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Abstract

Rapid advances in Ribonucleic Acid sequencing (or RNA-seq) technology for analyzing entire tran-

scriptomes of desired tissue samples, or even of single cells at scale, have revolutionized biology

in the past decade. Increasing accessibility and falling costs are making it possible to address

many problems in biology that were once considered intractable, including the study of various so-

cial behaviors. RNA-seq is opening new avenues to understand long-standing questions on the

molecular basis of behavioral plasticity and individual variation in the expression of a behavior. As

whole transcriptomes are examined, it has become possible to make unbiased discoveries of

underlying mechanisms with little or no necessity to predict genes involved in advance. However,

researchers need to be aware of technical limitations and have to make specific decisions when

applying RNA-seq to study social behavior. Here, we provide a perspective on the applications of

RNA-seq and experimental design considerations for behavioral scientists who are unfamiliar with

the technology but are considering using it in their research.
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Next-generation sequencing technologies have had a major impact

on medicine and biology in the last decade. They are being applied

to the study of whole genomes to detect polymorphisms in a popula-

tion, exomes to detect allelic variants in coding regions, and tran-

scriptomes to detect spatiotemporal kinetics of gene expression in

tissue. As these technologies have matured, their accessibility has

increased, their costs have reduced, and their applications have be-

come broader. Their impact is being seen in many research fields.

For instance, medical diagnostics that use RNA sequencing

(RNA-seq) to understand the likely causes of disease are generating

information that can change prognosis due to new knowledge of

underlying biology. A study by Sweet et al. illustrates this point. The

authors of this study demonstrate that they were able to predict the

transcriptomic signatures to distinguish between 2 types of end-

stage heart failure—ischemic and dilated. Their ability to make such

a distinction is improving the chances of designing a suitable course

of treatment that was previously difficult (Sweet et al. 2018). These

techniques have similarly had a large impact on many biological dis-

coveries. For example, it has been used to systematically track gene

expression changes across developmental stages to study age-

dependent changes in many different human and nonhuman systems

(Gerstein, Snyder and Wang 2009; Yu et al. 2014; Blakeley et al.

2015). These analyses have led to the identification of master regula-

tors as well as identification of isoforms of expressed genes, which

in some cases have even led to the discovery of novel therapeutic tar-

gets for intervention.

RNA-seq is also becoming increasingly popular in the study of

complex behaviors. A major driving force to apply such analysis is

to examine if the transcriptome can be associated with behavioral

phenotypes or the “phenome” (Bengston et al. 2018). In general,

RNA-seq applied to the study of social behavior can be divided into

3 broad categories of problems. First, what role does the huge diver-

sity of cell types within the brain play in controlling a particular

type of social behavior? Second, how do we account for and explain

VC The Author(s) (2020). Published by Oxford University Press on behalf of Editorial Office, Current Zoology. 321
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Current Zoology, 2020, 66(3), 321–330

doi: 10.1093/cz/zoaa007

Advance Access Publication Date: 25 February 2020

Article

http://orcid.org/0000-0003-4591-5274
https://academic.oup.com/


changes in the behavior of individuals under different conditions

(i.e., context-dependent plasticity in behavior)? Included in this

problem is comparing gene expression in a specific brain region or

in a specific subset of neurons at different time points of certain be-

havior: for example, before exposure, during exposure, and post-ex-

posure to a sexual mate. Third, how do we account for the

differences in the same behavior between individuals (i.e., inter-indi-

vidual variation)? That is, quantifying and comparing gene expres-

sion between individuals who are at different ends of a spectrum for

behavioral phenotypes to achieve a mechanistic understanding of

why such differences exist. We use recently published studies as

examples from each of these 3 categories to illustrate what such

studies are able to conclude through RNA-seq technology.

Successfully implementing RNA-seq to solve these problems can

be difficult for researchers who are unfamiliar with the technology

or are looking to use it for nonmodel organisms. We introduce this

topic to such behavioral scientists and highlight important technical

problems that one needs to be aware of when designing experiments.

We highlight key considerations for experimental design including

pooling and biological sample replication, and discuss social

behavior-specific design issues throughout. We also point to other

reviews that tackle specific issues in greater depth along the way.

Diversity of Cell Types in the Brain and
Applications of Single-Cell RNA-Seq

The newest and most powerful tool in the RNA-seq arsenal is single-

cell RNA-seq (or scRNA-seq). scRNA-seq techniques have evolved

rapidly due to technological innovations since 2009 when the first

papers applying this method appeared (Tang et al. 2009). For an over-

view of the history and how this technology has changed, refer to a re-

view by Kolodziejczyk et al. (2015). As the name suggests, this

technique allows RNA expression analysis at the resolution of individ-

ual cells. In comparison, traditional RNA-seq known as the bulk

sequencing method averages the transcriptional expression of all cells

in a sample. Most recent developments involve massively-parallel

transcriptional profiling. An example of how this is achieved is a drop-

let method that separates, barcodes, and digitally counts 30RNA in

1,000 s of cells simultaneously and applies automated computation to

cluster cells based on individual transcriptional profile. Thus, this

method allows high-throughput studies to be completed within a mat-

ter of months (Zheng et al. 2017). Such a technique will continue to

be highly suited to the study of the brain as the diversity and complex-

ity of cell types and neurons in a vertebrate brain have not been fully

mapped, even for animals with brains that are relatively smaller than

those of humans (�106 or 107 neurons compared to �109 neurons).

In fact, the number of neurons and glia in different vertebrate brains

has only been tabulated explicitly in the last decade or so (Herculano-

Houzel 2009; Bartheld et al. 2016). The functional diversity of neu-

rons in brain regions is still largely uncharted territory as demon-

strated by many ongoing large-scale projects (Erö et al. 2018; Attili

et al. 2019; Gouwens et al. 2019; Hodge et al. 2019).

Studies applying scRNA-seq have also begun to contribute to-

ward uncovering this complexity. The cellular diversity with impli-

cations on functional diversity has turned out to be vastly more

complex than anticipated even for regions of the brain that have had

a long history of studies in a given species. A recent study (Pandey

et al. 2018) examined a set of brain nuclei called the habenulae that

have been previously considered to have at least 2 to 4 distinct ana-

tomical subdivisions (Hikosaka 2010). Even though the habenula

occupies a single voxel in a 7 tesla fMRI image of humans (Lawson

et al. 2014, 2017; Gosnell et al. 2019), it controls the release of mul-

tiple neuromodulators including serotonin, dopamine, and norepin-

ephrine. The habenulae are considered critical nodes in the

expression of aversive behavior in vertebrates and have been impli-

cated in several disorders of the brain in humans. This includes ad-

diction (Viswanath et al. 2013; Velasquez et al. 2014; Mathuru

2018), mood regulation (McLaughlin et al. 2017; Lee et al. 2019),

depression (Browne et al. 2018; Drobisz and Damborská 2019),

schizophrenia (Zhang et al. 2017; Schafer et al. 2018), and panic

disorders (Pobbe and Zangrossi 2008; Mathuru and Jesuthasan

2013; Mathis and Kenny 2018; Ma et al. 2019). As the habenulae

are critical nodes in cognitive and motor behaviors, they are also

considered central structures in the social decision-making network

(or the SDMN; Bshary et al. 2014). However, whether each of the

subnuclei is composed of a single type of neuron (classified based on

the neurotransmitters expressed for example) or multiple types were

not clear prior to the study by Pandey et al.

The study team examined the habenula in zebrafish larvae that

have �1,500 neurons at this stage of development. In their study,

they implemented scRNA-seq, alongside anatomical brain registra-

tion of the sequenced neurons. To achieve this, the team used a

transgenic line that marks habenula neurons with a fluorescent pro-

tein. They sequenced �13,000 individual cell transcriptomes (of

neurons sorted from 25 larvae), which accounts for a 4-fold cover-

age of the number of cells normally present in a pair of habenulae.

The authors identified 18 different subtypes of neurons from these

transcriptomes using cluster analysis and principal component ana-

lysis that could be defined on the basis of the expression of key

markers. They then performed RNA fluorescence in situ hybridiza-

tion with a selection of these markers to identify the spatial expres-

sion patterns. This was followed by computational registration of

images so that multiple zebrafish larval brains could be morphed on

a single reference brain based on total ERK immunostaining

(Randlett et al. 2015). The authors report that they could consistent-

ly place each subtype of neurons on such an atlas (Pandey et al.

2018). Their results suggested that neurons previously considered to

be a single population because of the neurotransmitter expressed

and their anatomical location in the habenula are further distin-

guishable at the transcriptional level.

One criticism of such categorization is that the use of finer classifi-

cation tools leads to smaller categories, ad infinitum that may or may

not have functional relevance. However, the study found that the sub-

types identified at the larval stage, such as a cluster expressing igf2a,

adra1d, and tacr2 or a cluster expressing the genes aoc1 and kiss1,

were retained as distinct subpopulations into adulthood. In most

cases, they could nominate 3–7 markers for each subtype and exam-

ine expression profiles in larvae and adults. The potential functional

role of each subtype or combination is a promising future direction of

study that will help address this common concern. Nonetheless, one

possible interpretation of their results is that each subpopulation of

habenula neurons plays a different role in the SDMN operation to

precipitate different, but related behaviors. To understand the impli-

cations more clearly, the next step will be to integrate the information

from scRNA-seq in specific behavioral contexts and examine the gene

regulatory network (GRN) to decipher how neural diversity and bio-

chemical activity are coupled (Baran et al. 2017).

Another recent study that examined the hypothalamic preoptic

region of rodents after the execution of different social behaviors

utilized a similar strategy. They devised a new technique to register

the physical location of each subtype of neuron called the multiplex

error robust fluorescence in situ hybridization or MERFISH
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(Moffitt et al. 2018). As in the example of zebrafish habenula above,

after performing scRNA-seq and identifying markers associated

with each cell type, the authors then localized key markers back on

to the brain tissue of other animals. In this case, the authors did not

have a reference brain atlas, but by repeating the MERFISH experi-

ment on multiple animals, the authors could tabulate the frequency

of different cell types and their occurrence after the animal had

engaged in different behaviors such as parenting or sex or aggressive

territorial encounters. The authors of this study produced a remark-

able report of 70 subtypes of neurons in the preoptic area and how

different clusters of these subtypes are differentially activated in dif-

ferent sexes, during different social behaviors.

As is evident from the examples in this section, the main advan-

tage of using scRNA-seq compared with bulk RNA-seq is in obtain-

ing information on the different cell types present, which could in

some cases provide an insight into the behavioral diversity.

However, its applicability to the study of social behavior needs to be

evaluated carefully on a case-by-case basis by the researcher. It is

suitable, for instance, if the goal of a study is to understand how spe-

cific categories of neurons (inhibitory neurons versus excitatory neu-

rons) or specific cell types (neurons versus glial cells from the same

brain region) respond in 2 different conditions or at different time

points. scRNA-seq is better suited to address such questions as this

information is much more indirect and difficult to infer from bulk

RNA-seq experiments. It is also suitable when limited tissue sample

is available, provided that it was well preserved immediately after

collection or was collected from fresh tissue. However, in spite of an

increase in accessibility of the technology from the initial stages

(Tang et al. 2009; Sevilla 2013), performing such analysis is still

prohibitively expensive for most laboratories. Methods based on

droplets (Macosko et al. 2015) or 10� Chromium platform (Zheng

et al. 2017) reduces the costs of sequencing significantly.

Customized solutions for handling and capturing cells of interest

such as microfluidic-based devices (Tan et al. 2013) also reduce

costs to some extent, yet the majority of the cost pertaining to

reagents needed to obtain high-quality RNA as well as for analysis

of the data produced remains high. Another point researchers need

to consider is that scRNA-seq data require specialized bioinformat-

ics attention to analyze and interpret the data as they are inherently

noisier than bulk RNA-seq data. The analytical tools for appropri-

ate normalization, imputation, and differential expression discovery

are available but require extensive customization. The following

reviews detail current perspectives on the challenges as well as the

potential solutions for the suitable use of scRNA-seq data (Chen

et al. 2019; Vieth et al. 2019). Finally, scRNA-seq necessitates com-

plete cellular dissociation before analysis and therefore loses infor-

mation regarding the spatial location of the cells being analyzed.

The spatial location and connectivity information critical in most

studies to make meaningful interpretations when large, unmarked

regions of the brain are being studied can thus be lost. Field biology

researchers also need to consider whether such connectivity infor-

mation is relevant for their interpretation of data. If it is, then a

much larger sample collection is necessary at the onset to perform in

situ based anatomical registration after scRNA-seq.

Given these, bulk RNA-seq is still a preferred method even

though scRNA-seq can be applied to address questions of behavioral

plasticity and individual variation described below. Particularly so,

as researchers can perform experiments with a larger number of bio-

logical replicates or time points for similar costs.

Behavioral Plasticity

Comparative analysis of vertebrates shows that a shared SDMN in

the brain regulates species-specific adaptive behaviors (O’Connell

and Hofmann 2011). Researchers are often interested in applying

RNA-Seq to characterize and compare transcriptional changes in

these brain regions in organisms under different contexts to under-

stand the molecular underpinnings of behavioral plasticity. For ex-

ample, the scRNA-seq analysis of the preoptic region of rodents

detailed above examined differential expression profiles after differ-

ent social behaviors were performed. In a majority of other studies,

researchers have focused on differences in the whole brain or brain

regions in different contexts using bulk RNA-seq. Studies have ana-

lyzed gene expression changes in different brain regions in an animal

that shows a seasonal change in the behavior as it often allows col-

lection of an adequate number of samples showing comparable be-

havior. For example, 1 study compared free-living tree swallows

Tachycineta bicolor in 2 conditions—when they are establishing and

maintaining a territory to attract mates and when they switch to

parenting (Bentz et al. 2019a). The authors found that expression in

different brain regions previously associated with social behaviors

changed differentially. The hindbrain and the hypothalamus showed

a shift in the expression of a large number of genes involved in im-

mune processes and glucocorticoid signaling, but far fewer changes

were recorded in the third brain region of the ventromedial telen-

cephalon. The authors interpret this result to be consistent with a

change in physiology in response to different types of environmental

stressors. In another study, RNA-seq was used to identify transcript

changes in guppy brains and whole bodies that have been reared in

the presence or absence of predators (Fraser et al. 2011). The use of

whole-brain tissue limits the types of analyses that can be conducted

when compared with the mate preference study (in the section

below) which used tissue from specific brain regions. However, as

the authors here examined lifetime changes in animals living with or

without constant predation threat, they could identify habituation

associated brain-wide changes.

It is interesting to note that this study was also completed before

the full genome assembly of guppies was available, demonstrating

how RNA-seq can be used in nonmodel organisms where full gen-

ome assemblies or reference transcriptomes have not yet been pro-

duced. The authors, in this case, used genome assemblies of other

fish species (medaka and zebrafish) to predict transcripts of guppy

fish. Another possibility in such a situation is to assemble a tran-

scriptome de novo without the need to rely on genetic information

from a related species as has been demonstrated in other studies

(Vijay et al. 2013; Bentz et al. 2019b). The authors of this study,

however, recommend using sister species assemblies when possible

for higher reliability in the results (Vijay et al. 2013). To this point,

a recent study demonstrated that the assumptions that de novo

assembled transcriptome is unbiased approximation of relative

abundance is often violated. So, studies adopting this approach

should carefully evaluate their data and employ other practices that

minimize any bias that may occur (Freedman et al. 2020).

These 2 studies highlight 2 key choices researchers studying so-

cial behavior have to make when designing a study. First, the appro-

priate time window to isolate the brain RNA after a social event,

and second, the choice of specific brain regions. Obtaining an ad-

equate quantity and quality of RNA from the sample is a common

but critical technical challenge in all situations as seemingly minor

changes in the time of collection or spatial difference in the dissec-

tion of the brain region can significantly affect differential
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expression analysis. Studies that have examined multiple time points

after a social interaction suggest that transcriptional profiles can

change in waves over 30, 60, and 120 min (Petretto 2017; Srivastava

et al. 2018; Bagnati et al. 2019). These waves could reflect different

short- and medium-term events. Therefore, depending on the ques-

tion of interest, researchers can focus on changes in the short term

(10- to 30-min window), medium term (span of hours), or long term

(over a lifetime).

Individual Variation in Expression of a Behavior

The third application of RNA-seq is to investigate the biological

mechanisms that result in behavioral variation between individuals

(i.e., inter-individual differences). A recent example is the study of

honeybee response to parasitic mites (Diao et al. 2018). In this

study, the researchers performed a genomic analysis of 2 sister spe-

cies to understand the genetic differences associated with specific

adaptations. In addition, they also compared the brain transcrip-

tomes of individuals from the same species Apis cerana that exhibit

different responses to parasitic mite infection, a key threat to their

survival. After exposing bees to parasitic mites and monitoring their

defensive response, the researchers categorized the bees into 2

groups based on the distinct defensive behavior exhibited—self-

grooming (using their legs and pivoting abdomens to remove mites)

and body-shaking. They then sequenced the whole-head transcrip-

tomes. They found 502 genes were upregulated in grooming individ-

uals and 48 in body-shaking individuals, while 11 and 60 genes

were downregulated in the same groups, respectively. Among the

genes whose expression profile changed, upregulated genes in

grooming bees were enriched in DNA replication and repair

functions while downregulated genes in both grooming and body-

shaking bees were enriched in response to biotic stimulus (deter-

mined by Gene Ontology [GO] terms). Another example is the study

of Trinidadian guppy Poecilia reticulata, a useful model for mate

choice research. RNA-seq, in this case, was performed on specific

brain regions to compare gene expression in females with distinct

preference phenotypes (Bloch et al. 2018). Females with and without

preference for colorful males were compared. Their results demon-

strate that within 10 min after exposure to colorful males, guppy

females that have clear preferences for colorful males have a distinct

transcriptional profile both in the sensory processing area of the

brain (the tectum) and in the decision-making region (the telenceph-

alon). Their analysis of the RNA-seq data also revealed transcription

factors that likely act as “neuromolecular switches” that trigger

transcription of genes associated with mating decisions in individu-

als that have a mating preference.

These results suggest that the same environmental stimuli can

elicit different endogenous processes related to distinct behavioral

responses. The terminal nature of such experiments, however,

makes it difficult to address questions such as the frequency and re-

peatability of an individual’s behavior to the external stimulus and

the accompanying transcriptional changes directly. It is also unclear

exactly what steps connect the upregulated and downregulated

genes to the behavior observed. A systems-level computational ana-

lysis with larger datasets of a similar kind could be the next step to

understand the relationship between molecular function ontology

and the overall phenotype (Petretto 2017; Srivastava et al. 2018;

Bagnati et al. 2019).

Technical challenges in conducting RNA-seq

experiments

Issues in isolating sufficient, high-quality RNA
The first crucial step in any RNA-seq experiment is the successful

isolation of RNA from the tissue of interest and in many cases, iso-

lating sufficient amounts of high-quality RNA is difficult.

Regardless of the size of the organism being studied, RNA degrades

rapidly so dissecting brain regions (or any other small regions of

interest) and isolating RNA from these regions presents a technical

challenge. For example, if dissections are being performed in brain

samples from zebrafish, these dissections have to be conducted rap-

idly (within 2–3 min) without compromising the ability to demar-

cate unlabeled brain regions. For small animals, in particular, there

is also an additional layer of difficulty in obtaining sufficient RNA.

Only 1–2% of total RNA in a cell is messenger RNA (mRNA),

which is the target of sequencing, whereas 90% of total RNA is usu-

ally ribosomal RNA which needs to be removed (Conesa et al.

2016). RNA must have both high purity (measured by a ultra violet

(UV) spectroscopy absorbance ratio at 260 nm and 280 nm of at

least 2.0) and high quality with an RNA Integrity Number (RIN) of

at least 7 out of 10 with 10 representing the highest quality with

least degradation (Sheng et al. 2017). It is important to note that

RIN measures are standardized to mammalian organisms. Other

species with abnormal ribosomal ratios, like insects, may generate

poor RIN numbers (Kukurba and Montgomery 2015). Therefore, in

studies on social behavior, researchers studying nonmammalian and

nonmodel organisms need to pay close attention to the ribosomal

ratios and subsequent RIN measures of their samples.

RNA degradation can severely damage the potential of

sequenced data to accurately represent in vivo gene expression as

the effects of degradation may not be uniform. Libraries constructed

from low-quality RNA are compromised as they have fewer reads

(Sheng et al. 2017) and these reads are of decreased complexity as

low expression genes may be absent (Gallego Romero et al. 2014).

Gallego Romero et al. compared RNA samples of peripheral blood

mononuclear cells that had been left to degrade for increasing dura-

tions at room temperature. Comparing between high-quality RNA

samples (with a mean RIN of 9.3 and extracted immediately) and

degraded RNA samples (with a mean RIN of 3.78 and left to de-

grade for 84 h), the authors found that 61% of genes were classified

as differentially expressed between the 2 groups (Gallego Romero

et al. 2014). Additional risks of low-quality RNA are uneven gene

coverage and 30-50 transcript bias (Gallego Romero et al. 2014;

Kukurba and Montgomery 2015). Given these risks, researchers

should put great emphasis on accurately assessing RNA quality as

all subsequent steps depend on the sample quality.

After sample isolation, ribosomal RNA (rRNA) should be

removed for library preparation. Researchers have to make a choice

here as 2 standard approaches are available—rRNA removal or

poly(A)-tail selection. The rRNA removal approach includes meth-

ods like RNase H, where rRNA bound to DNA oligos is digested

and then removed with DNase, and Ribo-Zero, where rRNA bound

to RNA probes are attached to magnetic beads which are then sub-

sequently removed. The benefit of rRNA removal is that it enables

the detection of nonpolyadenylated transcripts and small RNAs.

Poly(A)-tail selection involves using oligo(dT) primers to enrich for

polyadenylated RNA transcripts that removes rRNAs as well as all

nonpoly(A) RNAs (Zhao et al. 2014). The benefit of poly(A)-tail se-

lection is that lower sequencing depth is needed.
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For samples with limited RNA quantity or lower quality, as

might be the case for samples collected in the field in behavioral

studies, the rRNA removal approach, and the RNase H method, in

particular, is recommended because it results in a lower mean coeffi-

cient of variation (CV) indicating less variation, higher coverage

from 50 to 30 ends, and stronger detection of gene expression com-

pared with poly(A)-tail selection methods (Adiconis et al. 2013;

Schuierer et al. 2017). When the amount of tissue sample is a limit-

ing factor, researchers can take advantage of methods optimized to

extract appropriate quality and quantity of RNA from micrograms

of tissue, such as extraction by laser microdissection (Farris et al.

2017; Nichterwitz et al. 2018).

If researchers are in the field or have other constraints such as

costs and extraction of scarce tissue, they can design their experi-

ments keeping 2 choices in mind. The first is whether or not to pool

samples together for subsequent sequencing in their experimental

design. The second is to decide on a trade-off between the number

of biological replications and sequencing depth (the number of times

a fragment is represented in a collection of sequences). Both of these

choices can greatly affect the costs, interpretation of sequencing

experiments, and the quality of results and are elaborated on below.

Issues with pooling samples
In a classical sense, pooling samples mean combining multiple indi-

vidual samples before the analysis of differential expression. Pooling

multiple individual samples together would constitute 1 library and

hence function as 1 biological replicate. In contrast, not pooling at

all means constructing a single library for each biological sample.

One reason to pool is to reduce costs associated with sequencing

each sample, but researchers may also pool samples due to limited

tissue availability or low RNA quantity. Another reason some

researchers use pooling is to overcome batch effects in sequencer

performance (Wang et al. 2012). Todd et al. found that 63% (100

out of 158) of ecology or evolutionary biology studies between 2010

and 2014 pooled samples (Todd et al. 2016). Given how frequently

pooling is applied, researchers should be aware that results from

pooled sequencing data have to be interpreted more carefully be-

cause each pool is treated as a single sample and should not be con-

fused with the total number of biological replicates.

Among the statistical issues highlighted as potential concerns,

estimating differential gene expression and false discovery rates due

to pooling bias have been described in detail (Rajkumar et al. 2015).

Pooling bias is defined as the difference between the pool value and

the mean of the samples measured individually on a log scale (Mary-

Huard 2007). The pooled log transformation of samples can result

in misleading biological averaging (Kendziorski et al. 2005). Second,

there is also a lower within-group variance in pooled samples com-

pared with the true within-group variances of individual samples

(Balakrishnan et al. 2014; Rajkumar et al. 2015). However, it has

also been argued that if only a limited number of libraries can be

constructed, it is advantageous to pool samples from multiple indi-

viduals and sequence multiple pools to sample biological variability.

This method is considered better at sampling variability than

sequencing equivalent number of libraries prepared from single sam-

ples. Researchers are referred to Todd et al. for a discussion on the

pros and cons of pooling applied to ecological samples to determine

a suitable strategy for their experiments (Todd et al. 2016).

Researchers need to be aware though that the term “pooling”

can also be used in a different manner—when multiple, individually

prepared libraries are combined to be sequenced together in a single

lane. In this case, individual samples are barcoded with a unique

identifier sequence during the library preparation step before multi-

plexed sequencing (Figure 1). This is done routinely in most current

RNA-seq studies to maximize the use of the larger than necessary

depth of sequencing available in NextGen sequencers (detailed in

the next section). Barcoded sequencing is also often performed to

avoid batch effects. Batch effects are differences in measurement

across separate procedural conditions that are unrelated to the bio-

logical or scientific variables in a study (Leek et al. 2010). Batch

effects can also arise from the technical differences in sequencing

lanes. Detailed analysis of pooling strategies and recommendations

are, however, available to help researchers make choices suitable for

their experiments (Wang et al. 2012).

Issues with the trade-off between the number of bio-

logical replications & sequencing depth
Researchers also have to make a decision on the sequencing read

depth and the number of biological replicates needed as they affect

both the cost and the power of the experiment in making genuine

biological discoveries. The number of biological replicates is particu-

larly important given the reproducibility crisis due to underpowered

studies highlighted in psychology and neuroscience (Button et al.

2013; Ioannidis 2014; Cumming and Calin-Jageman 2016). In

RNA-seq experiments, often a minimum of 3 biological replicates

per condition is used. However, this number is arbitrary and many

more replicates may be needed depending on the question of inter-

est, the variance in the system being examined (Liu et al. 2014), as

well as the statistical power that the researchers wish to achieve.

This information may not necessarily be available to researchers,

though it might be possible to estimate the number of biological rep-

licates that will be necessary based on other experiments of similar

nature. As this is case specific, researchers should examine the best

practices that suit their experimental needs (Hart et al. 2013;

Conesa et al. 2016).

Increasing the number of replicates at the highest depth possible

may seem to be the most straightforward approach. However, that

combination is neither practical nor sometimes necessary. Increasing

the sequencing depth beyond a point has diminishing returns on the

power to detect differentially-expressed genes (DEGs) as compared

with increasing the number of biological replicates (Liu et al. 2014;

Rajkumar et al. 2015). The cutoff point depends on the organism

being studied and the number of transcripts expected in a tissue. For

example, a bacterial sample will need a lower depth than what other

organisms need (Haas et al. 2012). One study using the human cell

line, MCF7, found that increasing reads from 10 to 15 million (a

50% increase) for 2 biological replicates only increased the average

number of DEGs identified by 6% (Liu et al. 2014). The same study

found that, in contrast, adding a 3rd replicate at 10 million reads

increased identified DEGs by 35%. However, higher sequencing

depth does have advantages in certain cases such as when inform-

ative transcripts are shorter or are expected to be rare. For rare tran-

scripts with fewer than 10 fragments per kilobase of exon per

million reads mapped, 80 million reads are needed to accurately

quantify differences (Sims et al. 2014). The same study also esti-

mated that more than 200 million paired-end reads are needed to de-

tect a full range of transcripts, including isoforms in human samples

(Sims et al. 2014). However, the cost of such experiments is prohibi-

tive and should be chosen only if researchers have specific back-

ground information that suggests the need for highest depth.

Especially as saturation is reached, increasing the number of reads

does not necessarily translate to an improvement in detecting differ-

entially-expressed transcripts (Tarazona et al. 2011). Practically, for
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most studies and organisms, this often translates to a depth in the

range of 40–60 million reads (Conesa et al. 2016). In general, if mul-

tiplexed sequencing is being performed (Figure 1), researchers can

opt for increasing biological replicates as it increases the power to

detect DEGs regardless of sequencing depth. However, researchers

need to decide on a balance in experimental design as increasing ei-

ther biological replicates and sequencing depth adds notable costs.

Challenges in applying RNA-seq to the study of social

behavior
It might have become evident to the reader as pointed out in each of

the sections above that RNA-seq experiments pose a few unique

challenges when applied to the study of social behaviors. Unlike

quantification of changes in cells from any other part of the body

such as heart tissue from a biopsy, there are 4 sources of dynamic

changes that need to be taken into account in the study of social

behaviors. First, social behaviors involve subjects as well as partners.

Second is the problem of discretizing continuous, sometimes co-

occurring behaviors. Third is that multiple, discrete brain regions

are involved in social behaviors such as the structures that form the

SDMN (O’Connell and Hofmann 2011) and each region may

change differentially. In addition to the brain regions of interest,

experimenters may also need to sample other tissue such as the

gonads, therefore increasing the total number of samples that need

to be sequenced in an experiment. And finally, the temporal plasti-

city of gene expression in these brain regions during the course of

the behavior is also a large variable.

An example of studying courtship behavior of sticklebacks below

illustrates these 4 challenges. Animals in the wild often need to

switch between courting the member of the opposite sex and aggres-

sion toward competitors (Sanogo and Bell 2016). Designing experi-

ments that delineate these different behaviors, which are

continuously modified depending on the reciprocity and partners

present, require researchers to make decisions regarding the method

used for classification of the behavior and identify what their study

will be able to address. The interaction between the social partners

Figure 1. Schematic of an example RNA-seq experiment. The schematic shows a potential design to compare 3 brain regions between the 2 sexes in a simple so-

cial behavior experiment and the approximate costs for performing such an experiment with individual samples that are barcoded and sequenced as individual

libraries.
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adds a dimension of variability that is not easy to control even after

increasing the number of experimental replicates. Researchers, in

this case, made a choice on the brain region of interest (dienceph-

alon and cerebellum) in advance as taking larger areas of the brain

averages differential expression profiles between conditions.

However, these are still fairly large divisions with multiple SDMN

nuclei within. Researchers would have had to devise optimal proto-

cols that ensure the quality of the RNA obtained if they were opting

to collect smaller brain regions by microdissection. If researchers use

nonmodel organisms then information on the structure and organ-

ization of brain regions may not be available so strategies to collect

brain regions in a consistent manner from different individuals are

also difficult. The choice of time points, such as 30 min post an en-

counter with a novel female, is common but the results can be

impacted by intermediate events which can increase the noise in the

replicates. Finally, the main challenge is to collect an adequate num-

ber of samples under the same treatment conditions. This need is

particularly acute if researchers aim to use scRNA-seq and expect to

register the transcriptomes to a brain atlas as described above.

Recommendations

Key considerations before researchers pool samples
Since it is impossible to detect whether individual outlier samples

are distorting the mean and median expression of a pooled group

after pooling, our default recommendation for researchers is to se-

quence samples individually as this is statistically most powerful.

However, researchers may consider pooling due to one of the rea-

sons described above. Most common in social behavior studies or

those collecting samples in the field being small segments of the

brain or gonads used, or insufficient RNA from individual samples

for sequencing. For reference, a single commercial library prepar-

ation in bulk RNA-seq will most often request the user for at least

1 lg of RNA for optimal results (with 0.1 lg being the minimum

amount required depending on RNA quality) to generate adequate

mRNA after rRNA removal and poly(A)-tail selection (for

Illumina’s TruSeq Stranded Total RNA and TruSeq Stranded

mRNA protocols, respectively; Chao et al. 2019). If pooling is

required to reach the threshold amount of RNA, then researchers

must consider one additional factor to mitigate some statistical

issues.

Researchers need to consider the likely sources of variability of

gene expression in their experiment. Variation in gene expression

can be attributed to 3 components—across group variability, meas-

urement error, and biological variability (Hansen et al. 2011).

“Across group variability” is the difference in gene expression be-

tween 2 conditions of interest and is what researchers are usually

interested in determining. To be able to determine this, researchers

need to minimize measurement error, the variance that arises from

procedural differences in replicates. Biological variability is the in-

herent differences in gene expression between individuals and can

also confound group variation results. As described above, pooling a

large number of samples can be an effective strategy if researchers

expect either high biological variability (as measured by CV or based

on previous qRT-PCR experiments), or if they expect small differen-

ces between conditions to prevent bias of nonrepresentative outliers

(Todd et al. 2016). However, researchers will need to remember

that an entire pooled sample is considered 1 biological replicate.

Therefore, if the goal of the researchers is to identify differential ex-

pression between different time points or 2 conditions (Figure 1),

then they will have to design the experiment and sample collections

in such a manner that they are able to sequence multiple such pools

to make reliable biological discoveries.

A pilot experiment
Our second recommendation is that researchers conduct a pilot ex-

periment. This is useful to estimate the expected variability between

biological replicates and to decide on optimal sequencing depth. In

designing such an experiment, researchers can choose fewer bio-

logical replicates for the main conditions of interest and conduct

multiplexed sequencing within a single lane in order to minimize

costs. For example, a pilot experiment design might use a single

NextGen sequencing lane which allows �240 million reads per lane.

In these experiments, individual sample identity is determined by

barcoding during library preparation before sequencing.

Researchers can explore sequencing between 3 and 8 individual

samples for 80 million or 30 million reads per sample, respectively.

Thus, they can utilize the full 240 million read count of the lane

minimizing the cost. Estimates based on recent quotes (November

2019) suggest that one such experiment can be currently conducted

for approximately US$1750.

After the pilot, researchers can use the available tools to deter-

mine if sufficient read depth has been achieved or if additional reads

are required. For example, Bass et al. developed the superSeq tool to

model the relationship between statistical power and read depth

that can be applied to a completed experiment in order to maximize

statistical power (Bass et al. 2019). In addition to informing the op-

timal depth that is needed in the full-scale experiment, a pilot experi-

ment can provide prototype data to estimate variance between

biological replicates and determine how many replicates are

required. Busby et al. developed Scotty, an online tool, which uses

pilot data as inputs to estimate the optimal read depth and the num-

ber of replicates based on cost (Busby et al. 2013). Using these tools

to determine the required sequencing depth reduces the Poisson vari-

ance which occurs in RNA-seq data when each particular RNA read

is selected and counted at random (Busby et al. 2013). While the

Scotty tool can also use publicly available datasets instead of pilot

experiment data, pilot data generated under the same experimental

conditions provides a more accurate prediction of power (Busby

et al. 2013). Given the necessity of a pilot experiment, especially for

nonmodel organisms where information about CV or optimal depth

might not be known, researchers should only embark on RNA-seq if

they have sufficient resources to run both a pilot experiment and a

full-scale RNA-seq experiment. Without doing so, they risk facing

many of the statistical issues in a full-scale experiment that could in-

validate potential results.

Validation and further steps
Apart from the 2 recommendations above, researchers can go fur-

ther with their RNA-seq data in a few ways. To start with, they can

incorporate an additional measure to validate RNA-seq results by

combining it with at least one other assay which tests for the same

conditions. In most cases, this is achieved by performing qRT-PCR

for a few selected markers identified in the RNA-seq. In other cases,

researchers complement RNA-seq studies with other experiments,

such epigenomic profiling, ChIP-seq, mass spectrometry-based pro-

teomics, and additional behavioral assays. Multiple lines of evi-

dence, especially a concordance between RNA analysis and the

proteome, for example, provide greater confidence in interpretation.

Finally, researchers can apply new computational biology

approaches that allow them to take a step further than quantifying
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Figure 2. Flowchart of challenges and key considerations in experimental design. In designing a RNA-seq study, researchers must resolve challenges relating to

social behavior studies and decide whether single-cell RNA-seq or bulk RNA-seq will best achieve the study goals. Given the technical challenges when faced

with scarcity of RNA samples or quality, and cost constraints, researchers should consider the number of individual samples to pool, conducting a pilot experi-

ment, and including a validation assay to ensure valid data from a RNA-seq experiment.
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individual gene transcripts based on gene ontology terms in specific

brain regions. Among them, a GRN approach noted above focuses on

quantifying changes in pathways and biological processes in networks

of neurons represented as nodes and edges in a network. Such an ap-

proach has emerged as a powerful method as systematic changes in

the interconnected neural circuitry are examined between conditions

(Baran et al. 2017). A systems-level bioinformatics approach that

examines coexpression modules from the RNA-seq data and how

these modules change overall between 2 conditions is a second new

approach that researchers can apply to enhance the power of biologic-

al discoveries from RNA-seq data (Srivastava et al. 2018).

Conclusion

Overall, RNA-seq and transcriptomic technologies have great poten-

tial for understanding the mechanisms behind social behavior with

the possibility of providing answers to long-standing questions on

behavioral plasticity at the individual and species level in any organ-

ism. They also have the potential to unravel the interaction between

environmental stimuli and genetics. Figure 2 gives an overview of

the challenges and key considerations in designing RNA-seq experi-

ments. In order to make use of the powerful technology in a cost-

effective and feasible manner to produce valid results, researchers

must carefully design experiments and be aware of the trade-offs,

risks, and benefits inherent in experimental design with pooling, rep-

lication of samples, and a pilot study.
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