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Throughout the animal kingdom, olfaction underlies the ability to perceive
chemicals in the environment as a fundamental adaptation with a plethora of
functions. Unique among senses, olfaction is characterized by the integration
of adult born neurons at the level of both the peripheral and central nervous
systems. In fact, over the course of life, Neural Stem Cells (NSCs) reside within
the peripheral Olfactory Epithelium (OE) and the brain’s subventricular zone
that generate Olfactory Sensory Neurons (OSNs) and interneurons of the
Olfactory Bulb (OB), respectively. Despite this unique hallmark, the role(s) of
adult neurogenesis in olfactory function remains elusive. Notably, while the
molecular signature and lineage of both peripheral and central NSC are being
described with increasing detail and resolution, conflicting evidence about the
role of adult born neurons in olfactory sensitivity, discrimination and memory
remains. With a currently increasing prevalence in olfactory dysfunctions due
to aging populations and infections such as COVID-19, these limited and partly
controversial reports highlight the need of a better understanding and more
systematic study of this fascinating sensory system. Specifically, here we will
address three fundamental questions: What is the role of peripheral adult
neurogenesis in sustaining olfactory sensitivity? How can newborn neurons
in the brain promote olfactory discrimination and/or memory? And what can
we learn from fundamental studies on the biology of olfaction that can be
used in the clinical treatment of olfactory dysfunctions?

adult neurogenesis, olfactory epithelium, olfactory bulb, olfaction, odor sensitivity,
odor discrimination

Introduction

As part of the nervous system, our senses are highly plastic. They adapt to our
experiences and the world that surrounds us ultimately influencing how we experience
it. Accordingly, sensory loss often evokes remodeling and adaptation of our other senses
improving or reallocating their function (Collignon et al., 2009; Sathian and Stilla,
2010; Frasnelli et al., 2011). Among the five senses, olfaction additionally possesses
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aunique hallmark giving it increased potential for plasticity: The
persistent addition of newborn neurons over the course of life
both at the level of the peripheral and central nervous system.

In vertebrates, odor detection begins when odorants reach
the Olfactory Epithelium (OE), part of the peripheral nervous
system. Here, Olfactory Sensory Neurons (OSNs) express
G-coupled Olfactory Receptors (ORs) encoded by more than
1,000 genes in rodents and nearly 400 in humans making
them the largest gene family in our genomes (Buck and
Axel, 1991; Glusman et al, 2001; Young et al., 2002). To
date, the expression of ORs is considered to be stochastic
and regulated by both chromatin remodeling and enhancer
activity (reviewed in Pourmorady and Lomvardas, 2022). While
newborn, immature neurons transiently co-express different
receptors, their maturation ultimately restricts their fate into the
expression of only one OR defining OSN identity throughout its
lifespan (Pourmorady and Lomvardas, 2022). This expression
of one OR with its own affinity for different molecules,
together with the relative abundance of different types of OSNs
expressing different ORs, defines the sensitivity of the whole OE.
Interestingly, recurrent odor stimulation was reported to change
the abundance of responsive OSNs (Ibarra-Soria et al., 2017)
indicating that olfactory experience can modulate sensitivity.
However, the mechanisms underlying this type of plasticity are
currently not known.

Upon activation, OSNs initiate action potentials encoding
and transmitting information to the brain’s Olfactory Bulb
(OB), the first olfactory station of the central nervous system.
Here, projections of OSNs form synapses with mitral and
tufted cells within spherical structures, nearly 2,000 in mouse
and 6,000 in human, known as glomeruli (Maresh et al,
2008). Notably, axons of OSNs expressing the same receptor
will converge to the same glomerulus, and make synapses
with the same set of projection neurons, namely Mitral
and Tufted cells (M/T cells). Therefore, any scent composed
of a mix of monomolecular odorants will activate different
sets of OSNs in the OE corresponding to the activation
of a specific set of glomeruli in the OB and resulting in
an anatomical and topographic map of the smell perceived
(Mombaerts et al., 1996; Mizrahi, 2018; Lodovichi, 2021).
In this context, it is worth mentioning that the functional
significance of a change in the ratio of OR genes and
the number of glomeruli (ca. 1:2 in mouse and 1:16 in
humans) is not known.

In addition to the topographic organization of glomeruli,
another level of control is imposed by local and centrifugal
inhibitory circuits in which OB interneurons are key players
(Burton, 2017). The most abundant population of GABA
interneurons in the OB is constituted by Granule Cells (GCs),
present in the inner layer of the OB. Extending their apical
dendrites, GCs form lateral dendrodentritic synapses with
200-300 M/T cells simultaneously. Each activated M/T cell
releases glutamate in that synapsis, activating GCs and, thus,
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self-inhibiting itself and all the other M/T cells connected to
the same GC (Burton, 2017). In concert, GCs receive robust
glutamatergic inputs from the so-called Olfactory Cortex (OC),
an ensemble of cortical structures that process olfactory signals.
Glutamatergic neurons in the piriform cortex as well as other
cortical regions such as the anterior olfactory nucleus send
long-range centrifugal projections back to the OB controlling
GCs and, consequently, M/T cells activity (Boyd et al., 2012;
Markopoulos et al., 2012; Burton, 2017). Olfactory inputs in
the OB are processed as a result of both the topographic
organization of glomeruli and of inhibitory circuits regulated
by interneurons. Supported by both, OB activity underlies
our ability to discriminate between different odorants. Once
processed in the OB, olfactory signals are transmitted to the
OC where they are thought to be stored as memory integrated
through a complex wiring system to other brain regions
(Meissner-Bernard et al., 2019).

In summary, fundamental features characterizing the
olfactory system, namely sensitivity, discrimination, and
memory can overall be assigned to the three regions of the OE,
OB, and OC, respectively. In turn, this raises the question: Can
adult neurogenesis modulate any of these three fundamental
abilities?

Specifically, both the OF and the OB are characterized by
the integration of newborn neurons throughout life. Within
the OE, Neural Stem Cells (NSCs) were first described over
four decades ago (Graziadei and Graziadei, 1979) but only very
recently characterized at the molecular and cellular level by
single-cell RNA sequencing in rodents (Fletcher et al., 2017)
and humans (Durante et al., 2020). At the level of the central
nervous system, while partly debated in humans (Curtis et al.,
2007; Sanai et al., 2011; Lotsch et al.,, 2014; Paredes et al.,
2016), NSCs residing within the sub-ventricular zone generate
newborn neurons migrating through the rostral migratory
stream and integrating in the OB (Doetsch et al., 1997). Here,
most newborn neurons integrate as GCs (Alvarez-Buylla and
Garcfa-Verdugo, 2002), already mentioned above, while a small
population differentiate in periglomerular cells, interneurons
regulating glomerular activity by synapsis formation with both
M/T cells and OSNs axons (reviewed in Wu et al., 2020;
Capsoni et al., 2021).

While NSCs within both the OE and OB have long
been considered important to maintain structural plasticity
underlying homeostasis and regeneration, several fundamental
questions arise with regard to additional roles of adult
neurogenesis in odor sensitivity, discrimination, and/or
memory. Here, we will address central questions pertaining
to the role of newborn neurons in olfaction, namely: (i)
Can peripheral adult neurogenesis in the OE promote odor
sensitivity? (ii) Are newborn neurons in the OB promoting
discrimination, memory, or both? And (iii) how can studies in
model organisms help us define novel treatments for olfactory
dysfunction in a clinical setting?
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Can adult neurogenesis in the
olfactory epithelium promote odor
sensitivity?

The OE is the most active neurogenic niche and the
only one characterized in a peripheral sensory system (Brann
and Firestein, 2014). Due to their constant exposure to the
environment, OSNs are highly vulnerable and their lifespan
short ranging from 1 to 3 months (Hinds et al., 1984; Kondo
et al., 2010; McClintock et al., 2020). This feature primarily led
to the concept that adult neurogenesis in the OE exclusively
serves tissue homeostasis and regeneration. Little attention,
however, was paid to additional potential roles in promoting
olfactory sensitivity.

Olfactory sensitivity is defined by the lowest concentration
of an odorant that can be detected. Since most ORs are
promiscuous and bind different odorants with different affinity,
it is intuitive to conclude that OE sensitivity may ultimately
depend on the number of OSNs expressing a given OR,
the relative proportion of OSNs expressing it as well as the
expression level of a given OR in a particular set of OSNs.
Notably, adult neurogenesis inherently provides the means to
constantly renew the number of OSNs and the OR expression
pattern of the whole OE, hence, dynamically remodeling its
sensitivity. However, to date this seemingly logical inference
was not experimentally validated and the molecular mechanisms
underlying it not investigated.

Here, we envision different models by which adult
neurogenesis may drive the remodeling of olfactory sensitivity
under olfactory experiences such as increased stimulation of
the OE or, conversely, odorant deprivation or desensitization.
In addition to a change in the expression levels of a given OR
within mature OSNs, it is important to consider that olfactory
experience may influence the choice of OR expression itself
within immature, newborn neurons (Kim et al., 2020). This,
in turn, may promote the integration and survival of such
newborn OSNs upon their targeting of glomeruli in the OB that
are dedicated to the processing of such odorants. By guiding
OR choice as well as maturation and/or survival of newborn
OSNs, adult neurogenesis may therefore adapt odor sensitivity
to novel environmental stimuli through a change in the number
of specific OSNs (Figure 1A).

While this effect of olfactory experience in regulating the
specification and survival of newborn neurons would seem
intuitive, to our knowledge no report characterized it thus
far. In addition, an even more intriguing possibility is that
olfactory experience may itself regulate the activity of the NSCs
themselves. Increased levels of adult neurogenesis would, in
turn, provide increased numbers of OSNs whose OR expression
may be additionally regulated either through stimuli-dependent
maturation, as described above, or stochastically, to adapt
sensitivity to novel stimuli (Figure 1A). Such links between
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environmental stimuli, NSC activity, neuronal specification and
survival were only partly described in the OE (Watt et al., 2004)
but well documented in other neurogenic niches, most notably
the hippocampus (Van Praag et al., 1999; Kempermann, 2019)
and consistent with the notion that traits providing synergistic
advantages are evolutionary conserved.

Are newborn neurons in the
olfactory bulb promoting
discrimination, memory, or both?

Unlike the OE, the cellular composition and physiology
of the central station of the OB are well characterized. Yet,
the role of adult neurogenesis in the OB has remained
elusive. In the last years, first studies have suggested a role
of newborn neurons in supporting olfactory memory. Partly
contradicting each other, these studies suggested effects of
adult neurogenesis on short-term (Breton-Provencher et al.,
2009) or long-term (Lazarini et al., 2009; Sultan et al., 2010)
memory that later reports did not corroborate. In parallel,
support for a role of adult OB OB neurogenesis in olfactory
discrimination has grown (discussed below). In this context,
it should be reminded that the primary neuronal population
of the OB, the GCs that are constantly renewed by adult
neurogenesis (Imayoshi et al, 2008), are fundamental in
establishing both local and centrifugal inhibitory circuits known
to promote sparseness in mitral and tufted cells activity
(Gschwend et al., 2015; Wu et al, 2020). More thoroughly
studied in the context of hippocampal function, sparseness
minimizes the overlap between patterns of neuronal activity,
which is thought to be key in pattern separation. Therefore,
by analogy, it would be expected that an increase in adult
neurogenesis and abundance of inhibitory GCs would promote
sparseness, hence, discrimination between similar odorants. On
the other hand, periglomerular interneurons are uniglomerular
and not involved in lateral inhibition thought to be crucial in
supporting OB’s pattern separation and therefore discrimination
(Wu et al., 2020).

Experimental evidences were provided in support of the
above-mentioned hypothesis. Inhibiting adult neurogenesis
resulted in impaired discrimination (Li et al., 2018) while,
conversely, a genetic increase in NSC expansion and
neurogenesis improved it (Bragado Alonso et al, 2019).
Notably, in both studies changes in olfactory performance
became evident only when mice were subjected to complex
discrimination tasks using highly similar odorants. The
fundamental question arising is whether adult neurogenesis
improved the animal’s innate ability to better discriminate
similar odorants or, rather, the learning process leading to
their discrimination. Specifically, in Figure 1B we graphically
depict all possibilities that, on purely theoretical grounds,
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FIGURE 1
How can adult neurogenesis promote olfaction? (A) At the level of the peripheral nervous system, adult neurogenesis may respond to olfactory
stimuli changing the abundance of specific OSNs (indicated by colors) by (a) changing the maturation or survival of immature OSNs or (b)
increasing neurogenesis itself. (B) Effects of enhanced (red lines) relative to basal (gray) brain neurogenesis on olfactory discrimination are
modeled based on (a) improved innate ability, (b) learning, or (c) maximal performance. Combinations thereof were not depicted. (C) Olfactory
experience may act both in humans and rodents on olfactory neurogenic niches supporting functions such as sensitivity or discrimination.
Converse to Bragado Alonso et al. (2019) decrease in neurogenesis and discrimination was reported by Li et al. (2018). Figure created with
BioRender.

are possible to explain how increased neurogenesis may
provide the OB with (a) an innate, intrinsic ability to better
discriminate independently from learning, (b) a faster learning
process while reaching the same maximum discrimination
performance, (c) an enhanced discrimination performance
upon learning is completed, or (d) any combination thereof (not
depicted). While all these possibilities were not systematically
assessed, the two above mentioned studies upon ablation or
enhancement of neurogenesis allow us to restrict the 9 possible
permutations of 3 possibilities to at least reject 1, and validate 1,
of these effects.

Specifically, excluding the first model discussed (a), Li et al.
(2018) showed that ablation of OB neurogenesis did not affect
the mice intrinsic ability to discriminate, which was similar
at the start of complex discrimination tasks. In addition, and
confirming at least the third model discussed (c), Bragado
Alonso et al. (2019) showed that a converse increase in OB
neurogenesis improved the mice performance over the baseline
after learning was complete. However, neither of the two
study confirm, or exclude, the effects of the second model
discussed on the speed of the learning process itself (b). Notably,
Alonso et al. (2012) reported that the artificial activation of
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adult-born neurons in the OB facilitates learning only in fine
discrimination task. Many other questions remain. What are
the molecular mechanisms underlying the effects of olfactory
stimuli on adult neurogenesis and, reciprocally, how can adult
neurogenesis modulate olfactory experience? Above all, can
principles emerging from fundamental studies have an impact
on the clinical treatment of olfactory dysfunction?

Can studies in model organisms
help define novel treatments of
olfactory dysfunction?

For obvious reasons, adult human neurogenesis in the
central nervous system is poorly characterized and long debated
both at the level of the hippocampus (Kempermann et al.,
2018; Sorrells et al., 2018) and the human sub ventricular zone
(Curtis et al.,, 2007; Sanai et al., 2011). On the other hand, at
the peripheral level, the existence of an active pool of NSCs
during adulthood in humans is formally accepted (Durante
et al., 2020). While new evidence supporting adult neurogenesis
in the human brain continue to emerge (Wang et al,, 2022;
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Zhou et al., 2022), we will nonetheless restrict our discussion to
the peripheral nervous system. In particular, NSCs in the human
OE represents a particularly appealing target of intervention
due to their easy accessibility. Even more so, and as recently
emphasized by the ongoing COVID-19 pandemic, infections of
the OE represent one of the most prevailing causes of olfactory
dysfunction. Can controlled olfactory stimulation be used as a
means to promote the recovery of olfactory functions? And can
direct manipulation of NSCs be used to harness their potential
to treat smell disorders?

Ongoing clinical practice provides a remarkable example
of how olfactory experience may trigger a recovery in
olfactory functions. Pioneered by the Hummel group (Hummel
et al., 2009), olfactory training has become a well-established
treatment consisting of repetitive short-term exposures to a
specific set of odorants [rose (phenyl ethyl alcohol), clove
(eugenol), eucalyptus (eucalyptol), lemon (citronellal)]. By
this, patients are exposed to 4 different odorants over a
period of 4 months, after which, between 30 and 60% of
the patients recover their sense of smell, which, notably, is
independent from the etiology of the dysfunction (Hummel
et al., 2009; Konstantinidis et al., 2013). Remarkably, in this
area clinical practice has anticipated biological research meaning
that mechanisms underlying the efficacy of this treatment are
still completely unknown. Can activation of NSC and enhanced
adult neurogenesis be the key mechanism behind olfactory
training? Can failure in the activation of NSC and neurogenesis
explain the remaining 40-70% of cases in which olfactory
training remains ineffective? Indirect evidence suggests that
these possibilities are likely.

First, olfactory training was found to be more effective
in younger patients (Patel et al, 2017; Nguyen and Patel,
2018; Saatci et al., 2020) and, second, less effective in post-
traumatic olfactory loss associated with damage of the brain,
rather than the OE (Konstantinidis et al., 2013; Poletti et al.,
2017). In addition, third, the efficacy of this treatment is largely
independent on the specific set of odorants used during training
and equally effective in recovery of sensitivity to a broader set of
odorants (Altundag et al., 2015; Croy et al., 2015; Oleszkiewicz
et al., 2021). Together, this evidence is consistent with a model
thereby repetitive and chronic exposure to strong odorants
during olfactory training may trigger activation of NSC and/or,
as discussed above, increase the integration and survival of
newborn neurons as well as modulate their expression of ORs. If
validated, these mechanisms may provide new means of clinical
intervention in the treatment of olfactory dysfunctions that are
currently more pervasive than ever before.

Conclusion and future outlook

Here, we discussed how adult olfactory neurogenesis not
only sustains the structural and cellular homeostasis of the
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olfactory system but also how it may actively promote its
functionality based on environmental stimuli at both the
peripheral and central levels. In parallel, we formulated several
questions pertaining to the mechanisms underlying such
effects and proposed hypotheses to explain how neurogenesis
may be critical in understanding the fundamental biology
of the sense of smell, and improving the clinical treatment
of olfactory dysfunction (Figure 1C). While experimental
validations and characterizations of these hypotheses are
missing, we hope that our contribution may help in highlighting
the need of more concerted efforts between fundamental
research and clinical studies in a better understanding of
this fascinating function evolutionary conserved across the
animal kingdom.
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