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ABSTRACT

The majority of genome-wide association study
(GWAS) risk variants reside in non-coding DNA se-
quences. Understanding how these sequence modi-
fications lead to transcriptional alterations and cell-
to-cell variability can help unraveling genotype–
phenotype relationships. Here, we describe a com-
putational method, dubbed CAPE, which calculates
the likelihood of a genetic variant deactivating en-
hancers by disrupting the binding of transcription
factors (TFs) in a given cellular context. CAPE learns
sequence signatures associated with putative en-
hancers originating from large-scale sequencing ex-
periments (such as ChIP-seq or DNase-seq) and
models the change in enhancer signature upon a sin-
gle nucleotide substitution. CAPE accurately identi-
fies causative cis-regulatory variation including ex-
pression quantitative trait loci (eQTLs) and DNase I
sensitivity quantitative trait loci (dsQTLs) in a tissue-
specific manner with precision superior to several
currently available methods. The presented method
can be trained on any tissue-specific dataset of en-
hancers and known functional variants and applied
to prioritize disease-associated variants in the corre-
sponding tissue.

INTRODUCTION

Regulatory elements tightly orchestrate temporal and spa-
tial patterns of gene expression. Genomic variants of these
elements contribute to phenotype change and predisposi-
tion to diseases to a large extent (1–5). The recent explo-
sive generation of epigenetic data has made it possible to
detect cell-type-specific regulatory regions (6–11). However,
the prioritization of regulatory variants remains challeng-
ing, partly due to the incomplete understanding of how reg-
ulation is achieved at the nucleotide level in different tissues
and environmental contexts. Meanwhile, numerous eQTL
studies have been performed to determine the regulatory ar-
chitecture of the human genome (12), however, without re-

vealing causality. This is mainly due to the reason that single
nucleotide polymorphisms (SNPs) within a linkage disequi-
librium (LD) block are statistically indistinguishable from
each other. In spite of that, when eQTLs and SNPs were
considered with respect to Deoxyribonuclease I (DNase I)
hypersensitive sites (DHSs), ∼50% of eQTLs were found
to be dsQTLs (13). Disease- and trait-associated variants
identified by GWAS reside predominantly in noncoding re-
gions and were found to perturb TFBSs and local chro-
matin accessibility (14,15). These observations suggest that
causative regulatory SNPs are often associated with focal
alterations in chromatin structure through disrupting bind-
ing of TFs and lead to deviations from the wild-type gene
expression pattern (15–17).

Recent progress on predicting the impact of genetic vari-
ants on regulatory element activity has been made by inte-
grating genomic and epigenomic data (18–25), with only a
few of them being able to predict causal regulatory eQTLs
(22,24,25). For example, by learning a regulatory sequence
code from large-scale chromatin-profiling data via a deep-
learning approach and integrating evolutionary conserva-
tion, DeepSEA (22) outperforms the majority of existing
methods in predicting chromatin effects of genetic variants
and scoring eQTLs and GWAS SNPs. Nevertheless, this
method does not prioritize eQTLs in a tissue-specific man-
ner. Moreover, the ‘black magic’ behind deep learning pre-
cludes the users from identifying the underlying mechanism
of the sequence variation impact. In addition, some proba-
bilistic frameworks have been developed to fine-map eQTLs
in a meta-data fashion. Specifically, RASQUAL (24) uti-
lizes ATAC-seq data of many individuals to identify Quan-
titative Trait Loci (QTL) by employing iterative genotype
correction. Dense genotyping based on the meta-ATAC-seq
data used by this method allows accurately identify QTLs.
eQTeL (25) incorporates large-scale epigenetic and gene ex-
pression data from multiple individuals, expression variance
of genes across multiple tissues, and imputed haplotypes to
prioritize eQTL SNPs. The requirement of versatile high
throughput data limits these methods to be widely applied
to different tissues.

We have previously developed a computational approach
to systematically dissect the regulatory variants with respect
to their potential deleterious effect on essential TF binding
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in enhancer regions (16,26). These variants are termed can-
didate killer mutations or deactivating SNPs (deSNPs) due
to their ability to deactivate major TF binding sites and to
result in abnormal enhancer activity. deSNPs are strongly
associated with downstream gene expression and pheno-
type change. To establish an approach that can identify po-
tential causal regulatory SNPs impacting target gene ex-
pression or modulating chromatin states with higher accu-
racy, we developed a new method aimed to identify CellulAr
dePendent dEactivating mutations (CAPE). Our new ap-
proach learns regulatory sequence signatures from a large-
scale profile of regulatory signal tracks associated with en-
hancers (including DNase I sensitivity and ChIP-seq of hi-
stone marks and major TFs), and models the change of en-
hancer activity due to a mutation. By integrating two char-
acteristics of a causal regulatory SNP––the variant’s disrup-
tive effect on its cognate TF binding and the binding ca-
pability of the sequence surrounding the variant––we con-
structed a set of support vector machine (SVM) models
to prioritize genetic variants that deactivate enhancers in a
particular cellular context. To test whether these sequence
signatures could be adapted to prioritize different func-
tional sequence variants, we trained and tested these mod-
els on eQTLs, which affect gene expression, and dsQTLs
that modulate chromatin accessibility. To benchmark our
method in different cellular contexts, we constructed the
eQTL SVM models in two cell lines: the GM12878 lym-
phoblastoid B cell line (LCL) and the HepG2 hepatocel-
lular carcinoma cell line. We observed that our method is
able to accurately prioritize tissue-specific causative regula-
tory variants, especially eQTLs, and it largely outperforms
currently available methods.

MATERIALS AND METHODS

Chromatin signal profiling

The chromatin profiling of DNase I seq, H3K27ac,
H3K4me1, H3K4me2, H3K4me3, H2A.Z, P300 and major
TFs binding was selected to learn the regulatory sequence
code as these signal tracks are strongly associated with cis-
regulatory elements.

The DNase I-seq peaks data used in the analysis of local
chromatin accessibility for both GM12878 and HepG2 were
downloaded from the Encyclopedia of DNA elements (EN-
CODE) (10) (ftp://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeUwDnase/). The chromatin
histone mark ChIP-seq data for both GM12878 and HepG2
were downloaded from the NIH ROADMAP Epigenomics
project (27) website (http://egg2.wustl.edu/roadmap/data/
byFileType/peaks/consolidated/narrowPeak/). The TF
binding data for both GM12878 and HepG2 were down-
loaded from the ENCODE archive (ftp://hgdownload.cse.
ucsc.edu/goldenPath/hg19/encodeDCC/).

For the signal tracks with two replicates, only peaks
that were consistently found in both replicates were cho-
sen. We also excluded peaks with >70% repetitive/retro-
transposable elements and regions with <50 bp non-
repetitive nucleotides. We used the GRCh37 (hg19) assem-
bly as the reference genome for read mapping and data anal-
ysis.

Estimating k-mer weights from different signal tracks

We developed a framework to score k-mers by their ability
to capture the binding specificities of major TFs in a given
tissue (16). We used a positive set of candidate regulatory
DNA sequences, such as peaks of any signal track associ-
ated with putative enhancers. We generated a random con-
trol set by sampling sequences genome-wide with the same
GC content, same repeat content and same length. Then,
Fisher’s exact test was applied to assess the significance of
enrichment of each k-mer in the positive set as compared to
the control set. The significance of the Fisher’s exact test P-
value (–log10(P-value), referred to as binding significance)
was used to score the functional constraint of a k-mer, as
greater binding significance indicates smaller possibility to
detect that k-mer by chance (16) (Figure 1A). The top k-
mers significantly enriched in the peaks of the selected sig-
nal tracks were likely to be potential binding sites of active
TFs (16).

Binding significance change caused by genetic variant

The basic idea of calculating the binding significance is to
quantify the effect of the genetic variant using the score
change caused by an altered k-mer content (16). Specifi-
cally, given a genetic variant, there are k k-mers associated
with each allele. We used the sum of binding significance of
the k k-mers overlapping the allele to assess the regulatory
activity of the corresponding allele (Figure 1B). Then, the
binding significance change (�sigSum, formula 1, 2) of k
k-mers was used to estimate the deleterious impact of the
alternative allele on TF binding (Figure 1AB):

�sigSum=abs

(
k∑

i = 1

sig(kmeri )refAle−
k∑

i = 1

sig(kmeri )alterAle

)
(1)

sig(kmeri ) = −log10 P(kmeri ) (2)

where P(kmer) is the Fisher’ exact test P-value of k-mer,
k-mer length is an even number ranging from 4 to 12, re-
fAle refers to the reference allele and alterAle refers to its
alternative variant.

A k-mer based SVM model to prioritize causal regulatory
SNPs

The goal of this study was to develop an approach to ac-
curately identify mutations in enhancers that can disrupt
binding of essential TFs and, thus, lead to downstream ef-
fects on gene expression or phenotype change. This kind
of mutation has been defined as candidate killer muta-
tion or deactivating SNP (deSNP) in our previous stud-
ies (16,26).To further enhance the accuracy of deSNPs,
we established a classifier by learning the sequence code
from large-scale chromatin profiling data of multiple sig-
nal tracks, including DNase-seq, H3K27ac, H3K4me1,
H3K4me2, H3K4me3, H2A.Z, P300, and major TF bind-
ing data of the corresponding tissue (Supplementary Tables
S1 and S2). Two sequence signatures––the disruptive effect
of the mutation on TF binding and co-binding of TFs in
its neighborhood––are the basic component of features for
each signal.

Specifically, given a set of cis-regulatory elements (pro-
moters or enhancers predicted by a signal track), we used

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
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Figure 1. CAPE framework. (A) The pipeline to calculate binding significance of each k-mer (k = 4 to 12). (B) Binding Significance Change (�sigSum)
using 10-mers as an example: The pink bars are the 10-mers associated with the wild-type nucleotide T. The light blue bars are the 10-mers associated with
the mutated nucleotide G. �sigSum is used to quantify the deleterious effect on the binding fitness caused by altering the 10-mer content due to the T/G
mutation. (C) Framework explaining the algorithm and introducing the components of CAPE. The SVM takes sequence features estimated based on all
signal tracks as input. There are two sequence signatures for each size of k-mer (k = 4, 6, 8, 10, 12): �sigSum, and summed binding significance of k-mers
in the (−100 bp, 100 bp) flanking window. The output score of the SVM estimates the probability of the genetic variants deactivating a cis-regulatory
element in a cellular context.

the significance of k-mer enrichment in these cis-regulatory
elements to estimate the binding affinity of the k-mers (for-
mula 2). We next used �sigSum (formula 1) to assess the
binding affinity change of the binding site. The binding
significance sum of all k-mers within the flanking (−100
bps, 100 bps) window before mutation (interval SigSum)
was used to estimate the binding capability of the sequence
around the genetic variant. We selected the flanking (−100
bps, 100 bps) window to estimate the overall binding ca-

pability of the nearby sequence context due to the fact that
dsQTLs typically affect chromatin accessibility in a 200–300
bps region and tend to have substantial correlations with the
DNase I sensitivity of their flanking 100 bps window (13).
To fine-gauge the binding affinities of the potential cognate
TFs and co-factors in the neighborhood, we integrated dif-
ferent sizes of k-mers (k = 4, 6, 8, 10, 12) to represent a
binding site (Supplementary Material).
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Next, we built an SVM model with a linear kernel by us-
ing (Nk x NkmerSignature x NsignalTrack) features (Figure 1C, for-
mula 3). Nk ( = 5) is the number of k-mer sizes (k = 4, 6, 8,
10, 12). NkmerSignature ( = 2) is the number of signatures in-
cluding the binding affinity change of the potential binding
site due to the mutation and the overall binding capabili-
ties of the nearby sequence context of the genetic variant.
NsignalTrack is the number of the chromatin datasets, which
equals 19 in GM12878 (Supplementary Table S1) and 23 in
HepG2 (Supplementary Table S2).

deleteriousness (yi ) ∼
N∑

j=1

12∑
k=4

(
w1kj ∗�sigSum j + w2kj ∗interval SigSum j

)
k−mer =wT ∗ xi ,

(3)

where N=NsignalTrack, w1 and w2 represent the learned set
of feature weights for different chromatin datasets and dif-
ferent k-mers.

To test the accuracy of our classifier, a five-fold cross val-
idation was applied to the positive and control SNPs (we
trained the model on every four folds and tested the model
on the one remaining fold). We applied the package libsvm
(28) to build the classifier. All the features were scaled to z-
scores with the mean = 0, and the standard deviation = 1.
In addition to DeepSEA (22), the model’s performance was
also compared to deltaSVM (20), and CATO (21).

Positive and control set of eQTLs and dsQTL SNPs

We trained and tested our method in two different cell
lines: GM12878 and HepG2. The k-mer weights were ob-
tained from the ChIP-seq peak regions of each correspond-
ing cell line. To compare our approach to DeepSEA which
has been reported as outperforming many currently avail-
able methods, the positive SNP set was restricted to a subset
of the eQTLs associated with the top 10% highly expressed
genes in a given cell line, for which DeepSEA GRASP (29)
eQTLs data is also available. Next, we randomly sampled
control SNPs from the random negative SNP set provided
by DeepSEA and constrained them to any signal region
(DNase, H3K27ac, H3K4me1, H2A.Z, P300, and any ma-
jor TF ChIP-seq peaks) (Supplementary Tables S1 and S2)
of the corresponding cell line LCL, with similar minor allele
frequency distribution. Three-fold negative control SNPs
were chosen based on these criteria. Overall, 7949 SNPs in-
cluding 1948 eQTLs and 3-fold matched control SNPs con-
stitute the training and testing set of eQLs in GM12878
(Supplementary Table S3); 4176 SNPs comprised of 1044
eQTLs and matched control SNPs constitute the training
and testing set of eQTLs in HepG2 (Supplementary Table
S4). We used a 5-fold cross validation to train and test our
model. As for the positive set of dsQTL, we used the 574
dsQTLs selected by (20). These dsQTLs are significantly
associated with the DNase I sensitivity in a 100 bps win-
dow flanking the dsQTL and, therefore, are the most likely
causal dsQTL SNPs. As a control set, we conservatively
considered only the control SNPs (selected by (20)) over-
lapping 1% FDR DNase I hotspot peaks in LCL. A 5-fold
cross validation was applied to test the accuracy. To com-
pare the performance of our method with CATO, we only
considered SNPs that also have a predicted CATO score,

resulting in 565 dsQTLs and 2128 control SNPs (Supple-
mentary Table S5).

k-mer Clustering

To remove the redundancy in the top GM12878 DHS k-
mers (k = 10) and validate that the top k-mers correspond
to known motifs of major TFs, we clustered the top k-mers
(Supplementary Table S6) using the same clustering strat-
egy as in our previous study (16). Briefly, the clustering in-
cluded two steps. The first step was to cluster k-mers us-
ing a dimer based approach without alignment (16). Next,
the motif profiles generated by the first step were further
aligned, merged and matched to the known TFBS databases
including JASPAR (30) and TRANSFAC (31), using the
web-based tool STAMP (32) for similarity, tree-building,
and alignment of DNA motifs and profiles.

Enrichment analysis of GWAS traits

The NHGRI GWAS Catalog was downloaded in Septem-
ber 2016 (33). We applied CAPE to prioritize enhancer
SNPs (common SNPs located in the active enhancers of
GM12878 according to the ROADMAP expanded 18-state
model) and to identify deSNPs (FPR ≤ 0.05). To study the
enrichment of a set of positive SNPs coinciding with B lym-
phoblastoid related traits, we generated a null distribution
composed of 100× random matched SNP sets with the same
size as the tested SNP set. The enrichment of the positive
SNPs coinciding with B cell-related trait relative to matched
random SNP sets was evaluated as the ratio of the enrich-
ment of tested SNPs on these traits relative to the null distri-
bution. To validate that deSNPs are more likely to be causal
SNPs relative to enhancer SNPs, we compared the enrich-
ment of deSNPs in B-cell related GWAS traits to that of
the enhancer SNPs. In total, 35 B cell-related traits were
kept for the association study (Supplementary Tables S7–
S9). The tag SNPs coinciding with the B cell-related GWAS
traits were further expanded by LD (r2 > 0.8, minimum dis-
tance of 500 bp).

RESULTS

Deactivating mutations in enhancer regions

The basic idea behind this method is to utilize a learned
enhancer-associated sequence code to infer the deleterious
effect of a potential regulatory SNP on enhancer activity.
This approach integrates two characteristics associated with
a genomic variation––the ability of a variant to disturb an
essential TF binding event and co-binding of other TFs in
the neighborhood. Disrupting the binding of an essential
TF could lead to a deleterious impact on the enhancer ac-
tivity and, in some cases, enhancer deactivation (16,34). On
the other hand, co-operative binding of multiple TFs of-
ten boosts each other’s binding affinity (35), whereas co-
bound TFs tend to disappear together and are susceptible
to genetic knockout of partner TFs (36). In other words,
TF binding would be determined not only by the presence
and binding affinity of DNA motifs of primary TFs but also
by the co-binding of partner TFs (36). We decomposed a
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Figure 2. Enriched k-mers in GM12878 enhancers correspond to B-cell TFBSs. The clusters of 299 top k-mers map to known TFBS: 33 k-mer clusters
(subclusters) were aligned and merged into 11 motif clusters. STAMP (platform for similarity, tree-building and alignment of DNA motifs and profiles)
(32) identified 28 known TFBSs in these clusters, 14 of which are B cell-specific TFs. The inner-circle logos are the motifs for each k-mer subcluster; the
matched known TFBSs are labeled on the outer circle. The number within the parentheses indicates the number of k-mers in each k-mer cluster.

potential binding site to a composition of different size k-
mers (k = 4, 6, 8, 10, 12). To fine-gauge the k-mer weight,
we learned the sequence code at multiple spatial scales and
from a diverse set of genome-wide chromatin profiles. The
chromatin profiles were selected because of their strong
association with the cis-regulatory elements and included
DHS, H3K27ac, H3K4me1, H3K4me2, H3K4me3, H2A.Z
and major TF binding data from corresponding cell lines
(Supplementary Tables S1 and S2). Using these features,
we established an SVM with a linear kernel to construct
a scoring scheme to identify candidate-deactivating muta-
tions and dubbed our algorithm CAPE (Figure 1).

Identified top k-mers correspond to active TFBSs

Prior to identifying genetic variants that could disrupt
binding of a TF, one would need to ensure that the k-
mers with highest binding significance are indeed able to
capture the binding specificities of the essential TFs of
a given tissue or cell type. Scoring k-mers based on the
DHS data of GM12878, we observed a noticeable sequence
similarity among many of the 299 top k-mers from a set
of lymphoblastoid B cell DNase I-seq peaks (Materials
and Methods), with many of them overlapping each other
(Bonferroni-corrected P < 10−3, 494 948 tests, Supplemen-
tary Table S6). To remove the redundancy, we clustered the
299 top k-mers into 64 distinct clusters and mapped them
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Figure 3. CAPE can accurately predict deleterious variants impacting target gene expression. The results of a 5-fold cross validation on GM12878 eQTLs
and matched control SNPs (A and B). The results of a 5-fold cross validation on HepG2 eQTLs and matched control SNPs (C and D). (A) ROC curves
for CAPE built with sequence features derived from k-mers (k = 4 to 12) learned from 19 signal tracks of GM12878, deltaSVM (GM12878), CATO, and
DeepSEA. (B) Precision recall curves for CAPE built with sequence features derived from k-mers (k = 4 to 12) learned from 19 signal tracks of GM12878,
deltaSVM (GM12878), CATO, and DeepSEA. (C) ROC curves for CAPE built with sequence features derived from k-mers (k = 4 to 12) learned from 23
signal tracks of HepG2, deltaSVM (HepG2), CATO and DeepSEA. (D) Precision recall curves for CAPE built with sequence features derived from k-mers
(k = 4 to 12) learned from 23 signal tracks of HepG2, deltaSVM (HepG2), CATO and DeepSEA. The gray dashed line represents the random expectation.
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Figure 4. CAPE can accurately predict deleterious variants impacting chromatin accessibility. The results of a 5-fold cross validation on dsQTLs and
control SNPs located in the DHS hotspot region of GM12878. (A) ROC curves for CAPE built with sequence features derived from k-mers (k = 4 to 12)
learned from 19 signal tracks, DeepSea, deltaSVM, and CATO. (B) Precision recall curves for CAPE built with sequence features derived from k-mers (k
= 4 to 12) learned from 19 signal tracks, deltaSVM, DeepSea, and CATO. The gray dashed line represents the random expectation.

to JASPAR (30) and TRANSFAC (31) using STAMP (32)
(Materials and Methods). The k-mer clusters were further
merged to 11 clusters. Twenty-eight TFBSs matched these
11 clusters with an E-value cutoff of 5e−3. Nineteen of the
TFBSs (68%) were B-cell related. The majority of k-mer
clusters were associated with the motif of at least one es-
sential B-cell related TF, such as GABPA, SPI1, NFKB,
IRF2, RUNX1 and PAX5 (Figure 2). Many of these TFs
play essential roles in development, differentiation, or pro-
liferation of B-lymphocytes (37–44).

CAPE outperforms other classifiers in predicting eQTLs and
dsQTLs

Our ultimate goal was to identify causal regulatory SNPs
that can impact target gene expression. In order to demon-
strate that our method can be applied in a cell-type-specific
manner and can be generalized to infer functional regu-
latory eQTLs, we trained our model in two different cell
lines–GM12878 and HepG2–to predict eQTLs (Materials
and Methods). Incorporating the sequence features trained
from all the selected signal tracks in the corresponding
cell line, we built linear SVM models on 1948 eQTLs
and matched negative control SNPs in GM12878 and on
1044 eQTLs and matched negative control SNPs in HepG2
(Materials and Methods), respectively. We compared our
method to two sequence-base approaches––deltaSVM (20)
and DeepSEA (22)––and one more method utilizing both
sequence features and DHS data across multiple individu-
als and multiple tissues (CATO (21)). Our approach out-
performs these methods in prioritization of eQTLs. The
overall accuracy of our eQTL classifier measured using

the area under the curve (AUC) is 78.8% in GM12878
and 73.8% in HepG2, which is higher than all other
three methods: DeepSEA, CATO and deltaSVM (Fig-
ure 3). This result demonstrated that integration of the
two sequence signatures––ability of the variant to disturb
the cognate TF binding and the binding capacity of its
neighborhood––enables our approach to largely surpass
other available methods in prioritizing causative eQTLs,
even though only the sequence code learned from the
enhancer-associated chromatin profiling were used to build
the model.

To build a classifier aimed at prioritizing the genetic vari-
ants that disturb TF binding and affect the chromatin state,
we utilized a set of dsQTLs which are significantly corre-
lated with the chromatin accessibility of their associated 100
bps DHS in LCLs (Materials and Methods), considering
that dsQTLs are enriched in TFBSs and are frequently as-
sociated with allele-specific TF binding (13). By incorporat-
ing all sequence features (Figure 1), we built an SVM with
a linear kernel on the 565 dsQTLs and their controls SNPs
(Materials and Methods). Using a 5-fold cross validation,
our method has shown the best classification performance
(AUC = 72.2%) and was closely followed by deltaSVM and
CATO (Figure 4, Supplementary Materials). This observa-
tion suggests that CAPE is able to capture the sequence
code of the active regulatory regions and to distinguish
causal from associated variants.

CAPE can be used to pinpoint deleterious regulatory variants

We next tested whether CAPE can identify deleterious reg-
ulatory variants associated with tissue-specific disorders or



2314 Nucleic Acids Research, 2017, Vol. 45, No. 5

Figure 5. CAPE is applicable to the prioritization and discovery of causal SNPs in GWAS studies. (A) Comparison of enrichment of B lympoblastoid-
related GWAS traits in deSNPs (identified using the eQTL SVM model) and enhancer SNPs. The y-axis is the ratio of fold enrichment of deSNPs (or
enhancer SNPs) as compared with 100 sets of random SNPs. The error bar shows the standard error of the mean value of fold enrichment. One asterisk
indicates a Wilcoxon’s P-value < 0.01. Two asterisks indicate a P-value < 1e−5. The full list of deSNPs coincided with B-lymphoblastoid related GWAS
traits is presented in the Supplementary Table S8, Supplementary Material online. (B) An example of a SNP associated with the trait periodontitis (Mean
PAL). rs140900046 is likely to be a causal SNP for periodontitis (Mean PAL). This position associates with the relatively conserved nucleotide T of a GABP
binding site and overlaps with a GABP ChIP-seq peak.
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traits. We applied CAPE to prioritize the common SNPs
within enhancer regions (GM12878 active enhancers not
overlapping the dsQTLs and eQTLs in the training set)
(Supplementary Table S10). SNPs with the FPR ≤ 0.05
were considered as potentially deactivating-enhancer SNPs
(deSNPs). To validate that deSNPs are more likely to be
causal SNPs compared to regular enhancer SNPs, we com-
pared the enrichment of deSNPs in B-cell related GWAS
traits to enhancer SNPs (Figure 5A). We observed that
deSNPs were strongly enriched in the B-cell related traits
compared to enhancer SNPs (Wilcoxon’s test P-value =
3.9e−11). This observation suggests that CAPE is directly
applicable to the prioritization and discovery of causal
SNPs in GWAS studies. Moreover, the enrichment of B cell-
related GWAS traits in deSNPs (identified both by eQTL
and dsQTL model) is comparable with that in the top (FPR
≤ 0.05) potential causal SNPs identified by DeepSEA, and
higher than deltaSVM and CATO (Supplementary Figure
S1).

One of the deSNPs with the highest CAPE score (≈1) in
LCL was rs140900046. This SNP resided within a GABP
ChIP-seq peak and is located near two genes, FIZ1 and
ZNF524 (Figure 5B). Its alternative allele A is associ-
ated with a putative binding site of GABP (Figure 5B),
which is a critical regulator of B lymphocyte development
(37). In agreement with our prediction that CAPE is ca-
pable of identifying causal SNPs from the GWAS studies,
rs140900046 coincides with the trait of periodontitis with
the target gene FIZ1 (45). Periodontitis is a chronic inflam-
matory disease which destroys the tissues and bone support-
ing the teeth and can result in tooth loss. The complex rela-
tionship between periodontitis and B cells has been exten-
sively studied (46–49). Based on our analysis, rs140900046
might be one of the causal SNPs for periodontitis and acts
via modulating the GABP regulation of the gene FIZ1.

Overall, our results suggest that the regulatory variants
with higher CAPE scores are more likely to be detrimental,
probably due to disrupting an essential TF binding.

DISCUSSION

We developed a computational approach (dubbed CAPE)
to identify causal regulatory SNPs impacting target gene
expression and modulating chromatin accessibility. Our k-
mer based SVM model incorporates the sequence features
learned from enhancer-associated genome-wide sequenc-
ing data (including DNase-seq, ChIP-seq of chromatin his-
tone marks and TF binding) to estimate the likelihood of
a genetic variant deactivating an enhancer. We took ad-
vantage of sets of functional SNPs including eQTLs and
dsQTLs to build and test the model. Our approach achieves
higher accuracy than existing well-known methods in a cell-
type-specific manner. The integration of sequence features
of a region hosting a genomic variant and sequence fea-
tures of the flanking regions (both represented by k-mers)
learned from a panel of ChIP-seq and DNase-seq datasets
in a machine learning model has resulted in establishing an
accurate predictor of deleterious enhancer mutations. The
contribution of ChIP-seq data has a non-negligible pos-
itive effect on classification accuracy (the AUC of eQTL
predictions has increased ∼10% upon inclusion of ChIP-

seq data; Supplementary Figure S2). Unlike tools such as
DeepSEA (22), which deep learns sequence features with-
out the knowledge of the underlying sequence code, or
deltaSVM (20), which learns the sequence features from
a single enhancer-associated chromatin profile and consid-
ers the k-mer content associated with the genetic variant
only, our method decomposes the sequence code of poten-
tial binding sites and the binding sites of cofactors from a
set of chromatin profiles, and directly quantifies the deac-
tivating effect of a single nucleotide mutation based on the
corresponding change in the underlying k-mer profile. Fur-
thermore, different from the tools which require versatile
categories of high-throughput sequencing data across mul-
tiple individuals such as CATO (21), RASQUAL (24) and
eQTeL (25), CAPE prioritizes noncoding variants only by
integrating learned sequence signatures based on a single in-
dividual, and thus can be widely applied to different tissue-
specific datasets.

In addition to sequence features, we also took into ac-
count the expression level of potential target genes associ-
ated with genetic variants by assigning the nearest gene to
the variant. This feature improves the AUC of the dsQTL
SVM model by ∼3% when the control SNPs are located in
the hotspot DHS region of another cell line or does not im-
prove the AUC otherwise (Supplementary Figure S3). This
observation suggests that the expression of nearby genes
could be a valuable metric for improving classifier perfor-
mance but only in selected cases.

The predicted causative regulatory SNPs (FPR ≤
0.05)––deSNPs––are more likely to be enriched in tissue-
specific GWAS traits as compared to enhancer SNPs. This
observation suggests that CAPE is capable of pinpointing
regulatory variants which disrupt binding of essential TFs
(Supplementary Materials) and lead to downstream pheno-
type change in the corresponding cell line. Thus, these in-
ferred causal mutations are prime candidates for disrupting
temporal and spatial gene expression programs that define
cellular identity.

In summary, our method provides a scoring scheme ca-
pable of accurately recognizing deleterious regulatory vari-
ants on a genome-wide scale. We constructed a web server
(http://cape.dcode.org) and a stand-alone tool to facilitate
direct access to the developed algorithm for recognizing
and categorizing putative causal enhancer mutations. We
expect that our method and tool would contribute to accu-
rate identification of disease-causal mutations in the human
and other genomes.
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Supplementary Data are available at NAR Online.
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