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ABSTRACT

Changes in transcription factor levels, epigenetic
status, splicing kinetics and mRNA degradation can
each contribute to changes in the mRNA dynamics of
a gene. We present a novel method to identify which
of these processes is changed in cells in response to
external signals or as a result of a diseased state. The
method employs a mathematical model, for which
the kinetics of gene regulation, splicing, elongation
and mRNA degradation were estimated from exper-
imental data of transcriptional dynamics. The time-
dependent dynamics of several species of adipose
differentiation-related protein (ADRP) mRNA were
measured in response to ligand activation of the tran-
scription factor peroxisome proliferator-activated re-
ceptor � (PPAR�). We validated the method by mon-
itoring the mRNA dynamics upon gene activation in
the presence of a splicing inhibitor. Our mathemati-
cal model correctly identifies splicing as the inhibitor
target, despite the noise in the data.

INTRODUCTION

The production and processing of mRNA is a highly reg-
ulated and dynamic process, which is often disturbed in
disease (1–3). Deep-sequencing technologies enable high-
resolution quantitation and monitoring of RNA species,

such as splicing variants, small non-coding RNAs and in-
termediates in mRNA synthesis for all expressed genes of a
cell (4–6). RNA datasets obtained under various conditions,
such as perturbation of cells with signaling molecules, may
be compared. However, it remains hard to infer from differ-
ences between such RNA datasets which particular molec-
ular process is the key determinant of the alterations in
mRNA dynamics (7–9). An interesting challenge to systems
biology approaches is therefore to develop methods that in-
fer molecular causes from such datasets. This may also en-
able the identification of the dominant perturbed processes
in cases of disease.

An important tool in this context is the ability to
measure mRNA dynamics in cultured cells, which has
led to many new observations, such as transcriptional
cycling––oscillatory changes in mRNA levels linked to pe-
riodic switching of gene promoters (10,11). However, the
interpretation of such observations and the elucidation of
mechanisms underpinning them are greatly hampered by
the noise in the data (12,13). Mathematical models can be
very informative in such noisy contexts (14,15). Such mod-
els have the advantage that they enable a more objective
evaluation of the conclusions that can be drawn directly
from the data. This is even more important in cases when
data are potentially oscillatory but also have high measure-
ment noise, when an intuitive interpretation is insufficient.

Mathematical methods for model development on the
basis of experimental data, such as parameter estima-
tion, model discrimination and experimental design, offer
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a rigorous methodology to integrate experimental data on
molecular concentrations with molecular network archi-
tecture (16–19). These methods facilitate the development
of rational perturbation strategies and the identification of
perturbation targets. They likewise improve the understand-
ing of signaling, metabolic and gene networks (20–23). In
this study, we used these techniques to develop a method-
ology for modeling that enables inference of the kinetics of
the molecular processes underlying mRNA dynamics. We
identify the perturbed molecular processes from a compari-
son of mRNA time-series in unperturbed in comparison to
perturbed cells.

The human ADRP gene is a direct target of the tran-
scription factor PPAR� (24–27). The function of the ADRP
protein (also known as PLIN2 or ADFP) is associated
with lipid accumulation and lipid droplet formation (26).
The ADRP gene was initially assumed to be specific to
adipocytes and their differentiation process, but now it is
clear that the gene is expressed in all metabolic tissues (28).
Because nuclear receptors, such as PPAR�, are directly ac-
tivated by the binding of their cognate ligand, confound-
ing effects of signaling pathways on mRNA dynamics of
their primary target genes are limited (29). Therefore, the
regulation of the ADRP gene in response to PPAR� activa-
tion is an attractive system to study temporal transcription-
activation responses.

In this study, we obtained experimental data concern-
ing mRNA dynamics of the ADRP gene in HepG2 human
liver cells. By the use of mathematical modeling, we demon-
strated that we are able to treat the data objectively by com-
paring the prediction of a number of well-defined models
with the noisy experimental data and then obtaining best
fits. The best fits then lead to the rejection of some mod-
els, the choice of a suitable model and estimates of param-
eters that are also otherwise important for the understand-
ing of cell biology. The model we considered incorporates
fundamental processes of mRNA synthesis and process-
ing, such as the promoter ON and OFF cycle, elongation,
splicing, maturation and degradation. Model parameters
were estimated by fitting model predictions to our experi-
mental time courses of the concentrations of RNA species.
We measured an additional time course in the presence of
a splicing inhibitor. By re-fitting of the model, we identi-
fied the parameter corresponding to splicing process as the
most likely target of the perturbation. In conclusion, this
study demonstrates how mathematical modeling of tran-
scription can help to identify which molecular processes are
perturbed in disease or upon treatment with natural or syn-
thetic signaling molecules.

MATERIALS AND METHODS

Cell culture

HepG2 human hepatocellular carcinoma cells were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)
medium containing 10% fetal bovine serum (FBS), 2 mM
glutamine and 100 U/ml of a penicillin–streptomycin mix-
ture in a humidified 95% air/5% CO2 incubator. Approx-
imately 24 h prior to treatment cells were seeded into
medium with 5% charcoal-treated FBS in culture flasks con-
taining 106 cells. For all experiments, cells were treated ei-

ther with solvent dimethyl sulfoxide (DMSO) at a final con-
centration of 0.1% or with 100 nM of the PPAR� ligand
GW501516 (Alexis Biochemicals, San Diego, CA, USA).

RNA extraction and real-time quantitative PCR (qPCR)

Total RNA was extracted from 106 cells using the Quick-
RNATM MiniPrep isolation kit (Zymo Research, Irvine,
CA, USA). cDNA synthesis was performed for 60 min at
37◦C using 40 U of M-MuLV reverse transcriptase (Thermo
Scientific), 1 �g of total RNA as a template and 100 pM
oligodT18 or random hexamer primers. qPCR was per-
formed on an iCycler (BioRad) using Absolute SYBR
Green Fluorescein (Thermo Scientific). The polymerase
chain reaction (PCR) conditions were: pre-incubation for
15 min at 95◦C, followed by amplification steps of 40 cycles
of 30 s at 95◦C, 30 s at primer specific temperatures (Sup-
plementary Table S1), 40 s at 72◦C and a final elongation
process of 5 min at 72◦C. The fold induction was calculated
using the formula 2−(��Ct), where ��Ct is the �Ct(ligand) −
�Ct(DMSO), �Ct is the Ct(ADRP) − Ct(RPLP0) and Ct is the
cycle number at which the threshold is crossed and RPLP0
the reference gene ribosomal protein, large, P0. Quality of
the PCR product was monitored using post-PCR melt curve
analysis. The �Ct(ligand) − �Ct(DMSO) did not change sig-
nificantly with duration of the experiment (Supplementary
Figure S1).

RNA copy number measurement

cDNA was amplified by qPCR using ADRP-specific
primers (Supplementary Table S1), the products were re-
solved on a 1.5% agarose gel and cleaned using the
QIAEX R© II gel extraction kit (Qiagen, Hilden, Germany).
The DNA amounts were measured using the Quant-iTTM

PicoGreen R© dsDNA Assay Kit (Invitrogen) and the num-
bers of ADRP fragment copies per unit sample volume were
calculated. A series of 1/10 dilutions was used to create a
standard curve of the Ct value against copy number of the
molecules added to reaction (Supplementary Figure S2A–
C). Transcripts of barnase-coding polyadenylated mRNA
were produced using an in vitro transcription kit (Promega).
The transcript concentration was measured by Nanodrop.
The transcript was added to the cDNA synthesis reaction
in the amounts of 6 × 107 to 1.5 × 106 copies and the re-
sulting amount of cDNA was measured according to a Ct
versus copy number standard curve (Supplementary Figure
S2D), in order to establish the efficiency of cDNA synthe-
sis. This standard curve was used to calculate the number of
copies in DMSO-treated samples known to have ADRP ex-
pression close to average. From this, the copy numbers were
calculated in the cDNA solution, the mRNA extract and
the cell, taking into account the cell number in the culture
(counted before seeding; doubling time of the cells much
exceeded than the duration of the experiment) and max-
imal mRNA yield per culture. An example of calculation
is shown in the Supplemental Material). Replicate samples
of each data point were corrected for the outliers with Me-
dian Absolute Deviation method (30). The significance of
mRNA induction in respect to untreated samples was deter-
mined by two-tailed, paired Student’s t-test. Using Mann–



Nucleic Acids Research, 2015, Vol. 43, No. 1 155

Whitney test that does not require the normal distribution
of the data did not alter the results.

RNA degradation

HepG2 cells were treated either with vehicle (DMSO, final
concentration 0.1%) or 100 nM GW501516 for 3 h and then
new RNA synthesis was blocked by treating the cells with
50 �M 5,6-dichloro-1-�-D-ribofuranosylbenzimidazole
(DRB, Sigma–Aldrich).

Splicing inhibition

HepG2 cells (3× 105) were seeded into medium with 5%
charcoal-treated FBS. The splicing inhibitor isoginkgetin
(kindly provided by the Dr Willmar, Schwabe GmbH &
Co. KG, Karlsruhe, Germany) was added after 24 h to
a final concentration of 50 �M. Sixteen hours later cells
were treated either with solvent (DMSO, final concentra-
tion 0.1%) or ligand GW501516 (final concentration 100
nM).

Modeling and parameter fitting

The general models of mRNA metabolism were imple-
mented and the time courses were simulated in Mathemat-
ica 8.0 (Wolfram Research Inc., Champaign, IL, USA) us-
ing standard inbuilt algorithms. The time course data was
fitted using a customary algorithm programmed in Mat-
lab (The MathWorks, Inc., Natick, MA, USA). A poste-
riori identification analysis and additional data fitting was
carried out in Mathematica using a Differential Evolution
method of the NMinimize algorithm. Details of the system
structure parameters and approaches are given in the Sup-
plemental Material.

RESULTS

Model of transcriptional dynamics and experimental ap-
proach

We proposed a model for mRNA dynamics, which consists
of a 15-state transcription promoter cycle (Figure 1A) to
account for possible multiple chromatin states of the pro-
moter. The five states of the ‘induction phase’ (marked or-
ange) have transition rates that depend on the presence of
transcription activators. The subsequent five states of the
‘activation phase’ (marked blue) contribute equally to tran-
scription initiation. The subsequent elongation, splicing,
maturation and degradation are all described by first or-
der steps in a sequence, which captures in a simple fash-
ion the stepwise nature of these processes and can account
for the delays in the experimental data. This means that in
this model, mRNA species are observed with a delay with
respect to gene activation time. In the third ‘inactivation
phase’ (marked violet) the regulatory regions of the gene
undergo changes independent of the transcription factor ac-
tivity. To allow for parameter estimation from experimental
data, the model should not contain too many parameters to
prevent over fitting and also not too few to make sure it can
capture the main features of mRNA dynamics. In the Sup-
plemental Material, we outline how we decided on the final

Figure 1. A mathematical model of transcriptional dynamics of the ADRP
gene in relation to experimental data on pre-mRNA and mature mRNA
accumulation. (A) Network diagram of our mathematical model of mRNA
dynamics. More details can be found in the text and in the Supplementary
Material. (B) Schematic outline of the human ADRP gene and the primer
pairs used for this study. The transcriptional dynamics of pre-mRNA (C)
or mature ADRP mRNA (D) was measured in human HepG2 cells, which
were stimulated for indicated time points with 100 nM of the PPAR� ligand
GW501516. Data points represent the means of at least six biological repli-
cates, which were corrected for outliers; error bars represent the standard
error of the mean. Two-tailed, paired Student’s t-tests were performed to
determine the significance of the ligand-dependent regulation of the ADRP
RNA in reference to vehicle (*) and in comparison of peaks to the minima
(#): *(#) P < 0.05, **(##) P < 0.01, ***(###) P < 0.001.

mathematical model using a model selection and parame-
ter fitting procedure. The mathematical model is based on
ordinary differential equations (ODEs) and mass action ki-
netics. The set of ODEs describing the model is presented
in Table 1.

As an experimental system to assess mRNA dynamics we
have chosen the human ADRP gene (Figure 2B), since it
can be largely controlled by a synthetic ligand of its main
transcription factor, the nuclear receptor PPAR�. Using
qPCR with carefully chosen primer pairs (Supplementary
Figure S3A), we performed a first time course measurement
in HepG2 cells over 5 h (with 1 h intervals) after ligand
addition of synthetic PPAR� ligand GW501516. The data
showed that the expression of both the ADRP pre-mRNA
(Supplementary Figure S3B), i.e. the RNA species before
splicing of the first intron (observable 1), and of mature
mRNA (Supplementary Figure S3C), i.e. the polyadeny-
lated RNA species after splicing (observable 2), was in-
creased 2- to 3-fold. In our preliminary modeling (Supple-
mentary Figures S4 and Table S2), we found that, in or-
der to discriminate between various models, we would need
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Table 1. ODE description of the irreversible multi-step model of mRNA
dynamics

Process Equations

Activation
dxact

1
dt = krevxrev

5 (t) − kactxact
1 (t)

for i = 2:5

dxact
i

dt = kactxact
i−1(t) − kactxact

i (t)

Deactivation
dxdea

1
dt = kactxact

5 (t) − kdeaxdea
1 (t)

for i = 2:5

dxdea
i

dt = kdeaxdea
i−1(t) − kdeaxdea

i (t)

Reversion
dxrev

1
dt = kdeaxdea

5 (t) − krevxrev
1 (t)

for i = 2:5

dxrev
i

dt = krevxrev
i−1(t) − krevxrev

i (t)

Initiation
dxelo

1
dt = kini

5∑

i=1
xdea

i (t) − keloxelo
1 (t)

Elongation for i = 2:5
dxelo

i
dt = keloxelo

i−1(t) − keloxelo
i (t)

Splicing
dxspl

1
dt = keloxelo

5 (t) − ksplx
spl
1 (t)

for i = 2:5

dxspl
i

dt = ksplx
spl
i−1(t) − ksplx

spl
i (t)

Maturation
dxpro

1
dt = ksplx

spl
5 (t) − kmatx

pro
1 (t)

for i = 2:5

dxpro
i

dt = kmatx
pro
i−1(t) − kmatx

pro
i (t)

Degradation
dxmat

1
dt = kmatx

pro
5 (t) − kdegxmar

1 (t)
for i = 2:5

dxmat
i

dt = kdegxmat
i−1(t) − kdegxmat

i (t)

The equations describe the model presented in Figure 1A. The activation
process corresponds to the induction phase, the deactivation process to the
active phase and the reversion process to the inactive phase of the promoter
cycle.

a higher time resolution. Therefore, we repeated the time
course for qPCR quantification of the expression of ADRP
pre-mRNA (Figure 1C) and of mature mRNA (Figure 1D)
with 15 min intervals, but focused on the first 225 minutes
after the perturbation of HepG2 cells with PPAR� ligand.

We observed that the deviation between individual ex-
perimental results was relatively high (average coefficient of
variation was 20–25%, but also up to 40% for some time
points), especially for pre-mRNA, which is less abundant.
A possible explanation for this would be quite complex dy-
namics of the system that varies in its timing between indi-
vidual biological-replicate experiments. Because our mod-
eling showed that such damped oscillatory dynamics could
occur in our kinetic models (see below), we decided not to
discard the data as ‘too noisy’, but to analyze them in fur-
ther detail. The first significant induction of the pre-mRNA
was observed at 30 min (Figure 1C), which fits the prelimi-

Figure 2. Overview of the experimental data and performance of the math-
ematical model. For an improved comparison of experimental data and
modeling results, the qPCR results for the RNA species were converted to
copy numbers per cell. The induction of ADRP pre-mRNA (A) and ma-
ture RNA (B) in response to PPAR� ligand treatment are based on the data
shown in Figure 1C and D. For comparison, the transcript decay dynamics
of ADRP pre-mRNA (C) and mature RNA (D) is displayed. In this exper-
imental series HepG2 cells were first stimulated for 3 h with PPAR� ligand
and then treated for indicated time points with the RNA polymerase elon-
gation inhibitor DRB. For each time point the small filled dots indicate
individual data points and the circles represent their average. The lines vi-
sualize the performance of the fitted model. The curves shown represent
the mathematical model in its n = 5 version (see Table 1 and Supplemental
Material), which was fitted with the data sets A–C and validated with the
data for the decay of mature mRNA (D). All the individual data points are
reported in Supplementary Tables S3–S5. Please note that the copy num-
bers of the pre-mRNA decay data (D) were multiplied by 0.4, in order to
reconcile the difference with ligand induction experiments (see Supplemen-
tal Material Data: conversion error section). The overview of the timescales
of different processes in mRNA metabolism that were determined by using
parameter estimation procedure is shown in (E).

nary data of Supplementary Figure S3B. However, the four
times more detailed time course demonstrated that the over-
all increase did not seem to be monotonous. The peaks at
45, 120 and 210 min were found to be significantly differ-
ent in comparison to the minima at 15, 75 and 150 min,
respectively. This is in line with other studies showing dy-
namic accumulation of RNA transcripts (10). In contrast,
mature RNA (Figure 1D) increased only gradually, but the
first significant increase was detected only at time point 90
min, i.e. with a 60-min delay compared to the pre-mRNA.
This occurrence of a delay in mRNA dynamics necessitates
a model with reaction sequences.

In order to make the qPCR results amenable to mathe-
matical modeling, we expressed the abundance of the RNA
species in terms of copy numbers per cell. First, we esti-
mated the number of RNA molecules in untreated cells
from the standard curve of the qPCR values versus the copy
number (the full description of the procedure is shown in
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the Supplemental Material). Then we used the fold induc-
tion by ligand treatment to calculate the copy number for
the ligand-treated samples. We found the average number of
mature RNAs per cell to be around 18 (Figure 2B), which
is approximately 15 times higher than the number of pre-
mRNA molecules (on average 1.1 copies per cell, Figure
2A). The experimental limitations led to a rather high error
of the copy number determinations (Supplementary Figure
S5), but the lowest estimate of the copy number mature mR-
NAs was still 5-times higher than the highest of the pre-
mRNA.

To further enlarge the experimental dataset on transcrip-
tional dynamics, we measured the decay of mRNA species
adding the RNA polymerase II elongation inhibitor DRB
(31) after HepG2 cells had been treated for 3 h with PPAR�
ligand. This inhibitor has been shown to affect several reg-
ulatory factors of the RNA polymerases (31,32). The decay
kinetics of the ADRP RNA species were measured by qPCR
relative to those of the housekeeping gene RPLP0 (Figure
2C and D). The degradation of the known highly stable gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
measured in relation to RPLP0 as well; the level of GAPDH
mRNA expression did not change during 5 h of DRB treat-
ment (Supplementary Figure S6), confirming stability of the
housekeeping gene. We observed a relatively fast decay of
ADRP pre-mRNA on a scale of 10 min after a delay of a few
minutes (Figure 2C). We attribute this delay to the produc-
tion of pre-mRNA by RNA polymerases that already have
escaped transcription start site (TSS) of the ADRP gene, but
have not yet reached the second exon. For mature ADRP
mRNA we observed a delay of 1 h prior to the start of the
degradation, which showed a far slower kinetics than that
of the pre-mRNA (Figure 2D).

Parameter estimation of the mathematical model

Seven mathematical models, one simple model with single
step transcription initiation (designated n = 0) based on the
scheme shown in Supplementary Figure S4A, one slightly
more complex model that includes two-step initiation (des-
ignated n = 2, based on a scheme in Supplementary Figure
S4B) and five multi-step models that are based on the de-
sign outlined in Figure 1A and Supplementary Figure S4C,
were fitted to the experimental data shown in Figure 2A–C.
The multi-step models differed in the number of sub-states
(n = 1, 3, 5, 10 or 20) that they were allowed to have in
each of the processes (promoter activation, splicing, elonga-
tion, etc.). The model n = 0 had only two states and corre-
sponded to a TSS region being constantly active, while the n
= 2 model had a total of five states and included two steps
activation of the promoter. For each of these models, the
kinetic parameters as well as some initial conditions of the
mathematical model were estimated (Supplementary Table
S6) by minimizing a weighted least squares sum that quan-
tifies the distance between model output and experimental
data. We used a global minimization algorithm called Con-
trolled Random Search (CRS) (33), which was modified to
enhance performance (see Supplemental Material, Supple-
mentary Figure S7). We compared different models on the
basis of their minimized weighted sum of the squared differ-
ences between the best fit and the experimental data points,

their runs-tests and the values of Akaike Information Cri-
terion (AIC) (shown in Supplementary Table S7). The AIC
corrects for the complexity differences of the models. We
found that based on these criteria, the simple models, i.e.
with n = 0 and n = 2 steps, described the data less well than
the models with more steps. The multi-step models, how-
ever, do not produce very different values for any of our
statistical measures, although the n = 10 and n = 20 models
did indicate pronounced oscillatory dynamics (Supplemen-
tary Figure S8). This suggests that transcriptional dynamics
is reliant on a multi-state sequential process. Based on the
combination of scores for the residual, runs-test, AIC and
on visual inspection (spurious oscillations) we decided to
focus on the n = 5 model. In this model (see Figure 1A), all
states have five sub-states and the activation by the ligand
directly changes the rate of the first two transitions in the
promoter activation process.

We next analyzed the parameter fits to the experimen-
tal data. We found optimal parameter sets that minimize
the objective function, which is a measure for the distance
between model and the data. Accordingly, the optimal pa-
rameter set that best describes the data leads to a minimum
of the objective function. If this function depends strongly
on a specific parameter value, then this parameter value is
strongly constrained by the data and otherwise not. An as-
sessment of (a posteriori) parameter identifiability, which
evaluates the dependency of the objective function on the
parameter values, indicates that not all parameter values
could be estimated equally well from the experimental data.
One of the ways to carry out an a posteriori parameter iden-
tifiability analysis is to compute the independent and depen-
dent confidence intervals for the parameters (17). The calcu-
lations for the n = 5 model indicate that certain parameter
values (kelo, kspl, kmat and kdeg) are fairly well constrained as
both their independent and dependent confidence intervals
are similar and relatively small (Table 2). By contrast, krev,
kdea and kini, were poorly constrained and their independent
confidence intervals are much bigger than the dependent
intervals, which indicates a strong co-dependence between
these parameters with others (also reflected by the covari-
ance coefficients, Supplementary Table S8). The exact value
of kact kinetic parameter proved to be co-dependent as well,
in particular on other promoter constants, but less strongly.
In Table 2, we compare the fitted parameters to their val-
ues reported in the literature and find that the estimated
values lie within ranges measured experimentally. This is
true both for the parameters that are well constrained and
those that are poorly constrained by the fitting. This indi-
cates that the fitting procedure and the model that we chose
sketches a realistic picture of the underlying mechanistic bi-
ology. The graphic representation of the timescales of vari-
ous processes in mRNA metabolism is given in Figure 2E.

Validation of the mathematical model

In order to validate the mathematical model, we com-
pared the simulated and experimental profiles of mature
mRNA decay after DRB application (Figure 2D). The over-
all degradation timescale of the mature mRNA was in the
order of several hours and displayed a pronounced delay of
about 1 h. This supports the hypothesis of the influx of pre-
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Table 2. Overview of the fitted model parameters and comparison to values reported in the literature

Process Activation Deactivation Reversion Initiation Elongation Splicing Maturation Degradation

Value of fitted
rate constant,
min−1

0.106 1.3 1.145 3.436 2.272 0.45
kb/minb

0.512 0.161 0.025

Dependent
confidence
interval

0.0022 0.0256 0.2840 0.0627 0.4780 0.0158 0.0337 0.0008

Independent
confidence
interval

0.0499 6.8337 4.9264 18.9385 0.7861 0.0817 0.0940 0.0047

Characteristic
time, mina

47.1 3.8 4 0.27 2.2 9.8 31.1 202.4

Reported
range for
characteristic
time

10–150 min
(38)

1–15 min (38) N/A 0.8 min (41) 0.38 -3 kb/min
(40,41)

5–10 min (40) – 30–900 min (∼300c

min) (25,46)

aThe characteristic times are defined as n/k, with n as the number of elementary steps in the processes (always n = 5 except for initiation where n = 1).
bThe elongation rate in kb/min as calculated from the fitted characteristic time (2.2 min) and the length of the amplified fragment (1178 nt).
cDegradation rate found specifically for ADRP mRNA.

mRNA that is still in the process of elongation/maturation
(unaffected by DRB) into the mature mRNA pool. The pre-
diction of mature mRNA decay was very close to the experi-
mentally measured values (Figure 2D) and the sensitivity of
the model prediction to parameter perturbation was similar
to the prediction to the sensitivity of the model fit (Supple-
mentary Figures S9 and S10). We found the half-life of the
mature mRNA to be approximately 3 h, which is consider-
ably shorter than the 5 h reported previously (25). The rea-
son for the discrepancy may lie in differences between the
cell lines used, but may also be a result of the degradation
rate fitting procedure that does take into account any delay
due to maturation. If we fit ADRP mature mRNA degrada-
tion with a single exponent, we obtained a half-life of ∼4 h,
which is closer to the literature value (25).

RNA degradation mechanism

The degradation of pre-mRNA occurs primarily due to mis-
takes in processing pre-mRNA, such as lack of capping,
aberrant folding, failure of export, etc. (34). We therefore
do not expect this degradation to be a significant contrib-
utor to the degradation of pre-mRNA and consider only
degradation of mature mRNA. The degradation of mature
mRNA can proceed either in the 5′ to 3′ direction, starting
with de-capping, or in the 3′ to 5′ direction, starting with
removal of polyA tail. In order to test which of them is
involved in ADRP mRNA degradation, we compared the
amount of the polyA-containing mRNA detected by either
5′ (exon 1) or 3′ (exon 6) fragments of the ADRP gene. If
the degradation occurs via 5′ to 3′-pathway we would expect
that the amount of exon 6 fragments would be higher, since
the degradation of the exon1 would occur first. In case of
5′ to 3′-degradation, the amounts of both fragments are ex-
pected to be equal; since, after removal of the polyA tail nei-
ther exon can be detected. The average amounts of the ma-
ture mRNA species detected, using exons 1, 3 and exons 5, 6
primers, were very close (18 and 25 copies/cell, respectively)
and could not be distinguished significantly, thus strongly
suggesting that 3′ to 5′ degradation mechanism occurs (Sup-
plementary Figure S5). Additional evidence is provided by
the lack of significant difference in the accumulation dy-
namics of the exon 1 and exon 6 containing mature mRNA.
(Supplementary Figure S11B), which is in line with the 5′ to

3′ degradation mechanism. As a control, to confirm that the
positioning of the 3′-primers does not influence the result of
the qPCR, we designed another primer pair in close proxim-
ity to the initial set (Supplementary Figure S11A), but did
not observe a significantly different result (Supplementary
Figure S11C).

Furthermore, we tried to determine the amount of the
mRNA species that is partially degraded form its 3′ end,
which would allow estimating the degradation rate of
mRNA after the removal of polyA tail. Because all mRNA
species are produced at the same rate by the initiation pro-
cess, the difference between their steady state levels is pro-
portionate to difference in their decay rates. The copy num-
ber of partially degraded species can be calculated by taking
the difference between the measured exons 5, 6 copy number
in the total mRNA fraction and in the polyadenylated frac-
tion at t = 0. This number also includes unspliced mRNA,
but we expect it to be very low, in the range of few molecules
based on the measured values (Supplementary Figure S5).
Surprisingly, the estimated copy number (21) was compara-
ble to that of polyadenylated mRNA (18) (Supplementary
Figure S5), which suggests that the steady-state degradation
rate of mRNA, after removal of the polyA tail, is similar to
that of the removal of polyA tail. This finding is surprising,
as one would expect an mRNA that is no longer used for
the translation to be degraded quickly.

Using the mathematical model to detect the site of perturba-
tion

One application of mathematical modeling and parameter
estimation that we foresee is the identification of the site
of perturbation from comparisons of unperturbed and per-
turbed mRNA dynamics. To test whether the mathemati-
cal model that we developed can be used for this purpose,
we measured the transcriptional dynamics upon gene acti-
vation in the presence of a splicing inhibitor. We used the
splicing inhibitor isoginkgetin, which targets both the ma-
jor and minor spliceosomes (35), but we will here pretend to
be ignorant of this information and then see if the model can
detect the perturbation in the experimental data. We found
that short inhibitor treatment (3 h) and co-treatment with
PPAR� ligand were insufficient to affect pre-mRNA and
mature RNA levels (Supplementary Figure S12). There-
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Figure 3. Re-fitting the model can indicate the perturbation in the system.
Human HepG2 cells were pre-incubated with 100 �M isoginkgetin for 16
h and subsequently treated with PPAR� ligand for the indicated time peri-
ods. qPCR was performed in order to measure pre-mRNA (A) and mature
mRNA levels (B) and copy numbers were calculated. Small filled circles
represent all data points from at least four biological experiments corrected
for outlier and empty circles indicate their mean. All the individual data
points are reported in Supplementary Tables S9. The mathematical model
(adjusted for apparent fold induction) was fitted to the data by changing
a single constant at a time and the quality of the fit was compared for
pre-mRNA (grey) and mature mRNA (green) time courses (C). The best
model obtained by lowering the splicing rate constant was further tested
for fit improvement by changing the remaining constants (D). The best fit
given by adjusting both splicing and degradation constants is also shown
for the pre-mRNA (A) and mature mRNA (B) time courses.

fore, we repeated the experiment with a pre-treatment of
16 h (Figure 3). Under this condition, we observed 3-fold
increased pre-RNA levels (Figure 3A), while the level of
mature mRNA decreased slightly below that of the non-
treated control (Figure 3B). The subsequent treatment with
the PPAR� ligand caused an increase of the pre-mRNA
with a broad peak observed at 75–105 min (Figure 3A). The
overall induction of mature mRNA was lower than in the
absence of isoginkgetin, possibly due to non-specific effects
of the inhibitor.

We then re-fitted the best fitting model (i.e. the one shown
in Figure 2) by changing a single parameter at a time (curves
in Figure 3A and B). We compared the resulting quality of
fit for pre-mRNA and mature mRNA: the only parameter
that upon adjustment gave a considerably better fit of the
model to the pre-mRNA as well as a better overall fit was
kspl, unambiguously pointing to the perturbation of splic-
ing as the action of the added inhibitor (Figure 3C). The re-
sulting splicing constant was around four times lower than
that in the fit of the data in the absence of the added in-
hibitor, suggesting that the added inhibitor concentration
was sufficient to inhibit splicing by some 75%. We further
tested if the fit could be improved further by changing other
constants in addition to kspl (Figure 3D). Only a slight im-
provement could be achieved, and only by increasing kdeg,
but this was below the level of significance (Supplementary
Table S10). The overall goodness-of-fit is worse for the splic-
ing inhibition data when compared to ligand induction time
course data. This is likely due to higher noise in the data as
the average coefficient of variation for the mature mRNA

time course in the splicing experiment is 0.3 compared to 0.2
in the ligand induction experiment. We therefore conclude
that the model successfully predicts the primary site of the
applied perturbation, and that it is robust against spurious
‘prediction’ of other sites.

Next, we analyzed whether the prediction depended on
the particular set of parameters by changing each parame-
ter independently and comparing the effect on the quality
of the original model fit and on that of the adjusted model.
With the independent parameter perturbations the decrease
in the original fit quality caused a proportional decrease in
the adjusted fit (Supplementary Figure S13), as the sensi-
tivity profiles of the original and refitted models are very
similar (Supplementary Figures S9 and S14). This was not
the case, when the similar procedure was used to estimate
the occurrence of correlated changes of the co-dependent
parameters (kact, kdea, kini or krev). If the co-dependent con-
stants were changed so that the overall rate of mRNA pro-
duction stayed the same, the relative decrease in adjusted
model fit quality was much lower (Supplementary Figure
S14). This means that worse fitting models could be suc-
cessfully fitted to the data from the splicing inhibition ex-
periment. The latter could have been expected due to poor
constraints of promoter constants when changed in a co-
dependent manner. This indicates that if the site of pertur-
bation was at the promoter level, it would likely be impos-
sible to distinguish between changes in, for example, initia-
tion and promoter deactivation rates.

DISCUSSION

In this paper, we integrated a mathematical modeling and
parameter estimation procedure with targeted experiments
in order to understand the dynamics of a nascent mRNA
population upon activation of transcription. The model is
capable of capturing the observed experimental delays in
the appearance of mature mRNA by explicitly incorpo-
rating the essential processes of mRNA transcription and
processing. The transcriptional dynamics of the primary
PPAR� target gene, ADRP, in HepG2 human liver cells
served as experimental model. By comparing the mRNA
dynamics of perturbed and non-perturbed cells, our math-
ematical model correctly predicted the site of perturbation.

The quite noisy experimental data provided a challenge.
Under normal conditions, the noisiness of the data would
have precluded us from drawing any conclusion. However,
by implementing mathematical models we were able to
reach two important conclusions, without being disturbed
by the noise: the transcriptional dynamics reflects a sequen-
tial process of more than one step (the n = 0 had a much
worse fit than other models) and the applied inhibitor could
be identified as acting on splicing. We were able to make
these conclusions because fits of the mathematical models
can be evaluated and compared in objective ways that are
free from preconceptions. This means that modeling enables
extraction of information even from noisy data and cor-
rectly identifies the perturbations applied to the system.

The transcription parameters estimated by fitting the
model to the experimental data come close to values re-
ported in the literature. We estimated the promoter cycling
time to be around 60 to 70 min (calculated as the sum of
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three phases of the promoter cycle). This is in agreement
with the timescales indicated by the chromatin immunopre-
cipitation experiments that measure presence of transcrip-
tion factors on their regulatory binding sites. Several stud-
ies found periodic binding of various specific and general
transcription factors in the range of 45–90 min (11,36,37).
A study in yeast also described oscillation in the mRNA of
a copper-regulated gene with a period of 50 min, which is
produced by the synchronous bursts of mRNA production
in cells (10). Although in our experimental system there is
evidence for the multi-step promoter cycle, we could not ob-
serve significant oscillations of mature mRNA. This could
result from relatively irreproducible promoter cycle times or
due to too much noise in the data. Recently, time resolved
transcriptional activity at a single cell level has been mea-
sured for several genes (38), which showed promoter cy-
cle times within the range found in this study. This study
also found that the promoter switching times were non-
exponentially distributed further suggesting a multi-step
mechanism is involved. The initiation time of 0.8 min on
a eukaryotic promoter, based on the in vivo single cell mea-
surements, is also reasonably close to our estimates. As has
been shown previously (39), it is not possible to establish the
mRNA burst size accurately from the steady-state mRNA
distributions. Therefore the found range of 5–40 molecules
is only suggestive but fits well with the calculated (a ratio of
characteristic times of the promoter deactivation and initi-
ation) burst size of 12 mRNA molecules.

The estimated RNA polymerase II elongation rate in our
system was 0.45 kb/min, which is considerably slower than
what has been reported for mammalian system, ranging
from 1 to 4 kb/min (40). However, although the actual
elongation rate of a mammalian RNA polymerase II is 4
kb/min, due to pausing the average progression rate is only
0.4 kb/min (41), i.e. close to our estimation. With this pro-
gression rate it would take RNA polymerase II about 40
min to complete the transcription of the ADRP gene, which
is less than the observed maturation time of 60 min. This
discrepancy might be due to a higher frequency of paus-
ing, to additional time spent on 3′ processing or on post-
transcriptional splicing of some of the introns. The splicing
of the first intron occurs co-transcriptionally as the mea-
sured excision rate (∼8 min) is much faster than the over-
all maturation time. Recent large scale study has provided
support to the hypothesis that most of the splicing indeed
occurs co-transcriptionally (42). The splicing rate that we
found is within the range of 5–10 min described for various
introns in several human genes (40).

Our results showed that it is possible to estimate all main
parameters of the transcription process from a modest data
set albeit with variable accuracy. We also observed that an
RNA polymerase II elongation inhibitor can be used for
simultaneous measurement of the polymerase progression
(due to delays caused by elongation), splicing and mRNA
degradation rates. Delays in the mRNA decay data can af-
fect the measured degradation rates if not taken into the ac-
count; a number of studies indeed show such delays in ma-
ture mRNA decay profiles (43–45). We believe that our ap-
proach may well be useful for simultaneous measurement of
various mRNA metabolism properties of many genes. An-
other important application provided by modelling could

be identification of the source of perturbation in disease or
drug treatment using large dynamic mRNA datasets.
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