
1. Introduction
The collision of fast Earthward flows through the plasma sheet with the dipolar fields of the inner magnetosphere 
drive field and plasma compressions, shears, particle energization and plasma heating (Gabrielse et al., 2014; 
Liu et al., 2016, 2018; Runov et al., 2013). The electromagnetic energy transport and conversion processes at the 
center of these dynamics are mediated by the normal modes of the plasma. These modes describe the average 
relationship between the variations in the electromagnetic fields and bulk particle distributions (Kivelson and 
Russell, 1995). They characterize the energy transport through Poynting flux into and out of those regions where 
Earthward flows deposit energy as their inward motion is arrested (Angelopoulos et al., 2002). Identifying the 
nature of these variations in terms of the constituent plasma modes is therefore necessary to characterize the flow 
of energy from the plasma sheet into the inner magnetosphere, ionosphere, and upper atmosphere (Dombeck 
et al., 2005; Hull et al., 2020; Keiling et al., 2002; Tian et al., 2021; Wygant et al., 2000).

Observations from the Van Allen Probes have demonstrated the prevalence of broad-spectrum electromag-
netic fluctuations along the interface between the dipolar field-lines of the inner magnetosphere and tail-like 
field-lines extending outward into the plasma sheet (Chaston et al., 2014, 2015; Hull et al., 2019; Malaspina 
et al., 2015; Moya et al., 2015). An illustrative example recorded during the geomagnetic storm of 1 June 2013, 
observed from Van Allen Probe A is shown in Figure 1. Here, broad-spectrum fluctuations in electromagnetic 
fields (Figures 1b–1e), particularly during storm main phase (Figure 1a), dominate the spectrum from 0.01 to 
10 Hz in the spacecraft frame. The variation in the spectral energy density as a function of time, or spacecraft 
location, is synchronous with changes in the energetic fluxes in both ions and electrons shown in Figures 1f 
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and 1g respectively. This synchronicity is symptomatic of the coupling of 
large scale Magnetohydrodynamics (MHD) plasma compressions and flows 
to intermediate and kinetic scale broad-band field variations. Figures 1h–1l 
capture these variations in a reduced set of parameters to be analyzed in the 
main body of this report.

The broad-band fluctuations along this interface have been characterized 
as part of an Alfvénic cascade delivering energy to kinetic scales to drive 
ion and electron energization and scattering (Chaston et  al.,  2015; Hull 
et al., 2020). This characterization is based on the relative magnitude of spec-
tral energy densities in transverse electric and magnetic fields that follow the 
expected scale dependent impedance relations for dispersive Alfvén waves. 
While this model is consistent with the transverse variations observed, 
it is often the case that simultaneous compressive variations are observed 
on intermediate scales that are not necessarily in agreement with a purely 
Alfvénic description (Chaston et al., 2015; Malaspina et al., 2015). Indeed, 
flows in the near-Earth plasma sheet are thought to launch fast mode waves 
Earthward (Kepko et al., 2001; Saito et al., 2008) while dipolarization fronts 
have a slow-mode-like character (Runov et al., 2011) and fluctuations within 
flows trailing these fronts have been interpreted as slow mode waves (Wang 
et  al.,  2016). Plasma structures here have a diamagnetic character sugges-
tive of interchange/ballooning instability in the generation of turbulence in 
the near-Earth plasma sheet (Cheng & Zaharia,  2004; Miura et  al.,  1989; 
Panov et al., 2012; Panov & Pritchett, 2018; Pritchett & Coroniti, 2010; Roux 
et  al.,  1991). Furthermore, inhomogeneities along the interface between 
inner magnetospheric and stretched plasma-sheet field-lines during disturbed 
times infer that mode coupling and conversion should occur here (Allan & 
Wright, 2000; Lysak et al., 2009). These considerations demand additional 
analyses of field and plasma variations in this critical region of near-Earth 
space to characterize the spectral composition more completely.

Here, a technique that decomposes the full set of observed field variables 
from the Van Allen Probes into the constituent normal modes of the plasma 
at frequencies below the ion cyclotron frequency (𝐴𝐴 Ω𝑖𝑖 ) is applied. This is 
performed over a range of scales extending from those of MHD deep into the 
kinetic range. The analysis is implemented using a background plasma model 
that varies with the scale of the fluctuations enabling the characterization of 
3-D time variant structures on plasma gradients as the superposition of linear 
modes populating volumes in 𝐴𝐴 𝐴𝐴 -space.

2. Fluid-Kinetic Analysis Technique
The basis for performing an analysis of the broad-spectrum electromagnetic 
fluctuations observed from the Van Allen Probes is a plasma model that 
appropriately describes the fluctuations over the observed range of spatial 
and temporal scales. Following previous analyses of these observations 
(Chaston et  al.,  2014), fluctuations for which 𝐴𝐴 𝐴𝐴 𝐴 Ω𝑖𝑖 are considered and 
described using a fluid-kinetic model (Hollwegg, 1999) on scales extending 
from MHD down to sub ion-gyro radii. In this model kinetic effects due to 
finite perpendicular scale are included in a “fluid” formalism that provides 
wave properties in agreement with those derived from a full kinetic treat-
ment with the omission of wave damping (Cheng & Johnson, 1999; Lysak 
& Lotko,  1996). Analysis of the model equations for an isotropic plasma 
provides the dispersion relation,

Figure 1. Storm-time observations from Van Allen Probe A, 1 June 2013. 
(a) Dst (Disturbance Storm Time) and AE (Auroral Electrojet) indices. (b–e) 
low frequency electric and magnetic field spectrograms from EFW and 
EMFISIS—components are in spacecraft coordinates as defined in the text. (f, 
g) Proton and electron omni-directional differential energy flux spectrograms 
from MAGEIS and HOPE. (h–j) Density, average ion mass, and average 
temperatures from HOPE. (k, l) magnetic and electric field (Earth's frame) 
vectors in spacecraft coordinates.
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where 𝐴𝐴 𝐴𝐴 is the wave frequency, 𝐴𝐴 𝐴𝐴𝐴𝐴 is the Alfvén speed, 𝐴𝐴 𝐴𝐴 = 𝜇𝜇𝑜𝑜𝑛𝑛0 (𝑇𝑇𝑒𝑒 + 𝑇𝑇𝑖𝑖) ∕𝐵𝐵
2

0
 and 𝐴𝐴 𝐴𝐴𝑠𝑠 =

√

𝑇𝑇𝑒𝑒∕𝑚𝑚𝑖𝑖∕Ω𝑖𝑖 and  
𝐴𝐴 𝐴𝐴𝑖𝑖 𝐴𝐴 =

√

𝑇𝑇𝑖𝑖∕𝑚𝑚𝑖𝑖∕Ω𝑖𝑖 are the ion acoustic and ion gyro-radii respectively. Here 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴0 are the slowly varying plasma 
density and total magnetic field strength, 𝐴𝐴 𝐴𝐴𝑒𝑒 and 𝐴𝐴 𝐴𝐴𝑖𝑖 are the electron and ion temperatures and 𝐴𝐴 𝐴𝐴𝑖𝑖 is the ion mass. 
Note that contributions due to electron inertia are ignored since locally 𝐴𝐴

𝑣𝑣𝑒𝑒

𝑣𝑣𝐴𝐴

≫ 1 . The wavevector in field-aligned 
coordinates is 𝐴𝐴 𝒌𝒌 = (0, 𝑘𝑘𝑦𝑦, 𝑘𝑘𝑧𝑧) with 𝐴𝐴 𝐴𝐴 along 𝐴𝐴 𝑩𝑩0 . At each location in 𝐴𝐴 𝐴𝐴 -space Equation 1 provides 6 solutions corre-
sponding to the Alfvén, fast and slow modes propagating along (forward, 𝐴𝐴 𝒌𝒌𝑧𝑧 ⋅ 𝑩𝑩0 > 0) and opposite to (backward, 

𝐴𝐴 𝒌𝒌𝑧𝑧 ⋅ 𝑩𝑩0 < 0) 𝐴𝐴 𝑩𝑩0 . The normalized phase speeds (𝐴𝐴 𝐴𝐴∕𝑘𝑘𝑘𝑘𝐴𝐴 ) of these modes as function of wave-normal angle (𝐴𝐴 𝐴𝐴𝑘𝑘 ) and 
𝐴𝐴 𝐴𝐴𝑦𝑦𝜌𝜌𝑖𝑖 for a proton-electron plasma representative of those observed is shown in Figures 2a–2c. These panels apply 

to both forward and backward modes. On large transverse scales (small 𝐴𝐴 𝐴𝐴𝑦𝑦𝜌𝜌𝑖𝑖 ) these solutions describe the classi-
cal non-dispersive MHD modes that transition into the corresponding kinetic modes as 𝐴𝐴 𝐴𝐴𝑦𝑦𝜌𝜌𝑖𝑖 increases. The field 
components of these modes facilitate the formation of eigenvectors which can be used to “filter” the observed 
fluctuations and estimate the contribution of each mode to the total spectral energy density (𝐴𝐴 𝐴𝐴 ) observed. This 
approach has been described for MHD fluctuations by Glassmeier et al. (1995).

Over the frequency range of interest, the Van Allen Probes provide the electric field vector in the spacecraft spin 
plane (𝐴𝐴 𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦 , 𝐴𝐴𝑧𝑧𝑦𝑦𝑦𝑦 ) and the full magnetic field vector (𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥𝑥𝑥 , 𝐴𝐴𝑦𝑦𝑥𝑥𝑥𝑥 , 𝐴𝐴𝑧𝑧𝑥𝑥𝑥𝑥 ) (Kletzing et al., 2013; Wygant et al., 2013). 
Here 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 is normal to the spacecraft spin plane and points toward the Sun, 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 lies along the projection of the 
ecliptic plane into the spacecraft spin plane and retrograde to planetary motion, while 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 completes the right-
handed set. In addition, density moments are provided by the plasma instrument onboard the Van Allen Probes 
(Funsten et al., 2013), however these are not of sufficient cadence to provide the fluctuating density (nor fluctu-
ations in the flow) for this study. Higher cadence density measurements could be estimated from the spacecraft 
potential (Jahn et  al.,  2020), however, close to apogee during storm times interpretation of these voltages as 
density fluctuations requires verification. The variations at each time (𝐴𝐴 𝐴𝐴 ) and spacecraft frame frequency (𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠 ) are 
therefore described by a reduced state vector defined in spacecraft coordinates as,
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where 𝐴𝐴 𝐴𝐴 is the background mass-density. The corresponding partial eigenvectors (𝐴𝐴 𝒆𝒆 ) for each mode are derived 
from the solutions of Equation 1 using the relations for 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 defined in the Supporting Information. These 
model-field vectors are defined in the field-aligned coordinate system for a given 𝐴𝐴 𝒌𝒌 and rotated into spacecraft 
coordinates using the projection of 𝐴𝐴 𝒌𝒌 into this system (𝐴𝐴 𝒌𝒌𝑠𝑠𝑠𝑠 ) to form 𝐴𝐴 𝒆𝒆 . The fraction of 𝐴𝐴 𝐴𝐴 attributed to each mode (𝐴𝐴 𝐴𝐴 ) 
is then provided by the matrix equation,

𝑔𝑔𝑖𝑖 (𝑓𝑓𝑠𝑠𝑠𝑠, 𝑡𝑡) = 𝒆𝒆𝑖𝑖𝑆𝑆 (𝑓𝑓𝑠𝑠𝑠𝑠, 𝑡𝑡) 𝒆𝒆
†

𝒊𝒊
∕𝜀𝜀 (𝑓𝑓𝑠𝑠𝑠𝑠, 𝑡𝑡) (3)

where � (���, �) = �†� is the full observed spectral matrix, �(���, �) = � �[� (���, �)] , 𝐴𝐴 𝒆𝒆𝑖𝑖 is the model-defined 
complex unit partial eigenvector of the 𝐴𝐴 𝐴𝐴th mode, and 𝐴𝐴 † and 𝐴𝐴 𝐴𝐴 𝐴𝐴 respectively denote Hermitian adjoint and trace. If 

𝐴𝐴 𝒌𝒌𝑠𝑠𝑠𝑠 is known for each mode at each 𝐴𝐴 (𝑓𝑓𝑠𝑠𝑠𝑠, 𝑡𝑡) then 𝐴𝐴 𝑔𝑔𝑖𝑖 (𝑓𝑓𝑠𝑠𝑠𝑠, 𝑡𝑡) can in principle be evaluated from Equation 3.

The omission of the variations in particle pressure in the formulation of � reduces the capacity to distinguish 
modes in the plasma. To quantify “leakage” between modes Figures 2d–2f show the inner product 𝐴𝐴 𝒆𝒆𝑖𝑖 ⋅ 𝒆𝒆𝑗𝑗

† eval-
uated using normalized partial eigenvectors corresponding to the solutions shown in Figures 2a–2c in spherical 
coordinates 𝐴𝐴 (𝑘𝑘𝑘 𝑘𝑘𝑘𝑘 and 𝐴𝐴 𝐴𝐴𝑘𝑘 ). The azimuthal angle (𝐴𝐴 𝐴𝐴𝑘𝑘 ) is measured in a right-hand sense around 𝐴𝐴 𝑩𝑩0 between the 

𝐴𝐴 𝐴𝐴 -direction in field-aligned (FAC) coordinates and the direction of 𝐴𝐴 𝐴𝐴⟂ . 𝐴𝐴 𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹 in the 𝐴𝐴 𝐴𝐴𝐴𝐴 system lies along the vector, 
𝐴𝐴

[

−𝐵𝐵0𝑥𝑥𝐵𝐵0𝑧𝑧,−𝐵𝐵0𝑦𝑦𝐵𝐵0𝑧𝑧, 𝐵𝐵0𝑥𝑥
2
+ 𝐵𝐵0𝑦𝑦

2
]

 , with 𝐴𝐴 𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹 along 𝐴𝐴 𝑩𝑩0 . Here, 𝐴𝐴 𝑩𝑩𝟎𝟎 is taken to lie in the 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 − 𝑧𝑧𝑆𝑆𝑆𝑆 plane and inclined 
45° to both coordinate axes to represent orientations during storm-times near apogee and local midnight from the 
Van Allen Probes. Alternate orientations provide comparable results. Values of zero in Figures 2d–2f indicate 
orthogonality with no “leakage” between modes, while values of one indicate that the modes cannot be distin-
guished using the state vector alone at that location in 𝐴𝐴 𝐴𝐴 -space. Based on this calculation it would seem possible 
to distinguish the Alfvén mode from the fast and slow modes over most of the volume shown with additional 
constraints required to distinguish the fast from slow mode.
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The additional constraints are supplied by the differences in the mode phase speeds apparent in Figures 2a–2c. 
These speeds determine 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 at which a mode at a given 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝒌𝒌 may appear. This frequency is,

𝑓𝑓𝑆𝑆𝑆𝑆 = |𝜔𝜔 − 𝒌𝒌𝑺𝑺𝑺𝑺 ⋅ 𝒗𝒗𝑺𝑺𝑺𝑺 |∕2𝜋𝜋 (4)

where 𝐴𝐴 𝒗𝒗𝑆𝑆𝑆𝑆 is the velocity of the spacecraft through the plasma. For the broad spectra and flows measured from 
the Van Allen Probes, 𝐴𝐴 𝐴𝐴 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡) at each 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and 𝐴𝐴 𝐴𝐴 will have contributions over the range of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝒌𝒌𝑺𝑺𝑺𝑺 that satisfy 
Equation 4. For this case the integrated composition can be defined as,

𝐺𝐺𝑖𝑖 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡) =
1

𝑉𝑉𝑘𝑘 ∫ 𝒆𝒆𝑖𝑖𝑆𝑆 (𝑓𝑓𝑠𝑠𝑠𝑠, 𝑡𝑡) 𝒆𝒆
†

𝒊𝒊
𝑑𝑑𝑉𝑉𝑘𝑘 (5)

Figure 2. (a–c) Normalized phase speeds (𝐴𝐴 𝐴𝐴∕𝑘𝑘𝑘𝑘𝐴𝐴 ) of the Alfvén, fast and slow modes for the plasma model indicated as a function of wave-normal angle (𝐴𝐴 𝐴𝐴𝑘𝑘 ) and 
normalized perpendicular wavenumber (𝐴𝐴 𝐴𝐴⟂𝜌𝜌𝑖𝑖 ). Inner product of eigenvectors as a function of 𝐴𝐴 𝐴𝐴𝑘𝑘 , 𝐴𝐴 𝐴𝐴⟂𝜌𝜌𝑖𝑖 and the azimuthal angle, 𝐴𝐴 𝐴𝐴𝑘𝑘 , for the modes indicated. (g–i) 

𝐴𝐴 𝑔𝑔𝑖𝑖 (𝑘𝑘⟂𝜌𝜌𝑖𝑖, 𝜃𝜃𝑘𝑘, 𝜙𝜙𝑘𝑘 ) within volume 𝐴𝐴 𝐴𝐴𝑘𝑘 for each mode at the 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and time indicated.
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where 𝐴𝐴 𝐴𝐴𝐴𝐴𝑘𝑘 = 𝑘𝑘𝑙𝑙
2
sin (𝜃𝜃𝑘𝑘) d𝜃𝜃𝑘𝑘d𝜙𝜙𝑘𝑘d𝑘𝑘𝑙𝑙 , 𝐴𝐴 𝐴𝐴𝑙𝑙 is 𝐴𝐴 log 𝑘𝑘 for a logarithmic grid in 𝐴𝐴 𝐴𝐴 , and the integral is performed over the 

volume (𝐴𝐴 𝐴𝐴𝑘𝑘 ) in 𝐴𝐴 𝐴𝐴 -space where Equation 4 is satisfied for each wave mode (𝐴𝐴 𝐴𝐴 ). The normalized composition is then 
𝐴𝐴 𝐺𝐺𝑖𝑖 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡) = 𝐺𝐺𝑖𝑖 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡) ∕

∑

𝑖𝑖
𝐺𝐺𝑖𝑖 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡) .

Within 𝐴𝐴 𝐴𝐴𝑘𝑘 , a characteristic 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝒌𝒌𝑺𝑺𝑺𝑺 may be identified at that location in 𝐴𝐴 𝐴𝐴 -space where 𝐴𝐴 𝑔𝑔𝑖𝑖 (𝑓𝑓𝑠𝑠𝑠𝑠, 𝑡𝑡) is largest. This 
can be located by searching 𝐴𝐴 𝐴𝐴𝑘𝑘 for minima of the function,

𝐴𝐴𝑖𝑖 (𝒌𝒌𝑆𝑆𝑆𝑆 ) = 1 − 𝑔𝑔𝑖𝑖 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡) (6)

much in the manner of 𝐴𝐴 𝐴𝐴 -filtering (Motschmann et al., 1998) with the “filter” defined by the mode eigen-vector 
𝐴𝐴 𝒆𝒆𝑖𝑖 . Here it is noted that for the broad-spectrum fluctuations observed, 𝐴𝐴 𝒌𝒌𝑆𝑆𝑆𝑆 of the characteristic mode will not 

necessarily coincide with that returned by a priori assuming a single plane wave at each 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠 and 𝐴𝐴 𝐴𝐴 and deriving 
𝐴𝐴 𝒌𝒌∕𝜔𝜔 using Faraday's law (e.g., Santolik et al., 2003).

3. Storm Time Composition
The measurements required to perform this analysis over the “main phase” of the storm of Figure 1 are presented 
in Figures 1h–1l. Estimates for the spectral coefficients at each 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 required to populate 𝐴𝐴 𝐴𝐴 are derived using 
Morlet wavelets (Torrence & Compo,  1998) applied to the full magnetic field vector and the 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 
electric field components in the rest frame of Earth (Figures 1k and 1l). The background plasma parameters 
(𝐴𝐴 𝑩𝑩0, 𝑛𝑛0, 𝑚𝑚𝑖𝑖, 𝑇𝑇𝑖𝑖, 𝑇𝑇𝑒𝑒, 𝒗𝒗𝑆𝑆𝑆𝑆 ) at each wavelet scale are defined by low-pass filtering as 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 ≤ 1∕𝛼𝛼𝛼𝛼𝑠𝑠 where 𝐴𝐴 𝐴𝐴𝑠𝑠 ≈

√

2∕𝑓𝑓𝑆𝑆𝑆𝑆 
is the wavelet e-folding time. Values of 𝐴𝐴 𝐴𝐴 = 2 − 7 provide nearly identical results and here 𝐴𝐴 𝐴𝐴 = 2 is used. In 
advance, it is also noted that variations in the background parameters of up to 50% cause less than ∼10% 
variation in composition (Chaston, Bonnell, Bale, et al., 2020). The spacecraft spin plane electric field meas-
urements along with the axial component (𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥𝑥𝑥 ) given by the approximation 𝐴𝐴 𝑬𝑬 ⋅ 𝑩𝑩𝒐𝒐 = 0 are used to estimate 

𝐴𝐴 𝒗𝒗𝑺𝑺𝑺𝑺 . For demonstration purposes, Figure 1l includes 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥𝑥𝑥 derived in this manner with 𝐴𝐴 𝑩𝑩𝒐𝒐 defined by low pass 
filtering the magnetic field vector to 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 < 0.001 Hz. The velocity of the spacecraft through the plasma is then 

𝐴𝐴 𝒗𝒗𝑆𝑆𝑆𝑆 = 𝒗𝒗0_𝑆𝑆𝑆𝑆 − (𝑬𝑬 × 𝑩𝑩𝒐𝒐) ∕𝐵𝐵0
2 where 𝐴𝐴 𝒗𝒗0_𝑆𝑆𝑆𝑆 is the orbital velocity. In practice, 𝐴𝐴 𝒗𝒗𝑆𝑆𝑆𝑆 is derived at each wavelet scale 

and time for use in conjunction with the dispersion results to define 𝐴𝐴 𝐴𝐴𝑘𝑘 via Equation 4 for each mode at each 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 
and 𝐴𝐴 𝐴𝐴 . Each bin in 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 has width 𝐴𝐴 Δ𝑓𝑓𝑆𝑆𝑆𝑆 , and all those 𝐴𝐴 𝐴𝐴 -space grid locations that satisfy Equation 4 over the range 

𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆±𝐴𝐴 Δ𝑓𝑓𝑆𝑆𝑆𝑆 /2 are included in 𝐴𝐴 𝐴𝐴𝑘𝑘 .

To illustrate how the analysis proceeds, Figures 2g–2i show 𝐴𝐴 𝑔𝑔𝑖𝑖 (𝑘𝑘⟂𝜌𝜌𝑖𝑖, 𝜃𝜃𝑘𝑘, 𝜙𝜙𝑘𝑘) within 𝐴𝐴 𝐴𝐴𝑘𝑘 for each of the forward 
propagating modes at 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 = 0.06Hz and time 04:26:02 UT. Figure 2g shows that 𝐴𝐴 𝑔𝑔𝑖𝑖 for the Alfvén mode is 
broadly distributed in 𝐴𝐴 𝐴𝐴 and balanced in 𝐴𝐴 𝐴𝐴𝑘𝑘 with peaks at ∼180° and ∼360° and “soft” maxima occurring at 

𝐴𝐴 𝐴𝐴⟂𝜌𝜌𝑖𝑖 ∼ 1 and 𝐴𝐴 𝐴𝐴𝑘𝑘 → 90
𝑜𝑜 . The distribution of 𝐴𝐴 𝑔𝑔𝑖𝑖 in 𝐴𝐴 𝐴𝐴 -space for the other modes is more localized, however multiple 

maxima with similar peak values are apparent. These distributions indicate that the fluctuations are not well 
described as a single Fourier mode at a specific wavenumber. This non-specificity is replicated at each 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and 

𝐴𝐴 𝐴𝐴 throughout this storm interval. Integration of these distributions, as defined by Equation 5, provides the corre-
sponding mode composition results presented in Figure 3.

Figures 3a and 3b show the power spectra of the magnetic and electric field variations. The black regions in 
Figure 3b correspond to the digitization noise floor of the fluxgate magnetometer that constrains the frequency 
range for analysis. The normalized integrated composition over this range, 𝐴𝐴 𝐺𝐺𝑖𝑖 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡) , as defined by Equa-
tion  5 and the ratio of forward to backward composition, 𝐴𝐴 𝐺𝐺 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡)Forward ∕𝐺𝐺 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡)Backward , is presented in 
Figures  3c–3k. Note that these results provide continuous coverage from the MHD range through to kinetic 
scales where 𝐴𝐴 𝐴𝐴⟂𝜌𝜌𝑖𝑖 > 1 .

Comparing Figures 3c–3k indicates a composition dominated by Alfvénic modes (Figures 3c and 3d) with a 
preference for propagation in the forward sense represented by the preponderance of red shading in Figure 3e. 
For the magnetic field orientation and the location of the Van Allen Probes at this time, this result corresponds to 
propagation, or energy transport, in the Alfvén mode along 𝐴𝐴 𝑩𝑩𝒐𝒐 primarily toward the northern ionosphere. There 
is however a significant flux in backward propagating Alfvén modes whose composition is at times anti-cor-
related with the forward mode in 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and 𝐴𝐴 𝐴𝐴 . The simultaneous presence of spectral energy densities in both 
the forward and backward modes is indicative of counter propagation and/or consistent with the presence of 
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Figure 3. Fluid-kinetic mode composition. (a, b) Morlet wavelet spectrograms of the low frequency electric 
and magnetic field variations for the components indicated. (c–k) 𝐴𝐴 𝐺𝐺𝑖𝑖 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡) (normalized total composition) and 

𝐴𝐴 𝐺𝐺 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡)𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∕𝐺𝐺 (𝑓𝑓𝑆𝑆𝑆𝑆 , 𝑡𝑡)𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 for each mode.
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field-line eigenmodes identified from the Van Allen Probes in previous studies (Chaston et al., 2014). Signifi-
cantly, the  contribution from the backward mode at the lowest frequencies becomes largest after 0550 UT follow-
ing the dipolarization of the magnetic field (Figure 1k).

Figures 3f and 3g show significant contributions from the fast mode throughout the interval at 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 ≥ 0.01Hz . 
There is a preference for propagation in the forward direction along 𝐴𝐴 𝐴𝐴0 (Figure 3h). The fast mode effectively 
disappears from the composition for 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 ≲ 0.01Hz over which range the compressional field variations are 
dominated by the slow mode (Figures 3i and 3j). In fact, comparison of Figures 3f and 3g to Figures 3i and 3j 
shows that slow and fast mode spectral energy densities are anti-correlated. For 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 ≲ 0.01Hz the slow mode 
shows no persistent preference for forward or backward propagation along 𝐴𝐴 𝑩𝑩𝒐𝒐 , but above this frequency this mode 
is preferentially found in the backward sense (Figure 3k). This suggests a source located closer to the northern 
ionosphere. After the field dipolarization there is a progressive decrease and increase in the slow mode and fast 
mode composition respectively.

4. Wave Properties
While the composition results described above are defined by integration over 𝐴𝐴 𝐴𝐴𝑘𝑘 , it is instructive to consider the 
characteristic wave properties at the minima in 𝐴𝐴 𝐴𝐴𝑖𝑖 (𝒌𝒌𝑺𝑺𝑺𝑺 ) within 𝐴𝐴 𝐴𝐴𝑘𝑘 at each 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and 𝐴𝐴 𝐴𝐴 . Figure 4 shows these prop-
erties for the forward modes, noting that the results for the backward modes are qualitatively similar. For context 
the average ion temperature (∼6 keV), mass (∼10 −26 kg) and magnetic field (∼300 nT) provide a thermal ion 
gyro-radius of ∼90 km so that 𝐴𝐴 𝐴𝐴⟂𝜌𝜌𝑖𝑖 = 1 at 𝐴𝐴 𝐴𝐴 ∼ 1 × 10

−5 . Values of 𝐴𝐴 𝐴𝐴 at, and above, this wavenumber, correspond 
to the kinetic range and are represented in Figures 4a, 4e and 4i by yellow to red shading.

Figure 4 shows that the characteristic wavevectors (Figure 4a) for the Alfvén mode span the range from MHD 
scales well into the kinetic range at largest 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 . These wavevectors are highly oblique with wave-normal angles 
(Figure  4b) approaching 90° over the frequency range shown. This result is consistent with those returned 
via fits of impedance relations for kinetic Alfvén waves to the observed electromagnetic wave spectra where 

𝐴𝐴 𝐴𝐴⟂ ∼ 2𝜋𝜋𝜋𝜋𝑆𝑆𝑆𝑆∕𝑣𝑣𝑆𝑆𝑆𝑆 (Chaston et al., 2015). Plasma frame wave frequencies (𝐴𝐴 𝐴𝐴) (Figure 4c) increase with 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 with 
values normalized by the ion gyrofrequency (𝐴𝐴 𝐴𝐴∕Ω𝑖𝑖 ) generally much less than one. There also appears to be no 
definitive orientation for 𝐴𝐴 𝐴𝐴⟂ ; 𝐴𝐴 𝐴𝐴𝑘𝑘 varies erratically over the full 2𝐴𝐴 𝐴𝐴 radians in the perpendicular plane (Figure 4d).

In contrast, the same approach shows that the fast mode is generally not found in the kinetic range (Figure 4e). 
There are however impulsive intervals where kinetic scales are present particularly after ∼0550 UT. At the lowest 
frequencies surveyed (𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 ≲ 0.01Hz ) Figure 4 shows no fast mode solutions satisfying Equation 4 exist. Wave 
normal angles (Figure 4f) just above these frequencies are nearly field aligned, become progressively oblique 
with increasing 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 , and are nearly perpendicular at the largest 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 . Like in the Alfvén mode, 𝐴𝐴 𝐴𝐴 increases with 

𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 but more closely approaches 𝐴𝐴 Ω𝑖𝑖 at large 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 (Figure 4g). Again, no clearly organized propagation direction in 
the plane perpendicular to 𝐴𝐴 𝑩𝑩𝒐𝒐 is found (Figure 4h).

The slow mode, like the Alfvén mode, becomes kinetic at the largest 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 with wavenumbers extending well into 
the 𝐴𝐴 𝐴𝐴⟂𝜌𝜌𝑖𝑖 > 1 range (Figure 4i). Here there appears to be a background of large-scale fluctuations with impulsive 
intervals of highly kinetic fluctuations. The impulsive intervals coincide with enhanced spectral energy densities 
where analyses above the magnetometer noise floor are sometimes possible up to 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 ∼ 1Hz . At the lowest 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 
the slow mode is nearly field-aligned, almost perpendicular at intermediate 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 , and moderately oblique at the 
highest 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 (Figure 4j). Wave frequencies increase with 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 similar to that in the Alfvén mode (Figure 4k). The 
distribution of 𝐴𝐴 𝐴𝐴𝑘𝑘 again indicates no clear propagation direction in the perpendicular plane (Figure 4l).

5. Discussion and Conclusion
The analyses performed above indicate that in addition to the documented Alfvénic nature of broadband elec-
tromagnetic fluctuations outside the plasmapause during storm times, a significant fraction of observed spectral 
energy density may also reside in fast and slow mode variations. This description provides an explanation for the 
compressional structures observed at large non-kinetic and intermediate scales (Chaston et al., 2012, 2015) on 
which the Alfvén mode is mostly transverse. These structures have the properties of diamagnetic cavities often 
comprising localized regions of energetic plasmas. They are decomposed in this analysis as the superposition 
of Alfvénic and slow mode wavelets and appear in Figure 3 at frequencies below 0.01 Hz. These Alfvénic/slow 
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mode features progressively disappear after dipolarization of the geomagnetic field with reduction in slow mode 
composition as the spacecraft transitions to lower L-shells and passes through magnetic midnight. During this 
transition, the fast mode composition above 0.01 Hz intensifies.

The coexistence of spectral energy densities in all three modes is suggestive of the operation of mode coupling. 
This may be a consequence of inhomogeneities in the plasma (Allan & Wright, 1998, 2000; Hasegawa, 1976; John-
son et al., 2001; Lysak et al., 2009) and/or non-linear processes such as parametric decay (Chen & Zonca, 2011; 
Hasegawa & Chen, 1976). Figure 4m shows the average parallel phase speeds, 𝐴𝐴 𝐴𝐴∕𝑘𝑘

‖

 , of each mode at minima in 
𝐴𝐴 𝐴𝐴𝑖𝑖 (𝑘𝑘𝑆𝑆𝑆𝑆 ) as a function of 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 . The similarity of 𝐴𝐴 𝐴𝐴∕𝑘𝑘

‖

 in the fast and Alfvén mode over much of the range shown 
introduces the possibility of energy transfer between these modes. While a definitive demonstration of energy 
transfer remains to be presented, this result suggests that such a process may have been prevalent during this 
storm main phase.

The lack of a distinct direction of propagation in the plane perpendicular to 𝐴𝐴 𝑩𝑩𝒐𝒐 and the broad distributions of 
𝐴𝐴 𝑔𝑔𝑖𝑖 (𝑘𝑘⟂𝜌𝜌𝑖𝑖, 𝜃𝜃𝑘𝑘, 𝜙𝜙𝑘𝑘 ) for the Alfvénic mode may be understood by considering the morphology of the fluctuations. 

Figure 4n shows the “filamentation” of the field variations in the perpendicular plane based on the relation-
ship between the corresponding magnetic field components (Chaston, Bonnell, Wygant, et al., 2020). For planar 
features consistent with a single plane wave at each 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and 𝐴𝐴 𝐴𝐴𝐴 the value of the filamentation should approach 
zero. However, Figure 4 shows the filamentation is often larger than zero, and sometimes approaches one. This 

Figure 4. (a–l) Wavevector magnitude (𝐴𝐴 𝐴𝐴) , Wavenormal Angle (𝐴𝐴 𝐴𝐴𝑘𝑘 ), wave frequency normalized to the proton gyrofrequency (𝐴𝐴 𝐴𝐴∕Ω𝐻𝐻+ ) and azimuthal angle (𝐴𝐴 𝐴𝐴𝑘𝑘 ) at 
minima of 𝐴𝐴 𝐴𝐴𝑖𝑖 (𝒌𝒌𝑆𝑆𝑆𝑆 ) for the forward Alfvén, fast and slow modes respectively. (m) Average 𝐴𝐴 𝐴𝐴∕𝑘𝑘

‖

 of each mode as a function of 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 . (n) Filamentation in the magnetic 
field morphology.
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represents elliptical/filamentary features that require the superposition of modes over a range in 𝐴𝐴 𝐴𝐴𝑘𝑘 to account 
for the associated distribution of 𝐴𝐴 𝐴𝐴 at each 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and 𝐴𝐴 𝐴𝐴 . For such features there is no clearly defined direction of 
propagation through the plasma in the plane perpendicular to 𝐴𝐴 𝑩𝑩𝒐𝒐 .

In closing, a full account of the spectral energy in the broadband electromagnetic fluctuations during the storm of 
1 June 2013, requires not only a superposition of modes at each 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 and 𝐴𝐴 𝐴𝐴 but also contributions over a range of 
wave-vectors in each mode. This is required by the observed non-planar field morphology and is symptomatic  of 
the operation of the non-linear processes presumably driving the broad 𝐴𝐴 𝐴𝐴 -spectra. The Alfvén mode, when inte-
grated over a range of wavevectors capable of contributing to � at a particular 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 , is generally the largest contrib-
utor to 𝐴𝐴 𝐴𝐴 . However, this mode is associated with, and likely coupled to, fast and/or slow mode field variations by 
processes yet to be identified. While this decomposition analysis has been performed for a single storm, statistical 
studies of comparable events (Chaston et al., 2015, Hull et al., 2019, 2020) suggest that the properties described 
above are likely pervasive outside the plasmapause during geomagnetically disturbed intervals.

Data Availability Statement
Van Allen Probes measurements used in this study can be obtained from the following data repositories:  
EFW http://www.space.umn.edu/rbspefw-data/; EMFISIS https://emfisis.physics.uiowa.edu/data/index; HOPE/ 
MAGEIS https://rbsp-ect.newmexicoconsortium.org/science/DataDirectories.php. High level data and  
numerically derived quantities used in the analysis and production of the figures can be found at https://figshare. 
com/articles/dataset/_/17156138. The analyses were performed using publicly available IDL based SPEDAS 
software (Angelopoulos et al., 2019; available at http://spedas.org/wiki/index.php?title=Downloads_and_Instal-
lation) and wavelet-based software available at http://atoc.colorado.edu/research/wavelets.
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