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1  |  INTRODUC TION

Around the globe, human life expectancy increased by almost 
20 years between 1950 and 2017 (Collaborators, 2018). Despite the 
effect of the global COVID- 19 pandemic, which has caused life ex-
pectancy in the United States to slightly decline (Arias et al., 2021), 
advances in medicine have shifted population demographics, and 
humans older than 65 now represent the fastest growing age group 
worldwide (United Nations, 2019). As a result, the portion of deaths 

attributed to noncommunicable diseases, such as age- related dis-
eases, has risen and will continue to rise (Foreman et al., 2018).

Though human life expectancy has largely increased, the preva-
lence of obesity and related disorders has grown rapidly, threaten-
ing the quality and duration of healthy years for an ever- expanding 
aged population. Obesity is more than tripled in men and doubled in 
women from 1975 to 2014, and 43% of American adults aged 40– 59 
are now obese (Collaboration, 2016). Obesity is increasingly impact-
ing younger individuals, with about 40% of children now overweight 
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Abstract
The proportion of humans suffering from age- related diseases is increasing around 
the world, and creative solutions are needed to promote healthy longevity. Recent 
work has clearly shown that a calorie is not just a calorie— and that low protein diets 
are associated with reduced mortality in humans and promote metabolic health and 
extended lifespan in rodents. Many of the benefits of protein restriction on metabo-
lism and aging are the result of decreased consumption of the three branched- chain 
amino acids (BCAAs), leucine, isoleucine, and valine. Here, we discuss the emerging 
evidence that BCAAs are critical modulators of healthy metabolism and longevity in 
rodents and humans, as well as the physiological and molecular mechanisms that may 
drive the benefits of BCAA restriction. Our results illustrate that protein quality— the 
specific composition of dietary protein— may be a previously unappreciated driver of 
metabolic dysfunction and that reducing dietary BCAAs may be a promising new ap-
proach to delay and prevent diseases of aging.
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or obese, predisposing them to chronic diseases at younger ages 
and lifelong challenges maintaining a healthy body weight (Dietary 
Guidelines for Americans, 2020– 2025, 2020). This increase comes 
despite the fact that the Healthy Eating Index, a score of diet qual-
ity, has not shown significant declines since the early 2000s and in 
fact may be higher in recent years (Dietary Guidelines for Americans, 
2020– 2025, 2020). This suggests that perhaps another factor be-
sides declining food habits is at play. Creative solutions are needed 
to combat these conditions and preserve quality of life, as obesity 
is a risk factor for many age- related diseases, including metabolic, 
cardiovascular, neurodegenerative, and musculoskeletal conditions, 
depression, and some cancers (Bluher, 2019). One of these solutions 
may be targeting aging itself to promote healthspan rather than 
attempt to treat the myriad of age- related diseases present in the 
elderly (Partridge, 2014).

2  |  DIETARY INTERVENTIONS C AN 
PROMOTE HE ALTHY AGING

Calorie restriction (CR), defined as a decrease in caloric intake 
without malnutrition, is often referred to as the “gold standard” 
of nutritional interventions, for its potent ability to preserve 
healthspan and extend lifespan in diverse model organisms (Colman 
et al., 2014; Gribble & Welch, 2013; Lin et al., 2002; McCay et al., 
1935; Weindruch et al., 1986). The hallmarks of CR in mammals in-
clude decreased mortality and also decreases in all major diseases of 
aging, including cancer, cardiovascular disease, kidney disease, dia-
betes, and neurodegenerative diseases (Green et al., 2022). There 
has been significant interest in understanding the physiological and 
molecular mechanisms engaged by CR that are responsible for its 
beneficial effects. We have recently reviewed these in depth (Green 
et al., 2022), but will briefly discuss a few of the key potential mecha-
nisms that have been examined here.

Calorie restriction has been proposed to work in part due to 
reduced production of reactive oxygen species; however, exten-
sive studies in genetically engineered rodents suggest that reac-
tive oxygen species likely do not play a major role in normal aging 
(Salmon et al., 2010). CR substantially reduces the risk of cancer in 
mice; however, while the loss of transcription factor NRF2 (nuclear 
factor erythroid 2- related factor) blocks the effects of CR on can-
cer protection, it does not block the ability of CR to extend lifes-
pan (Pearson et al., 2008). While CR improves insulin sensitivity in 
all mammals, this improvement is dispensable for the benefits of a 
CR diet on frailty and longevity in mice (Yu et al., 2019). CR may 
promote health through reduced activation of specific signal trans-
duction pathways such as PI3K/AKT (Mercken et al., 2013) and pos-
sibly mechanistic target of rapamycin (mTOR) (Bjedov et al., 2010; 
Unnikrishnan et al., 2020), but this remains to be tested rigorously 
in mammals. We recently showed that many of the benefits of CR 
require prolonged fasting between meals, which is necessary for CR- 
induced improvements in insulin sensitivity, frailty, cognition, and 
longevity in mice (Pak et al., 2021).

In short, there are still many questions about the mechanisms 
by which CR functions to promote healthy aging. Further, the trans-
latability of CR to humans is generally thought to be low, as most 
people are unlikely to be able to maintain lifelong adherence to such 
an abstemious diet. Thus, there is substantial interest in identifying 
alternative dietary regimens that will mimic the beneficial effects of 
CR without restricting calories.

3  |  DIETARY PROTEIN IN HE ALTHSPAN 
AND AGING

Calorie restriction proportionally decreases the consumption of all 
three macronutrients (fat, carbohydrate, and protein), and for many 
years, the contributions of restricting these individual macronu-
trients to the effects of CR have been explored. It is now gener-
ally believed that the restriction of protein in a CR diet is not great 
enough to fully explain the benefits of CR (Speakman et al., 2016). 
However, restriction of protein reproducibly extends the lifespan of 
flies (Bruce et al., 2013; Grandison et al., 2009; Lee et al., 2008; Mair 
et al., 2005) and rodents (Solon- Biet et al., 2014; Weindruch et al., 
1986). Many studies have shown PR improves metabolic parameters 
in rodents, such as glucose tolerance, insulin sensitivity, circulating 
triglycerides, and other blood lipids (Fontana et al., 2016; Maida 
et al., 2016; Solon- Biet et al., 2014, 2015).

These data in model organisms go against trending dietary advice 
for humans, which has generally recommended that humans should 
be eating more protein to improve satiety and promote weight loss 
(Cuenca- Sanchez et al., 2015; Yu et al., 2020). High protein diets 
are indeed indicated for certain clinical conditions or life stages, 
such as pregnancy and old age, but epidemiological evidence sug-
gests that overconsumption of protein outside of these conditions 
could be deleterious (Delimaris, 2013). A randomized controlled trial 
(RCT) of overfeeding in metabolically healthy individuals with low, 
normal, or high protein content found that low protein feeding re-
sulted in significantly less weight gain, though this was a result of 
lack of lean mass gain rather than reduced fat gain (Bray et al., 2012). 
In middle- aged overweight males, a RCT of protein restriction (PR) 
(feeding of a 7%– 9% protein diet without calorie restriction) for 6 
weeks resulted in significant body weight and fat mass loss, as well 
as improvements in body mass index (BMI) (Fontana et al., 2016). 
As evidence regarding appropriate distribution of dietary protein, 
carbohydrate, and fat continues to develop, the US and Canadian 
Dietary Reference Intake Steering Committee are planning to re- 
investigate the Dietary Reference Intake (DRI) recommendations 
for energy and the macronutrients (Dietary Guidelines for Americans, 
2020– 2025, 2020).

In summary, PR is an attractive regimen as it recapitulates 
many of the beneficial phenotypes of CR without requiring re-
duced calorie intake. Determining the mechanisms by which PR 
improves health is of great interest, as these can inform more spe-
cific dietary recommendations and drug targets to promote health 
and longevity.
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4  |  THE BR ANCHED -  CHAIN AMINO ACIDS

Decades ago, it was found that protein source can influence longev-
ity; rats fed a soy protein- based diet lived 15% longer than rats fed 
a comparable casein- based diet (Iwasaki et al., 1988). One potential 
explanation for these different outcomes is that different protein 
sources have distinct amino acid profiles. For example, vegans are 
believed to naturally consume less methionine than meat eaters 
with a different balance of amino acids overall, though this idea was 
challenged in a recent study (MacArthur et al., 2021; McCarty et al., 
2009; Schmidt et al., 2016). Methionine is a sulfur- containing essen-
tial amino acid with roles in methylation that was first observed to 
extend lifespan in rats in the 1990s (Orentreich et al., 1993; Richie 
et al., 1994), and its lifespan extending effects have since been rep-
licated in other models (Johnson & Johnson, 2014; Lees et al., 2017; 
Miller et al., 2005). A fuller discussion of the role of dietary methio-
nine in healthy aging can be found elsewhere (e.g., Brown- Borg & 
Buffenstein, 2017), but the work on methionine has highlighted the 
possibility that the specific amino acid composition of the diet may 
play a critical role in metabolic health and longevity.

The branched- chain amino acids leucine, isoleucine, and valine 
are three of the nine amino acids that are known to be essential for 
nonruminant mammals, including mice and humans. The BCAAs are 
abundant in high protein foods, making up approximately 20% of the 
amino acids found in meat, fish, eggs, and nuts. BCAAs are hydro-
phobic and serve important roles at the molecular level in protein 
folding, substrate binding, lipid solubility, and interaction with non-
polar substrates; these amino acids are also common in coiled- coiled 
α helices, which occur often in the proteins myosin, keratin, and 
some transcription factors (Brosnan & Brosnan, 2006).

The BCAAs are strong agonists of the amino acid- sensitive ki-
nase mTOR complex 1 (mTORC1). mTORC1 regulates a wide variety 
of downstream biological processes— most notably those related 
to growth and proliferation such as ribosomal, protein, nucleotide, 
and lipid synthesis through integration of nutrient and hormonal 
cues; this has been reviewed in great detail elsewhere (Babygirija 
& Lamming, 2021; Kennedy & Lamming, 2016). Put simply, amino 
acids promote the lysosomal localization of mTORC1. Binding of the 
BCAAs, especially leucine, to Sestrin2 relieves the inhibitory action 
of Sestrin2 on the GATOR2 complex, allowing the Rag GTPases to 
bind to mTORC1 and recruit it to the lysosome (Chantranupong et al., 
2014; Wolfson et al., 2016). Several other molecular mechanisms by 
which BCAAs, especially leucine, regulate mTORC1 recruitment by 
the Rag GTPases have been discovered (Han et al., 2012; He et al., 
2018; Zhu et al., 2021). At the lysosome, mTORC1’s kinase activity 
is allosterically activated by the binding of Rheb- GTP (Yang et al., 
2017).

The other amino acid sensor that is involved in BCAA metabo-
lism is GCN2 (general control nonderepressible 2). Unlike mTORC1, 
GCN2 senses amino acid deprivation by binding to uncharged 
transfer RNA molecules (tRNA) and stalled ribosomes (Dong et al., 
2000; Harding et al., 2019; Wek et al., 1995), and works to repress 
general translation and prioritize preferential production of ATF4, 

a transcription factor that upregulates genes necessary to adapt to 
PR including the energy balance hormone fibroblast growth factor 
21 (FGF21) (De Sousa- Coelho et al., 2012). Mice lacking GCN2 have 
a delayed metabolic response to PR, including a 2- week delay in the 
induction of FGF21 (Laeger et al., 2016).

Downstream of GCN2 and ATF4 is FGF21, which is secreted from 
the liver and other tissues in response to nutrient stress (Nishimura 
et al., 2000). FGF21 is induced by PR in rodents and humans, and 
has been described as a key regulator of the response to PR, increas-
ing insulin sensitivity and energy expenditure (Fontana et al., 2016; 
Laeger et al., 2014). Recent studies show that FGF21 signaling in the 
brain is required to alter food intake and increase energy expendi-
ture during protein restriction (Hill et al., 2017, 2019), and transgenic 
overexpression of FGF21 has been found to extend lifespan (Zhang 
et al., 2012). Discussion of the role of FGF21 in response to total and 
specific restriction of BCAAs will be discussed in greater detail below.

5  |  BC A A C ATABOLISM

After consumption, BCAAs are absorbed in the intestine by classic 
Na+- dependent co- transporters, and transported across other mem-
branes by the essential amino acid antiporter L- type large neutral 
amino acid transporter 1 (LAT1) (Scalise et al., 2018). While many 
BCAAs are utilized as building blocks for protein synthesis, BCAAs 
in excess of those needed for protein translation are catabolized. 
The first catabolic step is reversible: deamination by branched- 
chain aminotransferase (BCAT), which catalyzes any BCAA and 
α- ketoglutarate to a branched- chain keto acid (BCKA) and gluta-
mate, respectively (Harper et al., 1984). BCAT is expressed in mi-
tochondrial and cytoplasmic isoforms, BCATm and BCATc (Hutson 
et al., 1992), though most BCAA catabolism takes place in the mito-
chondria, so intermediates can quickly enter the TCA cycle. Nearly 
all subsequent intermediates downstream of the BCKAs remain 
trapped in the mitochondria due to their conjugation to CoA, a pro-
cess that is described in greater detail later (Neinast et al., 2019). 
BCATc is highly expressed in the brain and various CNS cells; this 
provides leucine- derived nitrogen needed for the production of the 
neurotransmitter glutamate (Castellano et al., 2007; Hutson et al., 
1998; Yudkoff, 1997).

As shown in Figure 1, BCAT catabolizes each BCAA to its re-
spective keto acid: leucine to α- ketoisocaproate (KIC), isoleucine to 
α- keto- methylvalerate (KMV), and valine to α- ketoisovalerate (KIV) 
(Harper et al., 1984). The next step in BCAA catabolism, which is 
irreversible and rate- limiting, is performed by the branched- chain 
keto acid dehydrogenase (BCKDH) complex, a member of the mi-
tochondrial α- keto acid dehydrogenase complex family (Matthews 
et al., 1981; Shimomura et al., 2001). BCKDH is comprised of mul-
tiple copies of three subunits: BCKA decarboxylase (E1), dihydroli-
poamide acyltransferase (E2), and dihydrolipoamide dehydrogenase 
(E3). BCKDH converts KIC to isovaleryl- CoA (IV- CoA), KMV to α- 
methylbutyryl- CoA (MB- CoA), and KIV to isobutyryl- CoA (IB- CoA). 
BCKDH is expressed in all tissues, including hepatocytes.
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BCKDH is regulated by a kinase and phosphatase and is inhibited 
by serine phosphorylation of the E1 subunit by BCKD kinase (BCKDK) 
(Shimomura et al., 1990). Conversely, dephosphorylation of BCKDH 
is performed by the mitochondrial protein phosphatase 1K (PPM1K 
or PP2Cm) (Lu et al., 2009). BCKDK and PPM1K link BCKDH activity 
to feeding; PPM1K is highly expressed in the fed state but lowered 
by fasting, while the reverse is true for BCKDK. The overexpression 
of the transcription factor ChREBPβ upregulates hepatic BCKDK and 
downregulates PPM1K expression (White et al., 2018). BCKDK is also 
allosterically inhibited by BCKA excess (Shimomura et al., 2001), and 
PPM1K is inhibited by interaction with E2 of BCKDH (Dong et al., 2013).

Following processing by BCKDH, BCAA catabolism under-
goes multiple additional steps, some of which are specific to the 
catabolism of a specific BCAA and others of which are shared 
between catabolic pathways. A key point is that with the excep-
tion of 3- hydroxyisobutyrate (3- HIB)— a valine- specific catabolic 
intermediate— the intermediates of BCAA catabolism are conjugated 
to CoA and thus confined to the mitochondria (Jang et al., 2016). 
The final products are specific to each individual BCAA: Ketogenic 
leucine is catabolized to acetoacetate and acetyl- CoA, glucogenic 
valine to propionyl- CoA, and isoleucine to both acetyl- CoA and 
propionyl- CoA. Propionyl- CoA can enter the TCA cycle via conver-
sion to succinate.

Physiologically, BCAA catabolism is partitioned to tissues for dif-
ferent purposes. While the liver is a major metabolic hub for most 

amino acid metabolism, BCATm is not expressed in hepatocytes 
(Suryawan et al., 1998; Sweatt et al., 2004). In contrast, skeletal mus-
cle is both a consumer of BCAAs for protein synthesis and expresses 
both BCAT and BCKDH. As a result, the conventional model for 
amino acid catabolism has for many years suggested that although 
other amino acids are catabolized in the liver, BCAAs are primarily 
catabolized in skeletal muscle (Suryawan et al., 1998). More recent 
work has shown that adipose tissue is also a key player in BCAA 
catabolism as transplanting wild- type adipose tissue into whole- 
body Bcatm−/− mice is sufficient to decrease circulating BCAAs by 
30%– 50% (Herman et al., 2010). BCAAs are also used to fuel ther-
mogenesis in brown adipose tissue, and BCAA transport into BAT 
mitochondria is essential to raise body temperature after cold expo-
sure (Yoneshiro et al., 2019).

A recent model of whole- body BCAA fates reconciled these re-
cent findings with early models (Neinast et al., 2019). BCAA turnover 
is quite rapid once BCAAs enter the bloodstream, with transami-
nation products visible after only 3 min, and end- catabolism into 
TCA products detectable within 3– 5 min. While a majority of BCAA 
catabolism takes place in skeletal muscle, 19% occurred in brown 
adipose tissue, with other tissues representing about 20% of flux. 
This new model verifies that even in more nuanced tracing exper-
iments, muscle is the main tissue of BCAA catabolism, while also 
confirming new data on the catabolic capacity of adipose tissues. 
This understanding of the “normal” catabolic process aids our 

F I G U R E  1 BCAA	catabolism.	Simplified	outline	of	the	process	of	BCAA	catabolism	into	their	respective	ketogenic	or	glucogenic	
substrates by the skeletal muscle, though the first catabolic step, deamination, can also occur in many other tissues (but not in liver 
hepatocytes). KIC, α- ketoisocaproate; KIV, α- ketoisovalerate; KMV, α- keto- methylvalerate



    |  5 of 19TRAUTMAN eT Al.

understanding— and the potential for therapeutic modulation— of 
dysregulated BCAA catabolism in insulin resistance.

5.1  |  Modulating BCAA catabolism

Genetic and pharmacological manipulation of BCAA catabolism has 
been used to investigate how BCAAs regulate metabolic health. 
Whole- body deletion of BCKDK not only activates BCAA catabolism 
to promote new steady- state and tissue levels of BCAAs and BCKAs 
but also impairs growth and neurological function (Joshi et al., 2006; 
Neinast et al., 2019). Conversely in lean mice, the whole- body dele-
tion of Ppm1k decreases but does not completely blunt BCAA ca-
tabolism, and actually improves insulin sensitivity, glucose tolerance, 
and weight (Lu et al., 2009). Additionally, the deletion of Bcatm pro-
vides resistance to diet- induced obesity and promotes leanness and 
improved glucose tolerance (She, Reid et al., 2007), though these 
mice need access to lower BCAA diets to avoid toxicity.

Resistance to diet- induced obesity was also replicated in a recent 
study of adipose-  and iWAT- specific Bcatm knockout mice (Ma et al., 
2022). The deletion of Bcatm in these tissues improved glucose toler-
ance and insulin resistance, and reduced circulating cholesterol, tri-
glyceride, and free fatty acid levels. Mechanistically, this was found 
to be a result of increased thermogenesis and adipose tissue brown-
ing. Further study found that this was the result of PR/SET domain 
16 (PRDM16) acetylation by BCAA- derived acetyl- CoA, resulting in 
decreased binding of PRDM16 to peroxisome proliferator- activated 
receptor γ (PPARγ). This leads to the suppression of browning genes 
and therefore contributes to diet- induced obesity. Interestingly, this 
same study identified that telmisartan, an FDA- approved antihyper-
tensive medication, inhibits BCATm, increasing iWAT browning and 
energy expenditure, and reducing adiposity in mice.

Acute overexpression of Ppm1k in liver of Zucker fatty rats, 
which are obese, hyperphagic, and hyperinsulinemic, lowers hepatic 
triglycerides and improves glycemia, likely through action on ATP 
citrate lyase (ACL), rather than BCKDH, as described above (White 
et al., 2018). However, a greater focus has been placed on modify-
ing BCKDK activity, as increasing BCAA disposal is logically a po-
tential therapy for treating insulin- resistant obesity. The compound 
3,6- dichlorobenzo[b]thiophene- 2- carboxylic acid (BT2) is a recently 
identified allosteric inhibitor of BCKDK (Tso et al., 2014). In Zucker 
fatty rats, BT2 rapidly lowers hepatic triglycerides and improves glu-
cose tolerance and insulin sensitivity (White et al., 2018), and treat-
ment of ob/ob and diet- induced obese mice with BT2 restores BCAA 
catabolism and is sufficient to improve glucose tolerance and insu-
lin resistance (Zhou et al., 2019). Quantitative tracing experiments 
show that BT2 treatment robustly increases BCAA oxidation in skel-
etal muscle, though it alters phosphorylation of BCKDH in liver and 
heart as well (Neinast et al., 2019).

Indeed, one of the most characterized applications of BT2 is to 
prevent BCAA accumulation in the heart and improve cardiac func-
tion. In the heart, high levels of glucose negatively regulate BCAA 
catabolic enzymes through inhibition of the transcription factor 

Krüppel- like factor 15 (KLF15), and BCAA accumulation along with 
high glucose levels produces insulin- resistant cardiac tissue (Fillmore 
et al., 2018; Shao et al., 2018; Sun et al., 2016). This increases vulner-
ability to ischemic injury, accelerates oxidative stress and superoxide 
production, and has been linked to multiple types of heart failure in 
humans and mice (Li et al., 2017; Sun et al., 2016; Uddin et al., 2019; 
Wang et al., 2016). BT2 preserves cardiac function and prevents 
vulnerability to acute ischemia in mouse models of heart failure (Li 
et al., 2017; Sun et al., 2016), and can even restore cardiac func-
tion to hearts with preexisting dysfunction (Chen, Gao et al., 2019). 
Additional studies are warranted to find the specific mechanisms 
that allow improved cardiac function by BT2.

BCAA catabolism is also necessary for and altered by endurance 
exercise. Disruption of BCAA catabolism by Bcatm deletion in skel-
etal muscle impairs exercise performance and endurance (She et al., 
2010). Conversely, mice genetically predisposed to high endurance 
catabolize BCAAs faster, and more efficiently; this is likely driven by 
increased PGC1α activation (Overmyer et al., 2015). When overex-
pressed in skeletal muscle, PGC1α drives BCAT and BCKD expres-
sion (Hatazawa et al., 2014), and dramatically increases the BCAA 
catabolic capabilities of muscle (Jang et al., 2016; Neinast et al., 
2019). Clearly, perturbations in BCAA catabolism alter physiological 
metabolism and may be a therapeutic target in insulin resistance and 
tissue- specific metabolic dysfunction.

6  |  BC A A s ARE A SSOCIATED WITH 
INSULIN-  RESISTANT OBESIT Y

Over 50 years ago, it was discovered that plasma levels of BCAAs 
are positively correlated with insulin resistance and obesity in hu-
mans (Felig et al., 1969). This has been expanded upon in more re-
cent studies of obese and insulin- resistant humans around the world 
(Chen, Akter et al., 2019; Huffman et al., 2009; Newgard et al., 2009; 
Xu et al., 2013), as well as in laboratory models of diabetes and obe-
sity (Lynch & Adams, 2014; She, Van Horn et al., 2007). High BCAA 
levels can also be predictive of diabetes onset (Wang et al., 2011), 
especially in post- renal transplant recipients (Oste et al., 2020). 
This prognostic association has also been observed in adolescents 
(McCormack et al., 2013). More recently, elevated BCAAs have been 
associated with negative cardiovascular outcomes (Du et al., 2018; 
Le Couteur et al., 2020; Portero et al., 2021; Sun et al., 2017).

Normal BCAA levels can be restored through weight loss; a 
comparison of plasma amino acid levels in over 1000 individuals 
from two randomized dietary weight loss trials found that pounds 
of weight lost correlated well with decreased BCAAs (Zheng et al., 
2016). Other studies have found that plasma BCAA levels during 
weight loss interventions are correlated with improvements in glu-
cose homeostasis and insulin sensitivity (Laferrere et al., 2011; Shah 
et al., 2012). This correlative effect between BCAAs and metabolic 
parameters has raised a question among researchers: Are BCAAs 
pathogenic in insulin- resistant obesity, or a by- product of accelerat-
ing metabolic syndrome?
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To answer this question, several groups have combined data 
from genome- wide association studies (GWAS) with BCAA and 
insulin levels. One meta- analysis found several single nucleotide 
polymorphisms (SNPs) in genomic regions of BCAA catabolism and 
connected these SNPs to elevated BCAAs and insulin resistance 
(Lotta et al., 2016). Two similar studies presented opposing results, 
postulating that though BCAAs are elevated in type II diabetes, this 
is caused by genetic risk for insulin resistance (Mahendran et al., 
2017; Wang et al., 2017). Recent research in this field has concen-
trated on what increases circulating BCAAs, how this interacts with 
dysregulated metabolic states such as insulin resistance, and what 
methods are most effective at restoring BCAA levels.

Another recently published GWAS utilized the generation of a 
genetic risk score (GRS) of five common BCAA metabolic pathway 
SNPs in conjunction with dietary BCAA intake to parse out de-
terminants of T2DM risk. This study was conducted in a Chinese 
population of almost 10,000 individuals and determined that a 
high GRS plus high intake of BCAAs conveyed the greatest risk for 
T2DM development. Interestingly, high BCAA intake positively cor-
related with HbA1c and circulating BCAA levels in participants with 
a high but not a low GRS (Wang et al., 2021). In a cohort of over 
1600 Mexican adults, rare SNPs in both BCATm and BCKDH genes 
were associated with elevated body weight and BMI, fasting blood 
glucose, and blood pressure, compared to their peers with more com-
mon alleles (Vargas- Morales et al., 2021). Individuals with the rare 
variants also had higher amounts of isoleucine, methionine, proline, 
and aspartate in circulation, though follow- up studies are needed to 
determine how this impacts overall health. Together, these data sug-
gest that a personalized nutrition approach with specific attention 
to the BCAAs might be warranted, particularly in those with a high 
genetic risk for diabetes development or with certain SNPs in the 
BCAA catabolism pathway.

BCAA catabolism is altered by insulin resistance, and this likely 
perpetuates a cycle where elevated BCAAs promote further insu-
lin resistance and keeps BCAAs elevated. This is exemplified in ad-
ipose tissue, where BCAA catabolic enzymes decrease in activity 
and expression in insulin- resistant WAT (Lackey et al., 2013; She, 
Van Horn et al., 2007). Furthermore, disrupting BCAA catabolism 
or preventing BCAA transport in BAT is sufficient to lower body 
temperature and accelerate insulin- resistant obese phenotypes in 
mice (Yoneshiro et al., 2019). This was confirmed in tracing experi-
ments of two insulin- resistant mouse models, where catabolism was 
shifted away from adipose tissues, with increased reliance on skele-
tal muscle and heart (Neinast et al., 2019).

In both humans and rodents with insulin- resistant obesity, ele-
vated BCAAs are associated with decreased levels of glycine, par-
ticularly in muscle tissue (Newgard et al., 2009; White et al., 2016). 
It is postulated that glycine is depleted in an attempt to clear lipid 
metabolites that accumulate in muscle as a hallmark of insulin resis-
tance. However, lipotoxicity is further exacerbated by the increased 
requirement for BCAA catabolism in muscle. Recently, a catabolite 
of valine, 3- hydroxyisobutyrate (3- HIB), was discovered to promote 
fatty acid trans- endothelial uptake into skeletal muscle, providing 

a key and previously unknown link between BCAA catabolism and 
fatty acid transport in muscle (Jang et al., 2016); this catabolite is also 
associated with an increased future incidence of insulin- resistant 
obesity, even after adjustment for BCAAs (Mardinoglu et al., 2018). 
By this mechanism, increased dependence on skeletal muscle for 
BCAA catabolism only furthers insulin resistance.

The liver is another site of dysregulated metabolism in insulin re-
sistance; though liver represents <10% of BCAA oxidation, this tis-
sue represents 27% of BCAA disposal into protein synthesis (Neinast 
et al., 2019). Elevated hepatic BCAAs prevent GCN2- mediated re-
pression of SREBP1c and fatty acid synthase (FAS), which drive lipo-
genesis (Guo & Cavener, 2007). Additionally, the BCKDH regulators 
BCKDK and PPM1K also target ACL in the liver, another key enzyme 
in lipogenesis, and in insulin- resistant conditions, high BCKDK and 
low PPM1K inhibit BCKDH while promoting ACL activity (White 
et al., 2018). By these mechanisms, elevated BCAAs can increase 
insulin resistance by promoting hepatic lipogenesis in inappropriate 
conditions. Indeed, diets with reduced levels of total BCAAs, iso-
leucine, or valine reversed hepatic lipid accumulation in Western 
diet- induced obese mice, even as the mice continued to consume 
an otherwise high- fat, high- sucrose Western diet (Cummings et al., 
2018; Yu et al., 2021). As the liver, muscle, and adipose tissues all 
alter BCAA catabolism in insulin- resistant states, some researchers 
have explored altering these catabolic pathways in an attempt to 
treat these conditions and learn more about the pathogenicity of 
elevated BCAAs.

7  |  BC A A DISPOSAL IN PROTEIN AND 
BC A A RESTRIC TION

The field of BCAA metabolism has been advanced with the use of 
large, multi- omics data analyses and metabolic tracing experiments 
that can determine the tissue- specific use of AAs. The new model 
proposed by Neinast et al. is certainly a more comprehensive as-
sessment of whole- body BCAA catabolism (Neinast et al., 2019); 
however, there are still a few outstanding questions. Although this 
updated model seems to agree with previous literature, it only ac-
counts for approximately 50% of whole- body BCAA disposal; for ex-
ample, one major metabolic organ not evaluated was the gut, home 
to intestinal microbiota that can produce BCAAs and other essential 
amino acids (Lynch & Pedersen, 2016; Pedersen et al., 2016; Ridaura 
et al., 2013). Furthermore, there are discrepancies in the literature 
regarding the expression and modification of BCAA catabolic en-
zymes, and how this relates to tissue- specific BCAA oxidation. It will 
be interesting to see how models of BCAA catabolism evolve, espe-
cially as delineation of sexual dimorphisms is prioritized in research.

In insulin- resistant conditions, BCAA catabolism is decreased in 
adipose tissue and shifted toward muscle. However, it is unknown 
how BCAA disposal and oxidation change in protein and BCAA 
restriction. When fewer BCAAs are fed, BCAA incorporation into 
protein would presumably proportionally increase, oxidation would 
decrease, and the distribution of BCAA uptake would also likely 
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change. BCKA oxidation is elevated in liver of Zucker lean rats and 
elevated in muscle of Zucker fatty rats (White et al., 2016), which 
agrees with a model that BCAA oxidation is shifted toward muscle in 
insulin- resistant conditions.

8  |  DIETARY INTAKE OF BC A A s AFFEC TS 
HE ALTH AND LONGE VIT Y

As early as the 1980s, scientists reported that modifying the BCAA 
content of diet can regulate activity of catabolic enzymes (Block 
et al., 1985). Dietary BCAA intake is associated with increased 
weight and adiposity in both aged male mice and humans (Ribeiro 
et al., 2019), and decreasing BCAA consumption through PR was 
reduced blood levels of BCAAs in two human trials (Fontana et al., 
2016; Maida et al., 2017). In a large nutritional geometry diet com-
position study, circulating BCAAs were the only amino acids (AAs) 
that correlated with dietary protein intake in mice (Solon- Biet et al., 
2014). The use of AA- defined diets has allowed specific modifica-
tion of BCAA intake in several rodent and human trials during the 
last decade.

8.1  |  BCAA supplementation in rodents

Though it may seem paradoxical to the literature presented so far, 
there have been several instances where BCAA supplementation 
has been reported to improve health. Specific supplementation of 
leucine in drinking water prevented hyperglycemia and decreased 
weight and fat gain from high- fat diet feeding in mice, not by de-
creasing energy intake but by increasing resting energy expenditure 
and UCP3 (uncoupling protein 3) expression in adipose and muscle 
(Zhang et al., 2007). Additionally, supplementation of BCAAs (plus 8 
other amino acids) in drinking water to mice from 9 months of age 
onward slightly increased lifespan in a single study; this extension 
was attributed to increased mitochondrial biogenesis, decreased 
reactive oxygen species, and improved exercise capacity (D'Antona 
et al., 2010).

However, more recent and carefully controlled studies have re-
ported that BCAA supplementation, particularly in the context of a 
Western diet, increases glucose intolerance and insulin resistance 
in rodents (Cummings et al., 2018; Newgard et al., 2009). In rats, 
this supplementation also increased muscle mTORC1 activity, and 
BCAA- induced insulin resistance was acutely reversed by rapamy-
cin treatment (Newgard et al., 2009). Another recent study found 
that doubling dietary BCAAs promoted hyperphagia, obesity, and 
early mortality (Solon- Biet et al., 2019). A time- of- day feeding study 
also identified that feeding BCAA- enriched meals at the end of 
wake periods in mice resulted in enhanced cardiovascular growth 
and detrimental remodeling in a circadian clock- dependent manner 
(Latimer et al., 2021). These studies differ in means and degree of 
supplementation, which may explain some of these seemingly con-
tradictory results.

8.2  |  BCAA restriction promotes metabolic health 
in rodents

Both BCAA restriction and deprivation have been studied in ro-
dents; as BCAAs are essential, deprivation experiments are only sus-
tainable short- term. Initial deprivation experiments examined the 
effects of feeding mice leucine- free, isoleucine- free, or valine- free 
diets for up to a week. These deprivation regimens rapidly improved 
glycemic control and liver insulin sensitivity (Xiao et al., 2011, 2014). 
These diets appeared to influence canonical pathways of PR, as all 
three diets were associated with decreased mTORC1 and increased 
AMPK activity in the liver. Activation of mTORC1 signaling via S6K1 
or whole- body deletion of Gcn2 was sufficient to reduce benefits 
of BCAA deprivation on insulin sensitivity. In valine- deprived diet 
conditions, at least some of these effects appear to be mediated 
by GCN2, as whole- body Gcn2−/− mice were slightly less insulin- 
sensitive than wild- type mice when fed a valine- free diet.

More recent studies have focused on the more physiologically 
relevant reduction in dietary BCAAs. These studies typically exam-
ined a 50%– 80% restriction of BCAAs, which in contrast to com-
plete removal of one of these essential amino acids, is sustainable 
over the entire lifespan. A 67% restriction of all three BCAAs initi-
ated at 9 weeks of age in male mice— approximately equivalent to a 
human teenager (Flurkey et al., 2007)— improves metabolic health 
and recapitulates many effects of decreasing consumption of PR 
(Fontana et al., 2016; Yu et al., 2021). These mice weighed less de-
spite increased food intake, primarily as a result of increased energy 
expenditure and reduced fat mass accretion. BCAA restriction also 
improved glucose and pyruvate tolerance equivalently to a PR diet.

As BCAA restriction was extremely successful in promoting met-
abolic health without negative side effects and could be fed for sus-
tained periods of time in mice, we and others have tested the effects 
of restricting dietary BCAAs on diet- induced obese mice and other 
diabetic rodent models. In agreement with the hypothesis that ele-
vated BCAAs contribute to insulin resistance by increasing muscle 
lipotoxicity, a study using a 45% restricted BCAA diet completely 
normalized accumulation of fatty acyl- CoAs and restored skeletal 
muscle insulin sensitivity in 6- week- old Zucker fatty rats to levels 
found in lean rats (White et al., 2016). BCAA restriction also im-
proves fatty acid oxidation and triglyceride levels in hearts of Zucker 
fatty rats and shifts fuel selection from glucose to fatty acid catabo-
lism (McGarrah et al., 2020).

Mice eating a Western diet were transitioned to Western diets 
in which the three BCAAs or all amino acids were restricted by 67% 
at 18 weeks of age, approximately equivalent to a human in their 
middle twenties (Flurkey et al., 2007). These mice rapidly returned 
to a normal body composition, losing the adipose mass and weight 
gained during the previous 12 weeks of Western diet feeding in 
about 4 weeks. They also demonstrated substantial improvements 
in glucose tolerance and insulin sensitivity. Thus, decreasing BCAA 
consumption is potent enough to counteract an otherwise un-
healthy Western diet and rescue a metabolically unhealthy mouse 
(Cummings et al., 2018).
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8.3  |  BCAA restriction promotes fitness and 
longevity in mice

As a BCAA- restricted diet is quite effective and pervasive in im-
proving metabolic health, and recapitulates many of the effects of 
a PR diet, and BCAAs are agonists of mTOR signaling, researchers 
have investigated the effects of a BCAA- restricted diet on longevity. 
Consistent with the negative effect of BCAAs on longevity, dietary 
supplementation with extra BCAAs leads not only to impaired meta-
bolic health but also to decreased lifespan (Cummings et al., 2018; 
Mu et al., 2018; Newgard et al., 2009; Solon- Biet et al., 2019). Mice 
fed a 50% or 80% restricted BCAA diet from 12 weeks of age did not 
live longer (Solon- Biet et al., 2019); similarly, a 67% BCAA- restricted 
diet improved the metabolic health and reduced the frailty of male 
and female mice when started at 16 months of age, but did not in-
crease lifespan (Richardson et al., 2021).

However, we have found that lifelong restriction of BCAAs by 
67% extends the longevity of two short- lived mouse models of 
Hutchinson– Gilford progeria syndrome (Richardson et al., 2021). In 
wild- type mice, the dietary restriction of BCAAs by 67% initiated at 
weaning reduces frailty and extends the lifespan of male, but not fe-
male, mice by over 30%. These animals displayed reduced mTORC1 
signaling in multiple tissues, specifically in males (Richardson et al., 
2021). In combination, these studies suggest that the precise level of 
restriction, time of diet initiation, and sex may play a role in deter-
mining whether BCAA restriction will extend lifespan. Further, while 
the sex- specific effects of BCAA restriction on mTORC1 signaling 
may explain the male- specific benefits of BCAA restriction on lifes-
pan, the effect of BCAAs on mTORC1 activity is likely dispensable 
for the effects of reduced BCAA diets on metabolic health.

8.4  |  Dietary BCAAs in human health and longevity

In humans, acute BCAA supplementation has been extensively stud-
ied as a way for athletes and the elderly to build or preserve muscle 
mass. BCAA supplementation before and after exercise promotes 
muscle protein synthesis and decreases exercise- induced muscle 
damage in humans (Howatson et al., 2012; Shimomura et al., 2004). 
In mice, BCAA supplementation improves body composition when 
wheel access and exercise is allowed (Platt et al., 2016), indicating 
that BCAA supplementation may benefit those who are regularly 
exercising. As more studies focus on circadian biology and nutri-
ent timing, it will be interesting to see whether BCAA supplemen-
tation yields improvements or disadvantages based on the time of 
administration even in nonexercising models. Elevated BCAAs are 
specifically associated with poor health outcomes in humans overall, 
and higher blood levels of isoleucine are associated with increased 
mortality, while in humans, higher dietary levels of isoleucine are as-
sociated with body mass index (Deelen et al., 2019; Yu et al., 2021). 
However in the elderly, especially the frail elderly, BCAAs are de-
creased (Adachi et al., 2018; Chaleckis et al., 2016; Ottestad et al., 
2018; Ter Borg et al., 2019). Similarly, in the elderly increased protein 

or essential amino acid supplementation improves frailty outcomes 
(Dillon et al., 2009), blood glucose control (Solerte et al., 2008), and 
lean mass (Solerte et al., 2008).

In addition to frailty, the risk of dementia, related neurological 
complications, and neurodegenerative diseases increases with age. 
Blood levels of BCAAs are elevated in the blood of humans with 
Alzheimer’s disease (AD) and mouse models of the disease, and 
brain BCAA catabolism is impaired in the brains of models of AD 
by downregulation of Bcat1 expression (Li, Ye et al., 2018). Dietary 
supplementation of BCAAs leads to increased cognitive deficits and 
increased phosphorylation of Tau, and, when combined with a high- 
fat diet, leads to the premature death in the 3xTg mouse model of AD 
(Tournissac et al., 2018). Dietary restriction of BCAAs instead im-
proves the cognitive performance of 3xTg AD mice (Tournissac et al., 
2018). It is likely that increasing BCAA consumption may improve 
health outcomes or quality of life in some specific conditions or life 
stages, and future research should try to determine what factors 
predispose humans to respond positively to BCAA supplementation.

8.5  |  BCAA restriction as a clinical intervention

There are many factors that need to be considered in the applica-
tion of experimental diets to human patients, mainly safety and 
feasibility. BCAA- restricted diets could conceptually be used as a 
weight loss and insulin- sensitizing intervention or promote healthy 
longevity. Restricting BCAAs in diet- induced obese mice induced 
rapid weight loss (Cummings et al., 2018), and this dramatic effect 
would likely not be tolerated well or sustained in humans. Though 
mice of both sexes tolerate lifelong BCAA restriction well, some fe-
males who began the diet in midlife suffered early mortality, which 
is an obvious safety concern. However, young mice and diet- induced 
obese mice do not adversely react to a diet restricted by two- thirds 
BCAAs, and this appears to be a safe dietary intervention if weight 
is carefully monitored.

Clinical experiments utilizing dietary BCAA restriction in humans 
are sparse; to date, there are two trials using this dietary regimen. 
The first study was conducted in metabolically healthy individuals 
and utilized whole foods in addition to medical- grade foods and 
formulas that are engineered for individuals with maple syrup urine 
disease (MSUD). MSUD is an autosomal recessive disease in which 
mutations in BCKDH genes require limitation of the BCAAs to pre-
vent neurotoxic buildup of BCAAs and BCKAs. Over the course 
of a week, the intentional reduction in dietary BCAAs resulted in 
reduced circulating BCAAs by 50%. Additionally, the intervention 
slightly reduced insulin resistance as measured by Homeostatic 
Model Assessment of Insulin Resistance (HOMA- IR) (Ramzan et al., 
2020). Presumably, a longer intervention would yield significant im-
provements in insulin resistance and overall glucose homeostasis, 
but more clinical trials are needed, especially in populations with un-
derlying metabolic conditions.

In a second clinical trial of BCAA restriction, BCAAs were re-
duced by supplementing subjects eating a low protein diet with 
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either a complete AA mixture or one lacking BCAAs for one month. 
BCAA- restricted humans demonstrated lowered circulating BCAAs 
in several feeding states, especially during a mixed- meal tolerance 
test, and improved some measures of metabolic health. Postprandial 
insulin secretion was lowered, oral glucose sensitivity was improved, 
and FGF21 increased by 21% (Karusheva et al., 2019). These exciting 
results prove efficacy and feasibility of decreasing BCAA consump-
tion in humans, at least for a short period of time.

However, a recent study of mice feeding periodized PR found 
that many benefits were transient and reversed after PR ended, 
and it is unknown whether this will apply to humans on a protein 
or BCAA- restricted diet (Li, Rasmussen et al., 2018). Future studies 
should extend BCAA- restricted periods, and track metabolic pa-
rameters after the diet ends, to see how interventions such as these 
affect long- term health. Other solutions could involve registered 
dietitian- designed diets that naturally control BCAA intake. The out-
comes of dietary BCAA restriction are summarized in Figure 2.

9  |  DISTINC T METABOLIC EFFEC TS OF 
THE INDIVIDUAL BC A A s

While BCAAs are commonly grouped together and referred to 
collectively, there is evidence that these AAs can have individual 
effects, as alluded to earlier in this review. To test the effects of 
individual BCAA restriction on metabolic health, mice were fed a 
new series of individually restricted BCAA diets. Restricting leucine 
instead of all BCAAs does not improve metabolic health— rather, it 
slightly increases adiposity (Fontana et al., 2016; Yu et al., 2021). 
Interestingly, valine and isoleucine restriction both improved met-
abolic health. Specific valine deprivation has also been shown to 
reduce leukemic burden and increase survival in mice with acute 

lymphoblastic leukemia (ALL) by reducing expression of valine 
tRNAs that are typically upregulated in this condition (Thandapani 
et al., 2022). Furthermore, adding isoleucine or valine back to a diet 
with low levels of all other AAs markedly reduced the benefits to 
metabolic health. Overall, while reduction of isoleucine and valine 
proved to drive the benefits of a BCAA- restricted diet, and leucine 
often had no effect when manipulated in diet alone, isoleucine re-
striction elicited the most potent improvements to metabolic health 
in all conditions tested. Through the use of genetically altered mice, 
it was determined that isoleucine restriction improves metabolic 
health independently of hepatic mTORC1 and GCN2, and that 
FGF21 may play a role in these benefits (Yu et al., 2021). Overall, 
these data show that while BCAAs are often referred to collectively 
and grouped together in analysis, they have distinct physiological 
roles.

It is curious that the individual BCAAs do not produce equal ef-
fects when restricted. The catabolism of these AAs is regulated by 
the same kinases, though their end products differ by glucogenic 
and ketogenic properties. In a standard chow diet, leucine is the 
most abundantly fed BCAA, and isoleucine is the least abundant, 
so it is tempting to think that when restricted by 67%, isoleucine 
and valine have crossed some threshold that results in improved 
metabolic health. Indeed, when leucine is restricted by 80%– 85%, 
there are benefits to metabolic health, and FGF21 was only in-
duced after 85% leucine restriction (Lees et al., 2017; Wanders 
et al., 2015). However, even in experiments that eliminate individual 
BCAAs, differences among their effects were still observed. Xiao 
et al. showed that though eliminating any individual BCAA rapidly 
reduces weight and improves insulin sensitivity, only valine and 
isoleucine elimination improved glucose tolerance and lowered fed 
blood glucose levels, possibly through decreased expression of key 
gluconeogenic genes (Xiao et al., 2011, 2014). Furthermore, one 

F I G U R E  2 BCAA	restriction	improves	
health and extends lifespan. Visual 
summary of the effects of restricting 
dietary BCAAs on molecular signaling, 
healthspan, and longevity
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study of methylmalonyl- CoA mutase heterozygosis in mice, which 
prevents complete valine and isoleucine oxidation to succinyl- CoA, 
resulted in susceptibility to insulin- resistant obesity (Lerin et al., 
2016). However, the distinctions among the BCAAs that influence 
metabolic heath are still unclear, and future work should determine 
whether and how diets limited in leucine, isoleucine, and valine are 
differently sensed.

Finally, as isoleucine restriction produces such potent effects 
compared with the other BCAAs, and as BCAA restriction extends 
longevity, feeding an isoleucine- restricted diet and testing the ef-
fects on longevity is a logical next step. Though isoleucine is the 
BCAA most influential in improving metabolic health, metabolic 
health is not always linked to increased lifespan. Several groups have 
now shown that insulin sensitivity and longevity can be uncoupled 
(Arriola Apelo et al., 2020; Lamming et al., 2012; Selman et al., 2008; 
Yu et al., 2019) however, BCAA- restricted mice of both sexes are 
also less frail with age. It will be interesting to determine whether 
isoleucine restriction recapitulates these benefits on frailty and 
longevity.

10  |  SE XUAL DIMORPHISM IN RESPONSE 
TO PROTEIN AND BC A A RESTRIC TION

Sex differences in longevity have been observed in almost every 
species studied, but there is a clear lack of research evenly into 
both sexes (Austad & Fischer, 2016; Zucker & Beery, 2010). 
Modern longevity studies have found substantial effects of sex 
on lifespan and disease burden (Le Couteur et al., 2018; Mitchell 
et al., 2016), so it is perhaps unsurprising that sexually dimorphic 
effects have also been found in mice subject to protein and BCAA 
restriction.

As previously discussed, consumption of a 67% BCAA- restricted 
diet starting in midlife improved metabolic health and reduced frailty 
in both sexes, though this diet only extended lifespan in males when 
initiated at a young age (Richardson et al., 2021). Intriguingly, this 
was also the case with respect to PR; a PR diet started early in lifes-
pan only extended the lifespan of males (Richardson et al., 2021). 
The only other study evaluating BCAA restriction and longevity to 
date did not find any difference in either sex with longevity, and 
found most effects were not dimorphic, though this study used a 
more strict level of BCAA restriction than ours (Solon- Biet et al., 
2019). Some insights into these results can be drawn from research 
into dietary protein intake.

A recent publication tested how different levels of dietary pro-
tein impacted the metabolic health and molecular profile of multiple 
strains of male and female mice. While some phenotypes were con-
served across strains and sexes, including increased glucose toler-
ance and energy expenditure, there was large variability in adiposity, 
insulin sensitivity, and circulating hormones with sex, strain, and 
age of onset (Green et al., 2022). This study also demonstrated that 
short- term PR was effective at improving metabolic health when 

started much later in life, and the pattern of sexual dimorphism was 
altered at old age.

Another experiment testing different protein:carbohydrate ra-
tios in both sexes on reproduction and lifespan found that female 
mice maximize reproductive health and longevity at different ratios 
compared with male mice. Male longevity was optimized at lower 
ratios than females, indicating that the degree of PR increasing 
male lifespan is more severe than in females. Additionally, repro-
ductive function is maximized on higher ratios in both sexes, mean-
ing that higher protein intake is needed for optimal reproductive 
health (Solon- Biet et al., 2015). This has also been demonstrated in 
Drosophila melanogaster, as females suppress egg production on low- 
protein, high- carbohydrate diets (Lee, 2015).

These results are useful when thinking about BCAA restriction, 
as it is conceivable that to increase lifespan in females, different 
levels of limitation may be needed. At the two- thirds level of re-
striction tested, females did not have diminished mTORC1 activity 
(Richardson et al., 2021). Future experiments could test different 
degrees of BCAA restriction and measure how mTORC1 signaling 
and lifespan respond in female mice. Furthermore, effects on repro-
ductive health may differentially influence female vs. male longevity, 
and it would be interesting to determine how BCAA restriction influ-
ences reproductive health in both sexes.

11  |  FUTURE DIREC TIONS IN BC A A 
RESE ARCH METABOLISM AND AGING

11.1  |  The role of FGF21

Probably the largest remaining question in the work presented so 
far is the role of FGF21 in response to BCAA or isoleucine restric-
tion. As FGF21 is essential for the metabolic benefits and lifespan 
extension of PR (Hill et al., 2022; Laeger et al., 2014) (Figure 3), and 
as BCAA and isoleucine addback to a PR diet blunts or eliminates 
these metabolic benefits (Yu et al., 2021), it is logical to hypothesize 
that FGF21 is essential for the effects we observe in BCAA and 
isoleucine restriction. Several studies have examined the effect of 
BCAA restriction on FGF21 levels in mice. Two studies found that 
BCAA restriction did not increase blood levels of FGF21 (Fontana 
et al., 2016; Solon- Biet et al., 2019), while a third observed increased 
FGF21 expression in aged males fed a Low BCAA diet (Richardson 
et al., 2021). Another study observed that BCAA restriction study 
in the context of a Western diet temporarily increased FGF21 
(Cummings et al., 2018). Two studies of BCAA repletion in PR have 
presented divided results, with one reporting that BCAA addback 
did not blunt increases in FGF21 by PR (Maida et al., 2017), and the 
other showing a slight decrease (Mu et al., 2018).

The role of FGF21 in response to specific restriction of iso-
leucine is a bit clearer; isoleucine restriction strongly raises 
FGF21 levels and induces Fgf21 transcription in multiple tissues. 
Moreover, deletion of Fgf21 blocks isoleucine- induced increases 
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in food consumption and energy expenditure. However, Fgf21−/− 
mice on a low isoleucine diet still displayed improved glucose tol-
erance and body composition (Yu et al., 2021). Modifying hepatic 
AA sensing by deletion of Gcn2 or Tsc1 (Tuberous sclerosis com-
plex 1— an upstream negative regulator of mTORC1) does not alter 
the metabolic response to isoleucine restriction (Yu et al., 2021). 
Another study has shown that hepatic ATF4 can activate and in-
crease FGF21 expression without GCN2 activity, though this pro-
cess is delayed (Laeger et al., 2016). The molecular mechanisms 
by which FGF21 levels are increased by isoleucine restriction, and 
the molecular processes by which dietary isoleucine restriction 
promotes glucose tolerance and reduces adiposity, remain to be 
determined.

Interestingly, our laboratory recently discovered that the meta-
bolic and molecular response to PR has sex-  and strain- dependent 
effects (Green et al., 2022). Though many benefits of PR diets are 
attributed to FGF21, these studies have primarily been conducted 
in C57BL/6J males. Surprisingly, we observed that while blood lev-
els of FGF21 are strongly induced by PR in C57BL/6J males, this 
increase was more muted in C57BL/6J females, and not observed in 
DBA/2J or HET3 mice of either sex. Further, these results uncoupled 

increased energy expenditure on PR diets and metabolic health im-
provements, and in DBA females, EE negatively correlated with he-
patic Fgf21. These results suggest that many PR outcomes may be 
independent of changes in FGF21.

12  |  CONCLUSIONS

There are still questions surrounding dietary AAs, metabolism, and 
longevity that remain unanswered by the current literature, espe-
cially in humans. The work discussed above raises new questions 
about how the amount and quality of protein intake influences 
health, and suggests that perhaps these dietary recommendations 
will need to be personalized. For example, as detailed earlier, the 
elderly may need to consume more BCAAs to prevent muscle loss 
and stave off frailty, while athletes may need to consume more 
BCAAs to build and maintain muscle. These protein or BCAA 
recommendations may be personalized based on one’s circulat-
ing amino acid levels and genes, allowing us to find the best diet 
for each person. Further research into the molecular mechanisms 
which underlie the benefits of BCAA and protein restriction may 

F I G U R E  3 FGF21	in	PR.	PR	induces	
hepatic FGF21 resulting in metabolic and 
physiological effects in many tissues. 
Note: FGF21 also acts through autocrine 
and paracrine means not illustrated here
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allow the development of pharmaceuticals to mimic these dietary 
interventions. 
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