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Abstract

The development of conventional, silicon-based computers has several limitations, including some related to the
Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and
proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to
their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s
group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA frag-
ments (the transition molecules) as software and input/output signals. This computer represented a two-state
two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we pro-
pose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as
hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer
based on the use of multiple restriction enzymes is presented. We use this method to construct multistate,
biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware.
We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of
four endonucleases.

Keywords: bioinformatics, DNA, DNA computer, restriction enzymes.

Received: May 17, 2016; Accepted: May 16, 2017.

Introduction

Biomolecular computers are the answer to problems

associated with the development of traditional, silicon-

based computers, particularly their miniaturization, as im-

plied by the Heisenberg uncertainty principle, and to limita-

tions in data transfer to and from the main memory by the

central processing unit (Amos, 2005). The first attempt to

develop a DNA computer was by Adleman (1994), who

solved some computational problems in a laboratory test-

tube. Over the next two decades, numerous reports on DNA

computing appeared. Some studies have focused on se-

lected, well-known problems in mathematics and computer

science, e.g., the tic-tac-toe algorithm (Stojanovic and Ste-

fanovic, 2003), the Knight problem (Faulhammer et al.,

1999) or the SAT problem (Lipton, 1995). Other areas of

research have attempted to apply DNA computing in medi-

cine, e.g., for cancer therapy (Benenson et al., 2004) or

‘miRNA’ level diagnostics (Seelig et al., 2006). An inter-

esting trend in DNA computing has been the development

of biomolecular solutions for well-known models in theo-

retical computer science, such as finite automata,

pushdown automata or Turing machines. Although some of

this research provided only theoretical solutions without

practical laboratory implementation, e.g., biomolecular

representations of the Turing machine (Rothemund, 1995)

or the pushdown automaton (Cavaliere et al., 2005;

Krasinski et al., 2012), there have been prominent excep-

tions, including a stochastic automaton (Adar et al., 2004)

and a finite automaton (Benenson et al., 2001, 2003). These

first constructions of DNA computers used one restriction

enzyme (RE) as the hardware and DNA fragments as the

software and input/output signals. From a biochemical

point of view, the DNA computer works by sequentially

cutting and joining DNA molecules with the RE FokI and

DNA ligase. These DNA computers represent a class of de-

vices known as nondeterministic finite automata that can

solve simple computational problems. Benenson et al.

(2001) designed and implemented a model of a two-state

two-symbol (Figure 1A) nondeterministic finite state au-

tomaton – the simplest model of a computer (Hopcroft et

al., 2001).
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Conventionally, finite automata (finite state ma-

chines) are used as controllers for electromechanical de-

vices such as automatic doors and supermarket entrances

(Sipser, 2006), as well as for many household devices such

as dishwashers, electronic thermostats, digital watches and

calculators. They can also be used as probabilistic tools to

predict financial market prices and to recognize patterns in

data analysis. Finite automata consist of a control unit

equipped with a reading head and an input tape that, in a fi-

nite state, can read input words built of symbols from a

finite set (called alphabet). The software of a finite automa-

ton consists of transition rules that determine the sequence

of states during computation. In each step, the automaton

reads one symbol to the right of the input word and then

changes its state according to the current transition rule.

The input word is accepted if the automaton is in one of the

final states after reading the whole word. Finite automata

are generally represented in the form of graphs that allow

one to display the relationship between objects (Sipser,

2006). Figure 1B shows an example of a two-state two-

symbol finite automaton A1 in the form of a graph. The state

diagram has two states labeled s0 and s1. The initial (start-

ing) state is s0 – indicated by an arrow pointing to it from

nowhere. The accepted state is s1 and is denoted with a thick

circle. The arrows referred to as transitions show the rela-

tionship between states. When an automaton receives an in-

put string (input word) such as aabab, it first processes this

string and then produces an output to accept or reject. For

example, the input word aabab can be processed by autom-

aton A1 as follows: 1) Start action in state s0. 2) Read first

symbol a from input word and move from state s0 to s0. 3)

Read second symbol a from input word and move from

state s0 to s0. 4) Read symbol b and move from state s0 to s1.

5) Read symbol a from input word and move from state s1

to s1. 6) Read symbol b from input word and move from

state s1 to s1, and finally, 7) Accept input string because au-

tomaton A1 has read the whole input string aabab and is in

accepted state s1.

The biomolecular finite state machine proposed by

Benenson et al. (2001) implemented the above scheme of

computation using molecules and DNA processing pro-

teins. The laboratory implementation of this DNA-based

computer included one restriction enzyme (FokI), DNA

oligonucleotides as transition molecules, input signals and

T4 DNA ligase. The restriction enzyme FokI recognized

the GGATG sequence (all DNA sequences are presented in

the 5’ � 3’ direction, unless stated otherwise) and made an

asymmetrical cut in double-stranded DNA. The automa-

ton’s two symbols (a and b) and terminator t that signals the

end of the word were coded by double-stranded DNA mol-

ecules of six base pairs in length (Figure 2A). Each of the

input molecules had a FokI recognition site and represented

an input word consisting of the symbols a and b. They also

contained flanking sequences to bind the enzyme and to de-

tect the final state of computation. Single stranded over-

hangs produced by FokI in the input molecule represented

not only a symbol, but also a state of the machine (Figure

2B) (Benenson et al., 2001).

The software (transition rules) was coded by DNA

transition molecules (Figure 3B), containing the FokI rec-

ognition sequence, spacers and sticky ends of a length char-

acteristic for FokI. Each of the transition molecules

consisted of four parts that were DNA sequences made of

nucleotides identified as p1, p2, p3 and p4 (Figure 3A). Part

p1 of a transition molecule was single-stranded DNA while

parts p2, p3 and p4 were double-stranded DNA (Figure

3A,B). Each part of the transition molecule was encoded by

a different sequence of nucleotides and had a characteristic

length: k for p1, l for p2, m for p3 and n for p4. The first part,

p1 (a sticky end) of a transition molecule, was complemen-

tary to the single-stranded part of an input molecule and

represented a pair < state, symbol > in a biomolecular finite

automaton. The second part, p2 (a spacer part), allowed

control of the depth of cutting into the input molecule. The

third part, p3 (a restriction site), contained the sequence of

nucleotides specific for a particular endonuclease and en-

abled this restriction enzyme to act. The last part, p4 (an ad-

ditional part), aided ligation of the restriction enzyme to the

whole DNA molecule because long DNA molecules are cut

better by restriction enzymes. Parts p1, p2 and p4 did not

contain the restriction enzyme cleavage site present in part

p3.

In the biomolecular computer described by Benenson

et al. (2001) there were additional elements (detection mol-

ecules) that, in laboratory experiments, recognized the final
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Figure 1 - Finite automata with two states. (A) All possible eight transi-

tion rules for a two-state, two-symbol nondeterministic finite automaton.

Computer programming involved the selection of some of these transition

rules for the initial and final (accepted) states. (B) Graph representing an

example of a two-state, two-symbol finite automaton A1 that accepts

words with at least one symbol “b”.

Figure 2 - An example of an input molecule representing the word aba.

The symbol t in the input word allows the detection of the final product of

computation. (A) and (B) Before and after the first cut with endonuclease



state of computation. These molecules consisted of sticky

ends (AGCG and ACAG, representing the chosen final

states s0 and s1, respectively) and an additional double-

stranded fragment of DNA (the total length in each case be-

ing 161 bp and 251bp, respectively) (Figure 3C).

The finite automaton described above was produced

in the laboratory by incubating FokI, transition molecules,

detection molecules and input molecules in a single tube.

The computation process was initiated by cutting an input

molecule with FokI. In each cycle of the computation pro-

cess, a transition molecule combined with the sticky ends of

an input molecule followed by the sealing of two phospho-

diester bonds by DNA ligase. FokI could then cut within the

next symbol and produce a sticky end representing a new <

state, symbol > pair (Figure 4). This biomolecular com-

puter was limited to two states and used only one restriction

enzyme (FokI). Since the initial description, other modifi-

cations have been incorporated into DNA-based computers

(Unold et al., 2004; Soreni et al., 2005; Chen et al., 2007) to

improve their potential in biomedical sciences (Benenson

et al., 2004; Seelig et al., 2006), including the use of two re-

striction enzymes (Krasinski and Sakowski, 2008;

Krasinski et al., 2013).

Based on these reports, we hypothesized that the

number of states in a DNA-based computer could be ex-

tended by increasing the number of restriction enzymes. To

assess this hypothesis, a set of appropriate transition mole-

cules would need to be constructed. In this study, we devel-

oped all transition rules for 162 transition molecules (Sup-

plementary material Tables S1-S8) in a biomolecular

nine-state, two-symbol nondeterministic finite automaton

M (Figure 5A) with four restriction endonucleases. We de-

scribe the results for the laboratory implementation of a

biomolecular automaton involving four endonucleases

(BaeI, BbvI, AcuI and MboII). While preparing this model,

we noted that the construction of transition molecules was

relatively difficult and required an appropriate method to

rapidly encode the particular transition molecules. We also

present an algorithm for the construction of transition mol-

ecules in biomolecular automata with multiple restriction

enzymes. This algorithm was used to construct a multistate

biomolecular nondeterministic finite automaton with mul-

862 DNA computer

Figure 3 - Transition molecules. (A) The parts of transition molecules. N

indicates nitrogenous bases: A (adenine), T (thymine), G (guanine) and C

(cytosine). (B) All possible transition rules and transition molecules in the

two-state, two-symbol biomolecular automaton presented by Benenson et

al. (2001). (C) Construction of the detection molecules for states s0 and s1.

Figure 4 - Transitions of a biomolecular automaton obtained using one

endonuclease FokI.



tiple commercially available restriction enzymes as hard-

ware.

Materials and Methods

Synthetic DNA

Synthetic DNA sense (�) and antisense (�) oligo-

nucleotides (200 nmol, lyophilized) were produced by

Genomed (Warsaw, Poland). The oligonucleotides were

used to obtain double-stranded DNA molecules of appro-

priate length with sticky ends for software input and output.

An example of the construction of a DNA molecule repre-

senting the input word abba using sense (�) and antisense

(�) oligonucleotides is described in the section ‘Construc-

tion of DNA computer elements’ below.

The oligonucleotide sequences for construction of the

input molecules (input word abba) were abba(�):

5’-AATTCTAACGCGACTAATCAGCATCAGCCGAC

TATATTAGTTGTCATCGC-3’, and abba(�):

5’-GGCCGCGATGACAACTAATATAGTCGGCTGAT

GCTGATTAGTCGCGTTAG-3’. The oligonucleotide se-

quences for the detection molecule were: detect(�):

5’-AATTCGTTTATTAGTTGTCATCGC-3’ and de-

tect(�): 5’-GGCCGCGATG-ACAACTAATAAACG-3’.

The oligonucleotide sequences for the software (transition

molecules) were: T122(�): 5’-AATTACTACTGTA

CCCTAGTTATTAGTTGTCATCGC-3’,

T122(�): 5’-GGCCGCGATGACAACTAATAACT

AGGGTACAGTAGT-3’, T162(�):

5’-AATTGAAGACGCTGATCCACGCCCTACTA

CTGTACCCTGGGGACCCCCCG-3’, T162(�): 5’-GGC

CCGGGGGGTCCCCAGGGTACAGTAGTAGGGCGT

GGATCAGCGTCTTC-3’, T107(�): 5’-AATTCTGAAG

AGCTCGTTAGCTCTCTTC-3’, T107(�): 5’-GGCCGA

AGAGAGCTAACGAGCTCTTCAG-3’, T24(�): 5’-AA

TTGCAGCAGCTCTCATACTTTAGATTGCCTTCAG-

3’, and T24(�): 5’-GGCCCTGAAGGCAATCTAAAGTA

TGAGAGCTGCTGC-3’.

The transition molecules, input molecule and detec-

tion molecule were prepared by annealing pairs of oligo-

nucleotides: abba(�) and abba(�), detect(�) and detect(�),

T122(�) and T122(�), T162(�) and T162(�), T107(�) and

T107(�), and T24(�) and T24(�). Annealed pairs of oligo-

nucleotides had additional sticky ends (AATT and GGCC)

that enabled the insertion of DNA molecules in LITMUS

38i plasmids (see ‘Construction of DNA computer ele-

ments’).

Enzymes

The restriction enzymes AcuI, BaeI, BbvI, MboII,

BtgzI and T4 DNA ligase were obtained from New England

Biolabs (Ipswich, MA, USA). T4 polynucleotide kinase
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Figure 5 - Finite automata with nine states. (A) All possible 162 transition

rules for a nine-state, two-symbol nondeterministic finite automaton. On

each arrow the symbols a and b should be placed. These 162 transition

rules are coded by DNA molecules – see all 162 transition molecules in

Tables S1-S8. (B) Graph showing an example of a four-state, two-symbol

finite automaton M1. State s2 corresponds simultaneously to the initial and

final states. This four-state automaton requires the autonomous action of

four restriction enzymes and alternative splicing by the restriction en-

zymes BaeI, BbvI, AcuI and MboI. (C) An example of a nine-state automa-

ton (s2 – initial state, s1 – final state).



(PNK) was from Fermentas Thermo Scientific (Grand Is-

land, NY, USA).

Chemicals and plasmid vectors

LITMUS 38i plasmids were obtained from Fermentas

Thermo Scientific. Plasmid miniprep kits and gel extrac-

tion kits were from Axygen (Union City, CA, USA). The

Perfect 100 bp DNA ladder was from EurX (Gdansk, Po-

land). This ladder contained 13 bands with fragments sizes

of 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500,

2000 and 2500 bp. For easy reference, the 500 bp and 1000

bp bands are brighter than the other bands in the ladder. All

other chemicals and bacterial media were from Sigma-

Aldrich (St. Louis, MO, USA).

Construction of DNA computer elements

The DNA library was constructed using LITMUS 38i

plasmids as the collection of DNA molecules to represent

the computer elements that had been stored and propagated

in Escherichia. coli. Briefly, single-stranded oligonucleo-

tides labelled according to the represented components of

the automaton (the input word, detection molecule and

transition molecules) were phosphorylated and annealed

(by heating and slowly lowering the temperature) to form

double-stranded DNA fragments. The oligonucleotide

mixture was mixed with a larger fragment of LITMUS 38i

plasmid digested with EcoRI and EagI. After overnight li-

gation with 40 U of T4 ligase, the ligase reaction mixture

was used to transform E. coli strain DH5-� (F– �80

lacZ�M15 �(lacZYA-argF) U169 recA1 endA1 hsdR17

(rK-, mK+) phoAsupE44 �-thi-1 gyrA96 relA1) by the heat

shock method. After DNA analysis of the colonies, the best

clone was chosen and used for large scale DNA preparation

with a plasmid prep kit (Axygen), according to the manu-

facturer’s instructions. Prior to the experiment, the appro-

priate automaton DNA components were obtained by PCR

followed by RE digestion. We used REs to form appropri-

ate “coding” DNA ends (AcuI, BaeI, BtgZI and MboII) and

Taq polymerase to form the second, “non-coding” (in terms

of automaton) DNA ends that contained A overhangs at the

3-end. Each DNA molecule thus had one coding end that

was complementary to some DNA transition molecules and

one non-coding end that was incompatible with any other

DNA molecules in the assay tube. This procedure elimi-

nated the possibility of accidental, random joining of DNA

automaton molecules. All molecules were purified by gel

extraction prior to the experiments.

We illustrate the above scheme with a concrete exam-

ple, including the method used to prepare the DNA mole-

cule representing the input word abba:

Step 1: Sense (�) and antisense (�) oligonucleotides representing input word abba were placed in the assay tube.

Sense oligonucleotide:

abba (�) : 5’-AATTCTAACGCGACTAATCAGCATCAGCCGACTATATTAGTTGTCATCGC-3’

Antisense oligonucleotide:

abba (�) : 3’-GATTGCGCTGATTAGTCGTAGTCGGCTGATATAATCAACAGTAGCGCCGG-5’

Step 2: Pairs of oligonucleotides [abba(�) and abba(�)] were annealed to obtain double-stranded DNA fragments

with additional sticky ends (AATT and GGCC) that enabled the insertion of DNA molecules into LITMUS 38i plasmids.

abba (�) : 5’-AATTCTAACGCGACTAATCAGCATCAGCCGACTATATTAGTTGTCATCGC-3’

abba (�) : 3’-GATTGCGCTGATTAGTCGTAGTCGGCTGATATAATCAACAGTAGCGCCGG-5’

Step 3: Double-stranded DNA fragments were cloned into LITMUS 38i plasmids (digested with EcoRI and EagI).

Step 4: The LITMUS 38i plasmids were subsequently propagated in E. coli.

Step 5: PCR was used to obtain many copies of intermediate DNA molecules (with A overhangs at the 3-end).

Step 6: The restriction enzyme (BtgzI) was used to form an appropriate “coding” (in relation to the automaton) DNA

end.

Finally, we obtained the input word abba:

200 bp-AATTCTAACGCGACTAATCAGCATCAGCCG

A-200 bp-TTAAGATTGCGCTGATTAGTCGTAGTCGGCTGAT

864 DNA computer



PCR reaction

DNA molecules for the computer were obtained by

PCR using a Perpetual OptiTaq PCR master mix (Eurx) in

conjunction with the primers shown in Table 1. The PCR

mixture (25 �L) consisted of 1.25 U of Perpetual OptiTaq

DNA polymerase, 1x reaction buffer (1.5 mM MgCl2), 0.2

mM of each dNTP and 0.5 �M of upstream and down-

stream primer. The PCR conditions were as follows: initial

denaturation step at 95 ºC for 3 min, 30 cycles of 95 ºC for

30 s, 60 ºC (annealing temperature) for 30 s and 72 ºC for 30

s, and a final extension step at 72ºC for 5 min. PCR was

done in a model PTC-100 thermal cycler (MJ Research

Inc., Waltham, MA, USA). The PCR products were subse-

quently digested with an appropriate RE and the samples

then run on 2% agarose gels and stained with ethidium bro-

mide (0.5 �g/ml).

Transition molecules were prepared with primer_2

and primer_3 and had a final length (after digestion with

RE and gel purification) of ~110 bp. The detection mole-

cule was prepared with primer_2 and primer_4 and had a

final length of 404 bp. The word molecule was prepared

with primer_5 and primer_6 and had a final length of 230

bp.

Computation reactions

Autonomous and programmable cleavage of DNA

molecules by the four endonucleases was observed in

one test tube. This reaction was run for 2 h in CutSmart

buffer (New England Biolabs) supplemented with

S-adenosylmethionine at 37 ºC. The reaction tube con-

tained a set of DNA fragments representing the input

molecules, transition molecules and detection mole-

cules, 1 U of each enzymes and 40 U of T4 DNA ligase.

The reaction product was purified with phenol, chloro-

form and izoamyl alcohol (25:24:1, v/v), precipitated

with ethanol and separated by electrophoresis on a 2%

agarose gel. The control sample was similar to the test

samples except for the absence of REs and ligase. The re-

actions started with ligation of the transition molecule

with an input word. After the cyclic reactions of diges-

tion followed by ligation, a final DNA fragment (the rest

of the input molecule) joined to the detection molecule

yielded a 614 bp DNA fragment that was detected by

agarose gel electrophoresis.

Results and Discussion

An algorithmic method for the construction of
transition molecules

The issue of how to effectively construct transition

molecules in biomolecular finite automata is complex and

becomes more difficult when several restriction enzymes

are used. To address this problem, the paper’s first author

developed an algorithm to construct transition molecules in

biomolecular automata with multiple restriction enzymes,

as described below.

The main idea of this general method relies on divid-

ing the set of states Q of finite automaton M into disjoint

subsets of states Qi 	 Q (Figure 6) and assigning only one

restriction enzyme ei 
 E (where E={e1,...,er} is the set of

restriction enzymes) to each Qi in the following way. Any

transition rule with the target state s in Qi is achieved by the

enzyme ei. The source state may be arbitrary state s in Q

(Figure 7A).
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Figure 6 - Schematic illustration of the method. The method relies on di-

viding the set of Q states of a finite automaton M into disjoint subsets of

states and assigning only one restriction enzyme to a particular subset.

Figure 7 - Transition rule and molecule. (A) A transition rule from the

source state to the target state. (B) and (C) Construction of a type 1 and

type 2 transition molecule, respectively.

Table 1 - PCR primers used in this study.

Name Sequence (5’-3’)

Primer_2 CGTGGCTAGCGGGAAG

Primer_3 ACCATGATTACGCCAAGCTA

Primer_4 AGGAGAGCGCACGAGGGA

Primer_5 CTCACTCATTAGGCACCC

Primer_6 TGCTGCAAGGCGATTAAGTT



This approach generates two types of transition mole-

cules:

Type 1 - a transition from any state in subset Qi to any

state in the same subset Qi is implemented by a transition

molecule that satisfies the following conditions: part p3 (re-

striction site) of a transition molecule is characteristic of

endonuclease ei and part p1 (sticky end) has length ki char-

acteristic for the same endonuclease ei (Figure 7B).

Type 2 - a transition from any state in subset Qj to any

state of subset Qi, i � j, is implemented by a transition mole-

cule that satisfies the following conditions: part p3 (restric-

tion site) of a transition molecule is characteristic of endo-

nuclease ei and part p1 (sticky end) has length kj

characteristic for endonuclease ej (Figure 7C).

Part p2 (spacer part) of the transition molecule allows

control of the depth of cutting into the input molecule and

its length l depends on the state of the biomolecular autom-

aton in which we want to transit after reading the next sym-

bol of the input word. The calculation of l is a simple

arithmetical task that involves the length of the codes in the

input molecules and the distances from the restriction site

in the given endonuclease. Part p4 is of fixed length n for all

transition molecules and its length depends on biochemical

reactions.

This method has an additional property that relies on

the possibility of expanding the number of states in a given

model of finite automata (for instance, from a six-state to a

nine-state automaton). The addition of a new restriction en-

zyme er+1, while leaving the actual transitions unchanged,

allows to add new states (which form a new set Qr+1), and to

construct new transition molecules (from states of Qr+1 and

to states of Qr+1) according to two types of transition mole-

cules: Type 1 and Type 2.

A multistate finite automaton with multiple restriction
enzymes

The algorithmic method described above allows the

construction of transition molecules for a given model of

biomolecular automata by using multiple endonucleases.

As the main application of this method, we decided to con-

struct an optimal version for codes of symbols that were six

base pairs in length. The model of a six-state nondetermi-

nistic finite automaton (Krasinski and Sakowski, 2008)

with two endonucleases (BbvI, AcuI) (Figure 8B,C) was ex-

tended to a nine-state nondeterministic finite automaton M

(162 transition molecules are presented in Tables S1-S8) by

including the REs BaeI and MboII (Figure 8A,D). These

REs produce four sticky ends of lengths k1=5, k2=4, k3=2

and k4=1. The two symbols (a and b) are encoded by dou-

ble-stranded DNA molecules of six base pairs in length

(Figure 9). By using the procedure described by Krasinski

et al. (2013), we could calculate the maximal number of

states p with the formula: p = n – k + 1 (where n is the length

of symbol codes and k is the length of the sticky ends). For

example, if we use only one RE with k1=5, a maximum of

two states can be achieved. To create more states (up to

nine) four REs that produce four different sticky ends are

required.

Using the method described here, we divided the set

of nine states Q into four disjoint subsets of states:

Q1={s0,s1,s2}, Q2={s3,s4,s5}, Q3={s6,s7} and Q4={s8}. To

each subset we assigned only one restriction enzyme: BbvI

to subset Q1, AcuI to subset Q2, BaeI to subset Q3 and MboII

to subset Q4. We distinguished two types of transition mol-

ecules: Type 1 – those with sticky ends of a length charac-

teristic for the endonuclease that were assigned to a particu-

lar subset and Type 2 – those with sticky ends of a length

not characteristic for the endonuclease that were assigned

to a particular subset. All possible transition molecules for

the biomolecular nondeterministic nine-state two-symbol

finite automaton are shown in Supplementary material Ta-

bles S1-S8.

Experimental assessment of the automaton with
multiple restriction enzymes

We tested the action of automaton M1 in Figure 5B by

running it on the accepted input word abba. These experi-

ments focused on the key automaton element that is essen-

tial to the action of automata, namely, the autonomous and

alternating action of four REs (Figure 9). If a sticky end

CGTT is obtained in terminator t of the input word then the

detection molecule will ligate to the input molecule. Since

the detection molecule had no restriction sequence charac-

teristic for any of the REs, DNA molecules 614 bp long

were obtained (the previous steps produced much shorter

fragments, as seen in Figures 9 and 10). Detection of the

614 bp fragment in gel electrophoresis indicated the accep-

866 DNA computer

Figure 8 - The action of restriction enzymes (A) BaeI, (B) BbvI, (C) AcuI

and (D) MboII. Y indicates a pyrimidine whereas R indicates a purine.



tance of the input word by the automaton. The positive re-

sult of our experiment (Figure 10) proved that a multistate

biomolecular automaton may act with four endonucleases.

Based on this experiment, we conclude that it is possible to

construct more complex finite automata using several re-

striction enzymes.

The general scheme for preparing the automaton

components differed from that of Benenson et al. (2001,
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Figure 9 - Schematic diagram of the laboratory implementation of automaton M1 using four endonucleases (BaeI, MboII, AcuI and BbvI) on the word

abba. The transition molecules allow alternating and autonomous cleavage of DNA molecules that represent the input molecule. A detector is required for

recognition of the final product of computation.



2003). Based on our approach, we propose to build a “DNA

library”, a collection of DNA molecules representing com-

puter elements that is stored and propagated in a population

of E. coli through molecular cloning. Once prepared, the

DNA molecules can be used at a later stage. Figure 11 sum-

marizes the procedures for obtaining the various computer

components.

Conclusions and perspectives

The main problem with the DNA computer con-

structed by Ehud Shapiro’s group at the Weizmann Insti-

tute of Science was its complexity. Scaling up their DNA

computer was limited by the number of states. For this rea-

son, we focused our efforts on trying to build a more com-

plicated DNA computer – a multistate finite automaton.

Endonucleases such as FokI (with four sticky ends) allow

the construction of a DNA computer with at most three-

states. This is a sufficient size for analysis of the five genes

of small-cell lung cancer (Benenson et al., 2004), although

cancers are often caused by many more genes (frequently >

5). In this case, our biomolecular computer with multiple

restriction enzymes could be useful for studying cancers

caused by multiple genes.

The results described here show that it is possible to

construct a biomolecular computer with multiple endo-

nucleases and that this computer can act autonomously in a

wet lab. Our model can be used to calculate certain algo-

rithms, such as for vending machines that require a nine-

state option for their solution automaton; this complexity

cannot be dealt with using the two-state automaton de-

scribed by Ehud Shapiro’s group. To a large extent, the

complexity of computation with biomolecular finite autom-

ata is limited by the complexity of finite state machines that

can typically only calculate simple algorithms (in polyno-

mial time).

To prove the feasibility of our theoretical model in the

wet lab we have presented the results of the laboratory im-

plementation of a finite automaton with multiple endo-

nucleases (BbvI, AcuI, BaeI and MboII). These experiments

focused on the key element essential to the action of autom-

ata, namely, the autonomous and alternating action of mul-

tiple (four) endonucleases in one test tube. One of the

endonucleases (BaeI) cuts double-stranded DNA mole-

cules in both directions (to the left and right). Our experi-

ments provide a new way of using endonucleases that cut

DNA molecules in both directions, thereby allowing the

implementation of more powerful computational devices,

e.g., pushdown automata.

The algorithmic method described here for the con-

struction of transition molecules in biomolecular automata

with multiple restriction enzymes is an ad hoc approach to
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Figure 10 - Experimental testing of automaton M1 running on the accepted

word abba. The final product of computation was 614 bp long (see Figure

9). Abbreviations: 1 – the result of computation using four endonucleases

and DNA ligase. 2 – the result of computation without the endonucleases

and ligase (control experiments). M – 100 bp DNA ladder. Final product

(614 bp) – DNA molecule that represented termination of the computa-

tional process in the final state s2. Detector (404 bp) – DNA molecule that

recognized the final state of computation. Intermediate products (~360 bp)

– intermediate DNA molecule formed during the biochemical reaction. In-

put word abba (230 bp) – DNA molecule that represented the word abba.

Transitions (~120 bp) – DNA molecule that represented transition mole-

cules.

Figure 11 - A general scheme for preparing all the automaton components

(input, transition, and detection molecules).



assembling multiple restriction enzymes for the construc-

tion of biomolecular computers. This method allows the

rapid construction of the main element (transition mole-

cules) of a biomolecular finite automaton and can be used

in the future to construct other computational models, e.g.,

pushdown automata or Turing machines made of biomo-

lecules. An additional interesting property of this model is

the possibility of increasing the number of states in the pre-

viously prepared model by adding restriction enzymes and

appropriate encoding of the transition molecules. As an ex-

ample of this approach, all transition molecules for a nine-

state finite state automaton were encoded using commer-

cially available restriction enzymes.

The model described here provides a basis for con-

structing other computational models that can be used to

solve a variety of problems, such as the biomolecular Tu-

ring machines with the use of the endonuclease BaeI.
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Supplementary material

The following online material is available for this article:

Table S1 – Transition molecules for the subset of states

Q1={s0,s1,s2} - Type 1

Table S2 – Transition molecules for the subset of states

Q1={s0,s1,s2} - Type 2

Table S3 – Transition molecules for the subset of states

Q2={s3,s4,s5} - Type 1

Table S4 – Transition molecules for the subset of states

Q2={s3,s4,s5}- Type 2

Table S5 – Transition molecules for the subset of states

Q3={s6,s7} - Type 1

Table S6 – Transition molecules for the subset of states

Q3={s6,s7}- Type 2

Table S7 – Transition molecules for the subset of states

Q4={s8} - Type 1

Table S8 – Transition molecules for the subset of states

Q4={s8} - Type 2

Comments to Supplementary Tables S1–S8

In all tables (Table S1 to S8), we present only impor-

tant relevant parts (parts p1 and p3 – Figure 3A) of transition

molecules. In practice, transition molecules were com-

pleted using fragments of the LITMUS 38i plasmid at-

tached to the left-hand side (part p4 – Figure 3A) and by a

sequence of nucleotide substitutions within block N (part p2

– Figure 3A). Each of the transition molecules contained A

overhangs at the 3-end that remained after Taq polymerase

action (PCR) used to construct each molecule. An example

of a completed transition molecule from Table S1 (No. 1) is

presented below.

1. Transition molecule T1 from Table S1 (No. 1, T1:):
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5’-GCAGCNN -3’

3’-CGTCGNNCAGC-5’

2. A completed transition molecule T1 – with parts p2

and p4:

5’- 100 bp AATTGCAGCCT -3’

3’-A 100 bp TTAACGTCGGACAGC-5’
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