál et al. 2001; Krylov
et al. 2003; Rocha and Danchin 2004; Drummond et al.
2005; Drummond and Wilke 2008). Perhaps surprisingly,
one of the best predictors of a protein’s evolutionary rate
is its expression level. Despite these correlational observa-
tions, the causes of rate differences remain uncertain.

Drummond et al. (2005) proposed that the negative
correlation between evolutionary rate and expression level
reflects selection against harmful effects of misfolded pro-
teins. According to this hypothesis, the products of mis-
folding are toxic for reasons unrelated to the function of
the protein. The products of errors in translation and tran-
scription are particularly likely to misfold, because alter-
ation of the amino acid sequence can make proper
folding unfavorable. Selection against such toxic effects
would be stronger for highly expressed proteins, simply be-
cause a given fraction of misfolding would correspond to
a larger quantity of misfolded protein. This stronger selec-
tion would lead to both slower evolutionary rates and
greater stability of the folded state for highly expressed pro-
teins. These predictions were borne out by simulations of
a model of this hypothesis (Drummond and Wilke 2008).

The more conventional view is that the main selective
constraint on protein evolution is selection for function.
Stability of the folded state is important to this kind of se-
lection as well. Unfolded protein is obviously not functional
(with the exception of some intrinsically disordered pro-
teins [Dyson and Wright 2005]). Selection against sequence
changes that largely abolish folding reduces the rate of evo-
lution. Such changes are strongly deleterious and do not
become fixed. However, more subtle differences in stability
of the folded state can also be selectively important, and
many of these will be weakly selected. For example, low-
ering the equilibrium constant for folding from 1,000 to
100 would, other things being equal, lead to nearly
a 1% loss of protein function, with a selective cost that
depends on functional aspects of the protein. This type
of selection has been modeled by Chen and Shakhnovich
(2009). Furthermore, unfolded protein is subject to deg-
radation, so even a small fraction of unfolded protein at
equilibrium might lead to a large decrease in the
steady-state protein concentration, and hence a dispropor-
tionately large loss of protein function. Fast folding, slow
unfolding, and stability to denaturing conditions are other,
related targets of selection. Mistranslation might play a role
in any of these types of selection. Stronger functional
selection will lead to both slower evolution and greater
stability. To the extent that functional constraint is stron-
ger for highly expressed proteins, these will also tend to
have greater stability.
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Thus, several hypotheses predict that more slowly evolv-
ing and more highly expressed proteins tend to have more
stable folded states. Such within-organism differences are
reminiscent of the difference between mesophilic and ther-
mophilic proteins, which also involves stability of the
folded state. This is not to say that thermostability is pre-
cisely the same problem as greater stability at a particular
temperature. As temperature increases, enthalpic changes
of fixed size become less important for both rate constants
and equilibrium constants. Furthermore, the thermody-
namics of important interactions such as salt bridges
and the hydrophobic effect exhibit complicated tempera-
ture dependence (Makhatadze and Privalov 1995; Elcock
1998). Nonetheless, direct empirical evidence confirms
a connection between thermostability and increased stabil-
ity at ordinary temperatures: even at ordinary tempera-
tures, most thermophilic proteins have more stable folds
(both kinetically and thermodynamically) than their mes-
ophilic counterparts (Kumar and Nussinov 2001; Luke et al.
2007). Thus, sequence features that distinguish thermo-
philic from mesophilic proteins might also distinguish
more stably folded mesophilic proteins from less stably
folded mesophilic proteins. According to the evolutionary
hypotheses discussed above, these features would also dis-
tinguish slowly evolving from rapidly evolving proteins and
highly expressed from lowly expressed proteins.

The amino acid compositions of thermophilic proteins
are systematically different from those of mesophilic pro-
teins (Singer and Hickey 2003; Zeldovich et al. 2007). As
argued by these authors, these differences likely reflect,
at least in part, differences in the thermodynamics and ki-
netics of folding. I therefore investigated whether the same
compositional differences are associated with differences in
evolutionary rate and expression level within genomes. I
computed the within-genome correlations between amino
acid frequencies and evolutionary rate for several organ-
isms, controlling for differences in GC content among
genes. I did the same for correlations between amino acid
frequencies and expression level. I compared these corre-
lations to differences in amino acid frequencies between
thermophilic and mesophilic proteins. For most of the or-
ganisms analyzed, there is substantial agreement between
the directions of these correlations and the directions of
thermophile/mesophile differences. This suggests that
more slowly evolving and more highly expressed proteins
do indeed have more stable folds.

Methods
Ortholog pairs for Homo sapiens and Macaca mulatta, Dro-
sophila melanogaster and Drosophila simulans, and Asper-
gillus fumigatus and Neosartorya fischeri, along with
expression data for human genes, were kindly provided
by Yuri Wolf and are as described in Wolf et al. (2009).
Ortholog pairs for Escherichia coli and Salmonella typhimu-
rium were obtained from the Roundup server (Deluca et al.
2006), using default parameters (divergence 5 0.2, Blast
E-value 5 1 � 10�20). Ortholog pairs for Saccharomyces
cerevisiae and Saccharomyces paradoxus were as identified

by Kellis et al. (2003) and described in the file at http://
downloads.yeastgenome.org/sequence/fungal_genomes/
S_paradoxus/other/MIT_paradoxus_hits.txt. Caenorhab-
ditis briggsae–Caenorhabditis remanei ortholog informa-
tion was downloaded from the TreeFam database (Ruan
et al. 2008) and processed to eliminate pairs with bootstrap
probability below 95% and to retain just one pair from each
many:many ortholog relationship.

Saccharomyces cerevisiae mRNA levels were those re-
ported by Holstege et al. (1998) and were downloaded from
http://web.wi.mit.edu/young/pub/data/orf_transcriptome.
txt. Saccharomyces cerevisiae protein abundance levels
were from Ghaemmaghami et al. (2003). Caenorhabditis
elegans mRNA data were from Hill et al. (2000), Supple-
mental table 2a, obtained from http://www.mcb.harvard.
edu/hunter/Pubs/1053496_supplemental.zip. Expression
levels reported for the eight developmental stages were av-
eraged. Caenorhabditis elegans protein abundance data
were from Schrimpf et al. (2009). Escherichia coli expression
data were from Covert et al. (2004), Supplementary Data 7.
Data for wild-type E. coli were used. The three aerobic data
sets were averaged, as were the four anaerobic data sets.
The resulting aerobic and anaerobic means were then
averaged to produce the values used in this study.
Drosophila melanogaster mRNA data were obtained from
FlyAtlas (Chintapalli et al. 2007). Expression levels for whole
fly were used. For probes that corresponded to multiple
splicing variants, one was chosen at random. Drosophila
melanogaster protein abundances were from Brunner
et al. (2007).

Analyses were performed with the aid of the Python pro-
gramming language along with NumPy (Oliphant 2007;
http://numpy.scipy.org) and the Python interface to the
National Center for Biotechnology Information (NCBI)
Cþþ Toolkit. Sequences were obtained either from NCBI
databases, files provided by third parties, or a third-party
database. Genes with low-complexity protein sequences
(entropy less than 2.5 nats) were excluded from the anal-
ysis. Except where noted, a limit on MaxH (Boyd et al. 1998)
of 1.4 was imposed in an effort to exclude most membrane
proteins. Protein sequences of apparent orthologs were
aligned with MUSCLE (Edgar 2004) using the default set-
tings, and these alignments were propagated back to
the coding sequences. Pairs whose alignments indicated
frame-changing differences or otherwise variable quality
were eliminated from consideration. Protein distances were
calculated using the protdist program of the PHYLIP pack-
age (Felsenstein 2005), using a gamma distribution of rates
with a fixed shape parameter of 1. dN and dS were esti-
mated using the CODEML program of the PAML package
(Yang 1997) with constant rates and CodonFreq 5 2. For
correlations with rates of evolution, genes with dS . 2 were
excluded, except that dS. 4 was the cut-off for C. briggsae–
C. remanei pairs because of the greater divergence between
these organisms.

Correlation results controlled for GC content were ob-
tained by computing Spearman’s rank-order correlation
coefficient for the residuals of third-degree polynomial fits
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of the variables to GC fraction. Results were found to
depend only weakly on the degree of the polynomial.

Kernel smoothing regression (fig. 1) was carried out in
Octave (http://www.octave.org). Vertical values of each
plot were calculated as weighted averages of the vertical val-
ues of the data points (each data point representing one
protein), with the weights given by a Gaussian function cen-
tered at the corresponding horizontal value. The standard
deviation (SD) of the Gaussian was 1/ln(10), which corre-
sponds to a standard deviation of one on a natural log scale.

Results

General Approach and Detailed Example
Singer and Hickey (2003) compared the amino acid com-
positions of proteins from several mesophilic and thermo-
philic species. Differences were individually statistically
significant at the 5% level for 11 of the 20 amino acids:
E, I, K, V, and Y were overrepresented in thermophiles
(compared with mesophiles) and A, C, H, Q, T, and W were
underrepresented. I will refer to this set of amino acids, to-
gether with their classifications as overrepresented or un-
derrepresented in thermophiles, as SH-11. This grouping of
the amino acids is apparently unrelated to their metabolic
costs, which might influence correlations between amino
acid frequencies and expression level (Akashi and Gojobori
2002). Similar results follow from the correlations with op-
timal growth temperature reported by Zeldovich et al.
(2007, their Table S5a); if only statistically significant cor-
relations are considered (ignoring the lack of phylogenetic
independence), the only differences are that S and D have
negative correlations with optimal growth temperature
and W has no significant correlation. The results presented
here are based on those of Singer and Hickey (2003)
(SH-11). Use of the results of Zeldovich et al. (2007) instead,
or use of the union or intersection of the two sets of amino
acids, would strengthen some of the results and weaken
others, but leave the overall conclusions unchanged.

The analyses presented here are based on rank-order cor-
relation coefficients between the frequency of each amino
acid and the variable of interest (a measure of evolutionary
rate or expression level), adjusted for GC content. Only those
amino acids for which this correlation and the thermophile/
mesophile difference were both statistically significant at the
5% level were considered. The total number of such amino
acids and the number for which the correlation had the ex-
pected direction were tabulated. The ‘‘expected direction’’
means that slowly evolving or highly expressed proteins
are more like thermophilic proteins. For example, for tyro-
sine (Y), which is overrepresented in thermophiles, the ex-
pectation is a negative correlation with protein evolutionary
rate and a positive correlation with expression level.

The details of one such analysis are shown in table 1. For
human proteins, correlation coefficients (controlled for GC
content, as explained below) between each amino acid fre-
quency and a measure of evolutionary rate are shown,
along with their P values. The measure of evolutionary rate
was a protein distance calculated for each human protein

and an apparent M. mulatta ortholog. Of the 11 amino
acids whose frequencies differ significantly between ther-
mophiles and mesophiles, 8 (all but E, K, and H) had sta-
tistically significant correlations (P , 0.05) with this
measure of evolutionary rate. Of these eight correlations,
all but one had the predicted sign, as indicated in the table.
This much agreement is unlikely to occur by chance: for
a one-tailed binomial test of the null hypothesis that agree-
ment and disagreement are equally likely, the P value for
this result (7/8 matching the expectation) is 0.035.

The relationships between mean amino acid frequencies
and evolutionary rate are illustrated by figure 1. These
curves, which were produced by kernel smoothing regres-
sion (see Methods), may be compared with the correlation
results in table 1. Figure 1A shows a generally downward
trend as estimated evolutionary rate increases for three
of the amino acids that are more frequent in thermophilic
proteins (I, V, and Y). For E and K there is not a clear trend.
Visual inspection might suggest an overall downward
trend, but the estimated correlation coefficients, though
negative, are not statistically significant. In figure 1B, an in-
creasing trend is obvious for three of the amino acids that
are less frequent in thermophilic proteins: C, T, and W. The
curve for H is fairly flat and peaks near the middle, which is
consistent with its low and nonsignificant correlation. The
curve for A is strikingly nonmonotonic (increasing in some
places and decreasing in others). It is decreasing in the mid-
dle of the range of evolutionary rate, where the bulk of the
data points lie, which is consistent with the discordant neg-
ative correlation for A. The curve for Q also displays marked
nonmonotonicity, but is rising in the middle of the data
range, which is consistent with the positive correlation
for Q. Figure 1C shows the relationships for the other
amino acids, which can also be reconciled with the
correlation results in table 1.

Table 1. Correlation Results for Human Protein Distances,
Controlling for GC Content.

Amino acid
Correlation
coefficient P value

Agreement with
prediction

A 20.039 0.00027 Disagrees
C 0.107 2.9 3 10223 Agrees
D 20.149 1.7 3 10243

E 20.013 0.24 ns
F 0.003 0.75
G 20.031 0.0039
H 0.008 0.46 ns
I 20.111 1.6 3 10224 Agrees
K 20.011 0.33 ns
L 0.053 9.5 3 10207

M 20.087 9.8 3 10216

N 20.095 2.5 3 10218

P 0.052 1.6 3 10206

Q 0.057 1.2 3 10207 Agrees
R 0.077 1.3 3 10212

S 0.016 0.13
T 0.033 0.0027 Agrees
V 20.069 1.6 3 10210 Agrees
W 0.127 5.8 3 10232 Agrees
Y 20.111 7.5 3 10225 Agrees

NOTE.—ns, not significant.
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Amino Acid Frequencies and Evolutionary Rate
Table 2 summarizes the results of analysis of correlations
between amino acid frequencies and evolutionary rates
for six organisms. Each result summarizes an analysis of
the type shown in table 1. Results are shown for three
measures of protein evolutionary rate (protein distance

[calculated from protein alignments, without consider-
ation of nucleotide sequences], dN, and dN/dS). For com-
parison, results for a measure of synonymous rate (dS) are
also shown.

For all of the organisms other than C. briggsae, there is
overwhelming agreement between the observed and ex-
pected directions of correlation for all three measures of
protein evolutionary rate. In no case does more than one
amino acid have a significant correlation in the ‘‘wrong’’
direction, whereas in all cases at least six amino acids, and
in one case all 11, have correlations in the expected
direction. Except in the cases with 6/7 agreements, each
of these results is individually statistically significant
according to a one-tailed binomial test, with P values
ranging from 0.035 (for 7/8 agreements) to 0.00049
(for 11/11 agreements). The cases with 6/7 agreements
approach statistical significance (P 5 0.063). Thus, the
compositional differences that distinguish thermophilic
from mesophilic proteins tend also to distinguish more
slowly evolving proteins from more rapidly evolving
proteins.

For C. briggsae, no strong trend toward agreement is
apparent for the full set of C. briggsae–C. remanei apparent
orthologs. This may reflect the fact that C. briggsae and
C. remanei are more diverged than the other pairs of
organisms used in this study (C. elegans and C. briggsae
are even more highly diverged, and comparing them yields
similar results). If the analysis is restricted to ortholog pairs
with estimated dS , 1, a strong trend toward agreement is
observed (table 2), comparable to that found in other or-
ganisms and statistically significant (P 5 0.031 for dN/dS
and P 5 0.0078 for the other measures of protein evolu-
tionary rate). This result is difficult to interpret, but it sug-
gests that whatever force is responsible for the effect
observed in the other organisms also operates to some
extent in Caenorhabditis.

The correlations used in these analyses are controlled for
the GC content of the coding sequences (see Methods for
details). Differences in GC content among genes in the
same organism can lead to corresponding differences in
amino acid frequencies, and evolutionary rates correlate
negatively or positively with GC content, depending on

Table 2. Correlation Results for Amino Acid Frequencies and
Evolutionary Rate.

Number
of genes

Protein evolutionary rate

dS
Protein
distance dN dN/dS

Home sapiens 8,502 7/8 7/8 9/9 3/9
Drosophila melanogaster 5,369 6/7 6/7 7/8 2/11
Aspergillus fumigatus 5,532 10/11 10/10 11/11 6/11
Saccharomyces cerevisiae 3,367 7/8 6/7 6/7 3/5
Escherichia coli 1,720 9/9 9/9 8/8 9/10
Caenorhabditis briggsae 4,922 5/10 5/10 6/8 3/9
C. briggsae, dS , 1 878 7/7 7/7 5/5 2/2

NOTE.—For each organism and each rate measure, the number of statistically
significant correlations that have the predicted sign is given by the numerator
and the total number of significant correlations for which a prediction exists is
given by the denominator.

FIG. 1. The relationship between amino acid frequency and
evolutionary rate among human proteins. The curve for each
amino acid conveys how its frequency varies with protein sequence
distance when GC content is taken into account. Each curve was
produced by smoothing the data with a Gaussian kernel with an SD
of 1/ln(10). The raw data points were the residuals of cubic
polynomial fits of amino acid frequencies and the logarithm (base
10) of sequence distance to GC fraction. (A) Amino acids that are
overrepresented in thermophiles. (B) Amino acids that are
underrepresented in thermophiles. (C) Other amino acids.
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the organism. Thus, it is necessary to control for GC con-
tent. Table S1 (Supplementary Material online) summarizes
the results of using correlations that are not controlled for
GC content. For D. melanogaster and S. cerevisiae, no strong
effect is apparent; controlling for GC content exposes
an otherwise hidden phenomenon. For H. sapiens,
A. fumigatus, E. coli, and C. briggsae (dS , 1), the effect
is mostly observable even without correction for GC
content. In these cases, controlling for GC content provides
assurance that the observed effect is not a simple artifact
of compositional variation. As an additional check, I per-
formed the analysis for H. sapiens controlling for the GC
content of introns in the coding sequence, restricting
the analysis to the 7576 genes with at least 1,000 bp of in-
tron sequence. The results again show a strong effect: 6/7,
7/8, and 7/8 of the significant correlations go in the
expected direction for protein distance, dN, and dN/dS,
respectively.

Because systematic differences between membrane and
nonmembrane proteins might affect the results, likely
membrane proteins were excluded from the analysis. This
exclusion was based on MaxH, a simple metric devised by
Boyd et al. (1998) that distinguishes between the two types
of protein on the basis of sequence. The correlation analysis
was restricted to proteins with MaxH , 1.4, which should
eliminate the vast majority of membrane proteins (along

with many nonmembrane proteins). Results for the full
sets of proteins, not filtered by MaxH, are shown in sup-
plementary table S2 (Supplementary Material online).
For H. sapiens, A. fumigatus, and E. coli, all of these results
are identical to or stronger than the corresponding results
for the restricted set of proteins (table 2). However, the
results for D. melanogaster, S. cerevisiae, and C. briggsae
(dS , 1) are significantly weakened. It may be significant
that D. melanogaster and S. cerevisiae are also the only or-
ganisms that required correction for GC content in order to
show the observed effect.

The correlations of dN with each amino acid frequency
are summarized graphically in figure 2. The abundance of
negative correlations for amino acids that are more fre-
quent in thermophilic proteins, and positive correlations
for amino acids with the opposite tendency, is apparent.
Neglecting C. briggsae (but including the C. briggsae
dS , 1 results), the only amino acids whose frequencies
ever correlate significantly in the ‘‘wrong’’ direction are al-
anine (A) and tryptophan (W), the latter of which had no
significant correlation with optimal growth temperature
according to Zeldovich et al. (2007). Despite being discor-
dant in some organisms, both A and W correlate in the
expected direction in other organisms. For each of the
other nine amino acids in SH-11, there is a consensus of
sorts: all of the significant correlations have the same sign,
and there is more than one significant correlation. In all
nine cases in which there is a consensus, the consensus
is in accord with the hypothesis that more slowly evolving
proteins are more like thermophilic proteins.

Trends in the direction of correlation are also apparent
for some amino acids outside of SH-11. Most notably,
P and S consistently correlate positively with dN, and
M consistently correlates negatively (even if initial methio-
nines are excluded from the analysis). The positive corre-
lations for S are in accord with the significant negative
correlation with optimal growth temperature reported
by Zeldovich et al. (2007). However, the correlations for
D, the other amino acid specific to the Zeldovich et al.
(2007) set, are discordant in the cases where they are sta-
tistically significant.

As mentioned above, the SH-11 classifications of the
amino acids bear no clear relationship to their metabolic
costs as calculated by Akashi and Gojobori (2002). We may
ask whether, considering all the amino acids, the observed
correlations tend to reflect metabolic costs, perhaps due to
the correlation of evolutionary rate with expression level.
There is no significant difference between the costs of the
nine amino acids for which there is a consensus negative
correlation and the seven for which there is a consensus
positive correlation (P 5 0.22, Mann–Whitney U-test).
Thus, the correlations do not appear to reflect the meta-
bolic costs of amino acids.

The picture is much the same for the correlations with
protein distance and dN/dS (Supplementary figs S1 and S2,
Supplementary Material online). The most notable differ-
ence is that threonine, rather than tryptophan, is discor-
dant for protein distance in D. melanogaster. Alanine

FIG. 2. Summary of correlation results for dN across organisms. For
each correlation, ‘‘þ’’ indicates a statistically significant (P , 0.05)
positive correlation, ‘‘�’’ indicates a significant negative correlation,
and ‘‘ns’’ indicates that the correlation was not statistically
significant. Negative correlations, which are predicted for amino
acids more common are thermophiles, are also indicated by orange
coloring, and positive correlations are indicated by blue coloring.
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remains the only amino acid to be discordant in any other
organism.

Amino Acid Frequencies and Expression Level
Table 3 and Supplementary figure S3 (Supplementary Ma-
terial online) summarize the results of correlation of amino
acid frequencies with expression levels, again controlling
for GC content. Just as for evolutionary rate, there is strong
agreement between the observed directions of the corre-
lations and the directions predicted on the basis of the dif-
ferences between thermophiles and mesophiles reported
by Singer and Hickey (2003). In all but one case, just
one amino acid was discordant. Six of the nine results
are individually statistically significant. Some of the remain-
ing three come close, and in each of these three cases a dif-
ferent measure of expression level in the same organism
yields a statistically significant result.

In every analysis summarized in table 3, the frequency of
either alanine or tyrosine correlates in the opposite of the
predicted direction. The recurring discordance of alanine is
reminiscent of the results for protein evolutionary rate.
However, in the case of expression level, alanine never cor-
relates in the predicted direction: its correlation is either
discordant or not statistically significant. There is, then,
a consensus for alanine (in the sense defined in the previ-
ous section), and this consensus is discordant. For tyrosine,
in contrast, there is no consensus among the results for
expression level. As is evident from Supplementary figure
S3 (Supplementary Material online), there is consensus for
ten of the SH-11 amino acids, and nine of these are in ac-
cord with the hypothesis that the compositions of highly
expressed proteins tend to be similar to those of thermo-
philic proteins.

Stronger selection against use of metabolically costly
amino acids in highly expressed proteins might affect these
correlations. As Supplementary figure S3 (Supplementary
Material online) shows, there are consensus positive corre-
lations for seven amino acids and consensus negative cor-

relations for eight. There is no statistically significant
difference between the costs of these two sets of amino
acids (P 5 0.15, Mann–Whitney U-test) according to
the values calculated by Akashi and Gojobori (2002). Selec-
tion for low-cost amino acids does not appear to explain
the correlations.

Discussion
Within the genomes analyzed, the amino acid composition
of a protein correlates with its evolutionary rate and ex-
pression level. For most of these genomes, the correlations,
controlling for GC content, tend to mirror the composi-
tional differences between mesophilic and thermophilic
proteins. The frequencies of amino acids that are overrep-
resented in thermophiles tend to correlate negatively with
evolutionary rate and positively with expression level. For
amino acids that are rarer in thermophilic proteins, the cor-
relations tend to go in the opposite direction. Thus, both
highly expressed proteins and slowly evolving proteins tend
to be more like thermophilic proteins in their amino acid
compositions.

Although other interpretations are possible, these re-
sults strongly suggest that more slowly evolving and more
highly expressed proteins tend to have more stable folded
states (i.e., more favorable equilibrium constants for fold-
ing). This suggests that evolutionary rate is determined in
part by the strength of selection for folding stability and
that the reason for the observed negative correlation be-
tween expression level and evolutionary rate is that higher
expression leads to stronger selection for stability. In slight
variations of this interpretation, the target of selection is
not thermodynamic stability per se, but a related attribute
such as high speed of folding, low rate of unfolding, or
rigidity of the folded structure.

A variety of hypotheses would explain stronger selection
for proper folding of more highly expressed proteins.
Drummond et al. (2005) proposed that toxic effects of
the misfolded products of mistranslation were the domi-
nant force. Selection against loss of protein function would
also explain the effect, provided that the loss of a given
fraction of protein functionality tends to have a greater
cost for more highly expressed proteins, as has been pro-
posed (Rocha and Danchin 2004). Whether the important
cost of misfolding is toxicity or loss of protein function,
mistranslation might or might not be important.

Although the results presented here do not distinguish
among hypotheses that invoke selection for proper protein
folding, they do support this class of hypotheses against
alternatives. For example, the hypothesis that the correla-
tion between expression level and evolutionary rate is due
to selection for translational efficiency (Akashi 2001) does
not predict the observed effect (although it is not strictly
incompatible with it). Furthermore, properties unrelated to
free energy of folding are important for protein function.
Any or all of these might be important for explaining rate
differences among proteins and the correlation between
rate and expression level. The results presented here, how-
ever, point specifically at more favorable folding or a related

Table 3. Correlation Results for Amino Acid Frequencies and
Expression Level.

Number
of genes

Correlation
results

P
value

Discordant
amino
acid(s)

Homo sapiens (EST counts) 8,143 6/7 0.063 A
H. sapiens (microarray) 7,752 9/10 0.011 A
Drosophila melanogaster

(mRNA) 7,791 8/9 0.020 A
D. melanogaster (protein) 5,450 9/10 0.011 A
Saccharomyces cerevisiae

(mRNA) 3,542 8/10 0.055 A, Y
S. cerevisiae (protein) 2,820 8/9 0.020 A
Escherichia coli 2,712 8/9 0.020 Y
Caenorhabditis elegans

(mRNA) 7,053 5/6 0.109 A
C. elegans (protein) 6,269 9/10 0.011 A

NOTE.—The number of statistically significant correlations that have the predicted
sign is shown, along with the total number of significant correlations for which
a prediction exists. Discordant amino acids are those with significant correlations
in the opposite of the predicted direction.
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property as an important factor. The same can be said of
selection against toxic effects of proteins, which in principle
could act on something unrelated to stable folding.

Deciding among explanations for the correlation be-
tween expression level and evolutionary rate will require
further evidence. The results presented here suggest that
the correct explanation will involve selection on some as-
pect of protein folding.

Supplementary Material
Supplementary tables S1 and S2 and figures S1–S3 are avail-
able at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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