
EC
O

N
O

M
IC

SC
IE

N
CE

S

The association of opening K–12 schools with the
spread of COVID-19 in the United States: County-level
panel data analysis
Victor Chernozhukova,b,1 , Hiroyuki Kasaharac,1,2 , and Paul Schrimpfc,1

aDepartment of Economics, Massachusetts Institute of Technology, Cambridge, MA 02142; bCenter for Statistics and Data Science, Massachusetts Institute
of Technology, Cambridge, MA 02139; and cVancouver School of Economics, University of British Columbia, Vancouver, BC V6T1L4, Canada

Edited by Ariel S. Pakes, Department of Economics, Harvard University, Cambridge, MA, and approved August 3, 2021 (received for review February 20,
2021)

This paper empirically examines how the opening of K–12 schools
is associated with the spread of COVID-19 using county-level
panel data in the United States. As preliminary evidence, our
event-study analysis indicates that cases and deaths in counties
with in-person or hybrid opening relative to those with remote
opening substantially increased after the school opening date,
especially for counties without any mask mandate for staff. Our
main analysis uses a dynamic panel data model for case and
death growth rates, where we control for dynamically evolving
mitigation policies, past infection levels, and additive county-
level and state-week “fixed” effects. This analysis shows that an
increase in visits to both K–12 schools and colleges is associated
with a subsequent increase in case and death growth rates. The
estimates indicate that fully opening K–12 schools with in-person
learning is associated with a 5 (SE = 2) percentage points increase
in the growth rate of cases. We also find that the association of
K–12 school visits or in-person school openings with case growth
is stronger for counties that do not require staff to wear masks
at schools. These findings support policies that promote masking
and other precautionary measures at schools and giving vaccine
priority to education workers.

K–12 school openings | in-person, hybrid, and remote | mask-wearing
requirements for staff | foot traffic data | debiased estimator

Does opening K–12 schools lead to the spread of COVID-
19? Do mitigation strategies such as mask-wearing require-

ments help reduce the transmission of severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) at school? These
are important policy-relevant questions in countries with low
vaccination rates, especially given the emerging variants of con-
cern with higher transmission rates. If in-person school openings
substantially increase COVID-19 cases, then local governments
could promote mitigation measures at schools (universal and
proper masking, social distancing, and handwashing) to lower the
risk of COVID-19 spread. Furthermore, the governments could
prioritize vaccines for education workers and elderly parents in
the case of in-person school openings. This paper uses county-
level panel data on K–12 school opening plans and mitigation
strategies together with foot traffic data to investigate how an
increase in visits to K–12 schools is associated with a subsequent
increase in COVID-19 cases in the United States.

Data
We begin with describing our data and provide descriptive evi-
dence. Our sample period is from 1 April 2020 to 2 December
2020. Our analysis uses county-level panel data in the United
States. As outcome variables, we use weekly cases and deaths
as well as their growth rates. The main explanatory variables of
interest are school openings with different teaching methods and
mitigation measures from MCH Strategic Data and per-device
visits to K–12 schools from SafeGraph foot traffic data. We also
use the foot traffic data on stay-at-home devices and visits to

full-time/part-time workplaces, colleges/universities, restaurants,
bars, recreational facilities, and churches. Our panel regression
analysis uses additional data on nonpharmaceutical policy inter-
ventions (NPIs) and the number of tests.

The data on cases and deaths for each county are from The
New York Times (NYT) (1). SafeGraph provides foot traffic
data based on a panel of global positioning system pings from
anonymous mobile devices. Per-device visits to K–12 schools,
colleges/universities, restaurants, bars, recreational places, and
churches are constructed from the ratio of daily device visits
to these point-of-interest locations to the number of devices
residing in each county. Full-time and part-time workplace visits
are the ratio of the number of devices that spent more than 6 h
and between 3 and 6 h, respectively, at one location other than
one’s home location to the total number of device counts. The
staying-home device variable is the ratio of the number of devices
that do not leave home locations to the total number of device
counts.

MCH Strategic Data (2) provides information on the date
of school openings with different teaching methods (in person,
hybrid, and remote) as well as mitigation strategies at 14,703
school districts. We link school district-level MCH data to the
county-level data from NYT and SafeGraph using the file for
School Districts and Associated Counties from the US Census

Significance

This paper examines whether the opening of K–12 schools
may lead to the spread of COVID-19. Analyzing how an
increase of COVID-19 cases is related to the timing of opening
K–12 schools in the United States, we find that counties that
opened K–12 schools with in-person learning experienced an
increase in the growth rate of cases by 5 percentage points
on average, controlling for a variety of policies, past infection
rates, and other factors. This association of K–12 school visits
with case growth is stronger when mask wearing is not
mandated for staff at school. These findings support policies
that promote masking and other precautionary measures at
schools and giving vaccine priority to education workers.
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Table 1. Summary statistics

Wkly case Wkly death Wkly cases Wkly deaths K–12 sch. Workplace Restaurant
growth growth per 1,000 per 1,000 visits visits visits

In person
Before opening
Mean 0.091 0.013 0.571 0.060 0.045 0.047 0.185

(0.011) (0.003) (0.031) (0.003) (0.002) (0.001) (0.007)
N 52,258 52,258 54,995 54,995 67,070 67,070 67,070
After opening
Mean 0.143 0.034 3.038 0.104 0.161 0.073 0.188

(0.014) (0.006) (0.200) (0.005) (0.005) (0.001) (0.006)
N 45,749 45,749 45,827 45,827 46,030 46,030 46,030

Difference in means 0.052 0.021 2.467 0.044 0.116 0.026 0.003
(0.018) (0.007) (0.203) (0.004) (0.004) (0.001) (0.004)

Hybrid
Before opening
Mean 0.096 0.024 0.664 0.035 0.036 0.045 0.242

(0.012) (0.006) (0.031) (0.001) (0.001) (0.0004) (0.005)
N 234,820 234,820 243,321 243,321 260,573 260,551 260,573
After opening
Mean 0.121 0.042 2.368 0.057 0.126 0.064 0.249

(0.012) (0.006) (0.132) (0.002) (0.003) (0.001) (0.004)
N 166,605 166,605 166,660 166,660 167,206 167,206 167,206

Difference in means 0.025 0.019 1.703 0.022 0.090 0.019 0.007
(0.016) (0.008) (0.136) (0.002) (0.003) (0.001) (0.004)

Remote
Before opening
Mean 0.099 0.035 0.742 0.032 0.032 0.045 0.278

(0.012) (0.008) (0.035) (0.002) (0.001) (0.0004) (0.008)
N 76,796 76,796 78,581 78,581 82,165 82,165 82,165
After opening
Mean 0.103 0.033 1.944 0.047 0.088 0.058 0.287

(0.012) (0.009) (0.115) (0.003) (0.003) (0.001) (0.007)
N 50,127 50,127 50,048 50,048 50,183 50,183 50,183

Difference in means 0.004 –0.002 1.202 0.015 0.056 0.013 0.009
(0.017) (0.012) (0.120) (0.002) (0.003) (0.001) (0.006)

Statistics are based on observations from 15 April 2020 to 2 December 2020. SEs that are two-way clustered on county and date are reported in parentheses.
Wkly, weekly; sch., school.

Bureau. School district data are aggregated up to county level
using the enrollment of students at each district. Specifically,
we construct the proportion of students with different teaching
methods for each county-day observation using the district-level
information on school opening dates and teaching methods. We
define each teaching method’s county-level school opening date
by the weighted mean of district-level school opening dates of the
corresponding teaching method with enrollment weights. We also
construct a county-level dummy variable of “no mask require-
ment for staff,” which takes a value of 1 if there exists at least one
school district with no mask requirement. The measure of mask
requirements for staff is highly correlated with other mitigation
measures, including mask requirements for students, prohibiting
sports activities, and online instruction increases as shown in
SI Appendix, Table S3.* A substantial fraction of school districts
report “unknown” or “pending” for teaching methods and mask
requirements. We drop county observations from the sample if
more than 50% of students attend school districts that report
unknown or pending teaching methods or mask requirements

*MCH Strategic Data provides the school district-level data on whether each school
district adopts the following mitigation strategies: 1) mask requirements for staff, 2)
mask requirements for students, 3) prohibiting sports activities, and 4) online instruction
increases, among other measures. We decided to use mask requirements for staff as the
primary variable for the school mitigation strategy because it has a lower number of
missing values than other mitigation measures.

for panel regression analysis with teaching methods or mask
requirements.

Our empirical analysis uses 7-d moving averages of daily
variables to deal with periodic fluctuations within 1 wk.
SI Appendix, Fig. S4 shows the evolution of percentiles of these
variables over time, while SI Appendix, Tables S1 and S2 present
descriptive statistics and correlation matrix across variables
we use for our regression analysis. The dataset contains the
maximum of 3,144 counties for regression analysis using foot
traffic data but some observations are dropped out of samples
due to missing values for school opening teaching methods and
staff mask requirements in some specifications.† The analysis was
conducted using R software (version 4.0.3).

Table 1 reports the means for the growth rate of weekly con-
firmed cases and deaths measured by the log difference over 7
d in reported weekly cases/deaths, where the log of weekly cases
and deaths is set to be −1 when we observe zero weekly cases
and deaths; weekly cases and deaths per 1,000; and per-device
visits to K–12 schools, workplaces, and restaurants by teaching
methods and separately for periods before and after K–12 school
openings. SEs for the means that are two-way clustered on county

†Our regression analysis uses 2,788 counties for specification with K–12 school opening
with different teaching modes, while the sample contains 2,204 counties for specifica-
tion with mask requirements for staff.
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Fig. 1. The evolution of cases, deaths, and visits to K–12 schools and restaurants before and after the opening of K–12 schools. A and B plot the evolution of
weekly cases or deaths per 1,000 persons averaged across counties within each group of counties classified by K–12 school teaching methods and mitigation
strategy of mask requirements against the days since K–12 school opening. We classify counties that implement in-person teaching as their dominant
teaching method into “in-person/yes-mask” and “in-person/no-mask” based on whether at least one school district requires staff to wear masks or not.
Similarly, we classify counties that implement hybrid teaching into “hybrid/yes-mask” and “hybrid/no-mask” based on whether mask-wearing is required for
staff. We classify counties that implement remote teaching as “Remote.” C and D plot the evolution of the 7-d average of per-device visits to K–12 schools
and full-time workplaces, respectively, against the days since K–12 school opening using the same classification as in A and B.

and date are reported in parentheses. Here and in the event-study
analysis, we classify counties into three groups (in person, hybrid,
and remote) by the dominant teaching method under which the
highest proportion of students are learning within a county.

The school opening dates spread from the beginning of
August to late September across counties, where hybrid
teaching is more common than remote or in-person teaching
(SI Appendix, Fig. S4K). Reflecting the steady increase in cases
from late September to November of 2020 in the United States
(SI Appendix, Fig. S4B), the growth rates of cases and deaths, as
well as the number of weekly confirmed cases and deaths, are
higher in the period after the school opening compared to the
period before. As shown in Table 1, this rise in cases and deaths
after the school opening is more pronounced in the counties with
in-person or hybrid teaching than in those with remote teaching.
K–12 school and workplace visits are also higher after the school
openings than before, especially for counties with in-person and
hybrid school openings. On the other hand, mean per-device
restaurant visits do not change much before and after the school
opening, regardless of teaching methods.

Fig. 1 provides visual evidence for the association of opening
K–12 schools with the spread of COVID-19 as well as the role of
school mitigation strategies. Fig. 1 A and B plots the evolution of
average weekly cases and deaths per 1,000 persons, respectively,
against days since school opening for different teaching methods
and mask requirements for staff. In Fig. 1A, the average number
of weekly cases starts increasing after 2 wk of opening schools
in person or hybrid for counties with no mask mandates for
staff, possibly suggesting that mask mandates at school reduce
the transmissions of SARS-CoV-2. In Fig. 1B, the number of
deaths starts rapidly increasing after 3 to 5 wk of opening schools
for counties that adopt in-person/hybrid teaching methods with
no mask mandates. Alternative mitigation strategies of requiring
mask wearing for the student, prohibiting sports activities, and

promoting online instruction also appear to help reduce the
number of cases after school openings (SI Appendix, Fig. S5 I–P).

Fig. 1C shows that opening K–12 schools in person or hybrid
increases the 7-d averages of per-device visits to K–12 schools
more than opening remotely, especially when no mask mandates
are in place. Fig. 1D and SI Appendix, Fig. S5 E and F show that
visits to full-time and part-time workplaces increase after school
openings with in-person teaching, suggesting that the opening of
schools allows parents to return to work.‡ On the other hand,
we observe no drastic changes in per-device visits to restau-
rants, recreational facilities, and churches after school openings
(SI Appendix, Fig. S5 B–D).

A Preliminary Event-Study Analysis
As a matter of preliminary data analysis, we further investigate
how cases and deaths change over time after school openings
by an “event-study” analysis (e.g., refs. 3–5). We divide the
sample into three subsamples, where each subsample contains
the observation with similar school opening dates. Then, for each
of the subsamples, we run the following regression with weekly
dummies of leads and lags for three school opening modes (i.e., in
person, hybrid, and remote) with county fixed effects but without
time fixed effects:

Yit =
∑

p∈P

22∑

w=−8

γp
wD

p
τ ,it + αi + εit , [1]

‡Although the workplace visits appear to start increasing before school opens in Fig. 1D,
this reflects a measurement error about school opening dates as well as the use of the
7-d average visits. SI Appendix, Fig. S6D shows that a sharp increase in the daily visits
to workplaces happens only on the day of school openings without any increase before
for a subset of counties such that the school opening date is the same across all school
districts within a county.
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Fig. 2. The event-study regression estimates before and after the school opening. Plots show the estimated coefficients for weekly dummies of leads and
lags in regression specification 1 with 95% confidence intervals for three subsample periods.

where Yit is the number of weekly confirmed cases/deaths per
1,000, Dp

τ ,it takes the value equal to 1 if school has been open for
τ weeks (or will be open after −τ weeks if τ < 0) with teaching
method p ∈ P := {in-person, hybrid, remote} in county i at day
t. The αi represents a county-specific baseline mean from the
beginning of the sample to the 9 wk before the school opening.
We consider the event window of 8 wk before the school opening
and a maximum of 22 wk after the school opening, where the lag
windows are different across subsamples given that our sample
ends on 2 December 2020.

Fig. 2 graphs the estimated coefficients over time with 95%
confidence intervals with SEs clustered by counties: The first
subsample uses county observations that opened schools before
23 August 2020, the second one consists of the counties that
opened schools between 24 August and 6 September, and the
third one uses the counties with school opening dates after 7
September 2020. The results illustrate that the gap in weekly
cases/deaths per 1,000 between remote opening and full/hybrid
opening grows over time after the school opening date for all
three subsamples.

We also estimate the time-varying predictive effect of in-
person or hybrid school openings, as well as that of no mask
mandates for staff, relative to remote openings by the estimation
method of ref. 3 using their did R package. We define a group by
a set of counties with the same school opening date and then
estimate the group-time specific average predictive effect of
in-person or hybrid opening using the “never-exposed units”
and “not-yet-exposed units” as the controls while excluding
the “already-exposed units” from the control group. Here,
we take the counties with the remote opening plan as the

never-exposed-units.§ Because almost all counties opened their
schools by late September, the estimated predictive effect for the
lags primarily reflects the predictive effect of in-person or hybrid
openings relative to the counties with remote openings rather
than the counties that had not opened schools yet. We report
estimates for the average of the group-time specific average
predictive effects of in-person or hybrid opening against remote
opening across groups with different school opening dates. The
predictive effects can be causally interpretable as “exposure
(treatment) effect” for the exposed group under the group-by-
group parallel trend assumption (3) on counterfactual outcomes
in the unexposed state (importantly, please see the discussion
below for limitations of interpreting such effects as “actionable”).

Fig. 3 presents the estimated group-time average predictive
effects with 95% simultaneous confidence intervals. Fig. 3 A–H
shows that cases and deaths in counties with in-person or
hybrid openings relative to those with remote openings increase
after school openings; furthermore, these increases are more
pronounced for counties without any mask mandate for staff
in Fig. 3 C, D, G, and H. Fig. 3 I–P similarly indicates that
the log of weekly cases and deaths in counties with in-person
or hybrid openings gradually increases after the school opening
date, especially for counties with no mask mandates. In Fig. 3 I–P,

§As discussed in refs. 4 and 5, the canonical linear two-way fixed effects (TWFE) regres-
sions with both time fixed effects and unit fixed effects may lead to a biased estimator
for the “exposure” effect when exposure timings differ across units and, at the same
time, the “exposure effects” evolve over time. The bias arises because the exposure
effect estimate under TWFE regression partly relies on the wrong control units that
have already been exposed to treatment under the staggered treatment design.
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Fig. 3. The average treatment estimates obtained using the difference-in-differences (DID) method from Callaway and Sant’Anna (3). A plots the estimates
and 95% simultaneous confidence intervals of the average dynamic treatment effect of in-person openings relative to the counties with remote openings
as well as the counties that have not opened yet on cases per 1,000 using a subset of counties with either in-person opening or remote opening, where
we use the estimation method of ref. 3 implemented by their did R package. Similarly, B–D plot the estimates of the average dynamic treatment effect
of school opening with hybrid, in-person/mask mandates and hybrid/mask mandates teaching methods, respectively, using a subset of counties with the
corresponding teaching method as well as remote opening. E–H, I–L, M–P, Q–T, and U–X report the estimates of the average dynamic treatment effect on
deaths per 1,000, log(cases), log(deaths), per-device visits to K–12 schools, and per-device visits to full-time workplaces, respectively.

the estimates in the preexposure period are flat and not
statistically different from zero, consistent with parallel trend
assumption.

Consistent with the findings in Fig. 1 C and D, Fig. 3 Q–X shows
that visits to K–12 schools and full-time workplaces increase
after the opening of schools in counties with in-person/hybrid
teaching relative to those with remote teaching. In contrast,
SI Appendix, Fig. S5 indicates no evidence for the association of
the school opening date with visits to restaurants, bars, recre-
ational facilities, and churches, suggesting that other unobserved
county-level confounders that affect people’s mobilities to these
places (e.g., lockdown policies) may not be systematically related

to the timing of school opening, teaching modes, and mitigation
measures.

Our finding is consistent with that in ref. 6, which examines
the data from a massive online survey and finds the association
between in-person schooling and COVID-19–related outcomes
across counties and the importance of school-based mitigation
measures for reducing transmission risks in the United States.
In contrast, using an event-study design, refs. 7 and 8 find no
evidence that fully opening schools increased case number within
the 3 to 4 wk of school openings in Germany. One possible reason
for these contradictory findings is that the mitigation measures
in German schools may have been more effective in containing
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in-school transmissions than the measures adopted by the US
schools with in-person openings. Another important source of
the difference is that the event window length of 3 to 4 wk in refs.
7 and 8 may be too short to identify the effect of school openings
on the confirmed cases because asymptomatic, undetected cases
are prevalent among children (9).

While our event-study analysis provides valuable preliminary
evidence on the predictive links between school reopenings and
subsequent increases in infection rates, there are several im-
portant limitations in terms of assumptions and interpretation.
First, the parallel trend assumption required for causal inter-
pretation of the predictive results might be at odds with the
implications of the main epidemiological models that the spread
of cases is highly nonlinear (10), with the current number of
cases dynamically depending on the number of past infected
individuals. Second, the transmission itself is influenced by other
containment policies and people’s voluntary behavioral changes
in response to information about infection levels (11). If other
mitigation policies respond to past infection levels, the predictive
effects derived from the event-study analysis may not capture
the “direct causal” effects (i.e., effects that hold other policies
and other state variables fixed) of the target school-reopening
policies, but rather the “total effect” for the exposed group.
This makes it difficult to generate actionable policy insights. For
instance, in an extreme case, the total effect may be zero because
other mitigation policies completely offset the effect of the target
policy. Therefore, in such cases, one may mistakenly conclude
that the target school-reopening policy is “safe” and should be
implemented regardless of the other policies. Therefore, the
results from event-study analysis need to be interpreted very
cautiously, even if the parallel trend assumption holds.

Main Analysis: Dynamic Panel Regression Model
Motivated by the previously outlined limitations of the simple
event-study design, we pursue an alternative dynamic panel data
approach. We analyze the predictive effect of opening K–12
schools on case growth rates by panel data regression under the
dynamic unconfoundedness assumption, where a specification
is motivated by the susceptible-infectious-recovered-deceased
(SIRD) model.

We emphasize at the outset and in Limitations that, while
the motivation for this modeling is to approximate the causal
effects of policies, holding other policies and other state variables
fixed, the approach is based on observational (nonexperimental)
data, and therefore the results should be interpreted with great
caution. From a completely agnostic point of view, our results
can be seen as uncovering predictive effects of in-person/hybrid
school reopenings on case and death growth rates, controlling
linearly for other policies, past infection levels, and county and
state-week “fixed” effects. Furthermore, the actionable policies
naturally supported from our predictive analysis—the staff mask-
ing and other mitigation measures in schools and prioritization
of vaccination for teachers and elderly parents—appear to be
nonharmful and have low implementation costs.

Methods. SI Appendix provides the details for our research de-
sign, which closely follows that in ref. 11. Fig. 4 is a causal
path diagram (12, 13) for our model that describes how policies,
behavior, and information interact together:

• The forward health outcome, Yi,t+�, is determined last after
all other variables have been determined.

• The policies, Pit , affect health outcome Yi,t+� either directly
or indirectly through mediators, human behavior Bit , which
may be only partially observed.

• Information variables, Iit , such as lagged values of outcomes
can affect human behavior and policies, as well as outcomes
directly.

Pit

I it Yi,t + ℓ

B it

I it

Wit

Fig. 4. The causal path diagram for our model.

• The confounders Wit , which vary across counties and time,
affect all other variables; these include testing rates and un-
observed but estimable county- and state-week effects.

The index i denotes the county i, and t and t + � denote the
time, where � represents the time lag between infection and
case confirmation or death. Our health outcomes are the growth
rates in COVID-19 cases and deaths. Policy variables include
school reopening in various modes, mask mandates, bans on
gatherings, and stay-at-home orders, while information variables
include lagged values of cases or deaths.

The causal structure allows for the effect of the policy to be
either direct or indirect. For example, school openings not only
directly affect case growth through the within-school transmis-
sion but also indirectly affect case growth by increasing parents’
mobility. The structure also allows for changes in behavior to
be brought by the change in policies and information. The in-
formation variables, such as the actual recorded number of past
confirmed cases, can cause people to spend more time at home,
regardless of adopted policies; these changes in behavior, in turn,
affect the transmission of SARS-CoV-2.

To further motivate our panel regression specification, we
consider the SIRD model:

Ṡ(t) =−S(t)

N
β(t)I(t), İ(t) = S(t)

N
β(t)I(t)− γI(t), [2]

Ṙ(t) = (1− κ)γI(t), Ḋ(t) = κγI(t),

where S, I, R, and D denote the number of susceptible, infected,
recovered, and deceased individuals in a given state. Each of
these variables is a function of time and dots indicate time deriva-
tive. N is the population, β(t) is the rate of infection spread, γ is
the rate of recovery or death, and κ is the probability of death
conditional on infection. Confirmed cases, C (t), evolve as

Ċ (t) = τ(t)I(t), [3]

where τ(t) is the testing proportion (detection rate). Differenti-
ating the logarithm of [3] and substituting [2], we have

C̈ (t)

Ċ (t)
=

S(t)

N
β(t)− γ +

τ̇(t)

τ(t)
, [4]

which indicates that the growth rate of cases depends on the rate
of infection spread and the change in detection rates.

Our empirical specification is a discrete-time analog of Eq. 4
by approximating the case growth rate with the log difference
in weekly confirmed cases and specifying S(t)

N
β(t) as a linear
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function of the variable for K–12 school visits, policies, past cases,
county fixed effects, and state-week fixed effects:

Δ7 log Caseit = β′Visiti,t−14 +
∑

τ=14,21,28

βy,τ log Casei,t−τ

+ γ′NPIi,t−14 + θTestit + αi + δs(i),w(t) + εit ,
[5]

where i is county, and t is day. The outcome variable Δ7 log
Caseit := log Caseit − log Casei,t−7 is the log difference over 7
d in reported weekly cases with Caseit denoting the number of
confirmed cases from day t − 6 to t. For the observation with
zero weekly cases, we set the value of the log of weekly cases,
log Caseit , to be −1.

Visiti,t−14 includes per-device K–12 school visits and college
visits lagged by 14 d from the SafeGraph foot traffic data
(SI Appendix, Fig. S4 C and F). The direct measure of K–12
school visits has advantages over that of school opening modes
from the MCH data because the latter is prone to measurement
errors caused by unrecorded changes in teaching methods and
school closures beyond the information recorded in the MCH
data. The measure of K–12 school visits may also capture student
density heterogeneity within the same opening mode, especially
for the hybrid teaching method.

As confounders, we consider a set of county fixed effects,
αi , as well as state-week fixed effects, δs(i),w(t). County fixed
effects αi control permanent differences across counties in unob-
served personal risk aversion and attitude toward mask wearing,
hand washings, and social distancing. The coefficient δs(i),w(t)

on the interaction terms between state dummy variables and
week dummy variables captures any change over time in people’s
behaviors and NPIs that are common within a state; they also
control for changes in weather, temperature, and humidity within
a state. NPIi,t−14 includes county-level NPIs (mask mandates,
banning gathering of more than 50 persons, stay-at-home orders)
lagged by 2 wk that control for the effect of people’s behavioral
changes driven by county-level policies on case growths. NPI
data on stay-at-home orders and gathering bans is from Wu and
coworkers (14) while the data on mask policies is from ref. 15.
These NPI data contain information up to the end of July; in our
regression analysis, we set the value of these policy variables after
August to be the same as the last day of observations.

Testit is the growth rate of the number of tests recorded at the
daily frequency for each state to capture the changes in detection
rates τ̇(t)/τ(t) in [4]. This variable is important to fill the gap
between confirmed cases and actual infections.

Finally, the logarithms of past weekly confirmed cases denoted
by log Casei,t−τ for τ = 14, 21, and 28 are included in [4] as
important confounders representing information variables. First,
because the timing and the mode of school openings are likely to
be affected by the number of lagged cases or deaths (e.g., the de-
cision to reopen schools in California and Oregon depended on
trends in local case counts) (16), controlling for the past weekly
cases is critical for the unconfoundedness assumption.¶ Second,
controlling for past confirmed cases is important because people
may voluntarily change their risk-taking behavior in response to
the new information provided by the confirmed cases rather than
the actual, but unknown, number of infected individuals. On the

¶Referring to the causal path diagram in Fig. 4, the information variables affect both
policies (e.g., school openings) and the people’s behavior (see ref. 11 and Table 3
for empirical evidence). Even if information variables do not affect outcome directly,
they are important confounders because in the terminology of Pearl (12), they open
a “backdoor” path from outcome to policy, which creates a noncausal association
between policies and outcomes. By controlling for information variables (and other
confounders), we block noncausal associations, revealing the association generated by
the causal effect of policies on outcomes. See our discussion in SI Appendix as well as
ref. 12 for more details.

other hand, people’s behavior may also be affected by the actual
number of infected individuals beyond the reported cases, given
that some people may see their friends or family get COVID-19.‖

We also consider an alternative specification using the propor-
tion of K–12 students attending schools with teaching method
p ∈ {in-person, hybrid, remote} constructed from the MCH data
in place of the visits to K–12 schools from the foot traffic data.
Furthermore, we investigate the role of mitigation strategies at
school on the transmission of SARS-CoV-2 by examining how
the coefficients of K–12 school visits and K–12 school openings
depend on the mask-wearing requirement for staff with an in-
teraction term between school opening variables and a dummy
variable for staff mask-wearing requirements.

For parameter identification, we assume that the error εit
in [5] is orthogonal to the observed explanatory variables of
school visits/openings, NPIs, and test rates and the past log cases,
county fixed effects, and state-week fixed effects. The estimated
parameters for school openings can be causally interpreted under
the unconfoundedness assumption that the variables related to
school openings (school visits, opening dates, teaching methods)
are as good as randomly assigned after conditioning on other
controls, county fixed effects, and state-week fixed effects.

Because the fixed effects estimator with a set of county dum-
mies for dynamic panel regression could be severely biased when
the time dimension is short compared to the cross-sectional
dimension (17), we employ the debiased estimator by imple-
menting bias correction (18) although the fixed effects estimator
without bias correction gives qualitatively similar results. See
SI Appendix, Table S5 and Fig. S8 for the results from the fixed
effects estimator without bias correction.

Result. Table 2 reports the debiased estimates of predictive ef-
fects of our dynamic panel data regression models. Clustered
SEs at the state level are reported in parentheses to provide
valid inference under possible dependency over time and across
counties within each state. The results suggest that an increase in
the visits to K–12 schools and opening K–12 schools with an in-
person learning mode predict (are associated with) an increase in
the growth rates of cases with 2 wk lag when schools implement
no mask mandate for staff.

In Table 2, column 1, that of per-device visits to K–12 schools
is 0.47 (SE = 0.07). The change in top 5 percentile values of
per-device visits to K–12 schools between June and September
among counties is around 0.15 in SI Appendix, Fig. S4C. Taking
this value as a benchmark for full openings, fully opening K–12
schools may have contributed to (0.47 × 0.15 =) 7 percentage
points increase in case growth rates. Table 2, column 3 indicates
that openings of K–12 schools with the in-person mode are
associated with 5 (SE = 2) percentage point increases in weekly
case growth rates. It also provides evidence that openings of K–12
schools with remote learning mode are associated with lower case
growth, perhaps because remote school opening induces more
precautionary behavior to reduce transmission risk.

In Table 2, column 2, the estimated coefficient of the
interaction between K–12 school visits and no mask-wearing
requirements for staff is 0.24 (SE = 0.07), providing evidence
that mask-wearing requirements for staff may have reduced
the transmission of SARS-CoV-2 at schools. Similarly, in
Table 2, column 4, the coefficients on the interaction of in-
person and hybrid school openings with no mask mandates are
positively estimated as 0.04 (SE = 0.02) and 0.05 (SE = 0.02),
respectively. These estimates likely reflect not only the effect
of mask-wearing requirements for staff but also that of other

‖Viewing the reported cases as a proxy for the actual number of infected individuals
with measurement errors, if measurement errors at t − 7 and t − 14 are correlated,
then such a correlation may bias the estimate given that the left-hand side variable
contains log Casei,t−7 while the right-hand side includes log Casei,t−14 in [5].
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Table 2. Predictive effects (association) of school/college open-
ings and other NPIs on case growth in the United States: debiased
estimator

Dependent variable: Case growth rates

1 2 3 4

K–12 visits, 0.467∗∗∗ 0.386∗∗∗

14-d lag (0.070) (0.070)
K-12 visits 0.297∗∗∗

× 14-d lag (0.070)
no mask,

K–12 in person, 0.047∗∗∗ 0.023
14-d lag (0.017) (0.021)

K–12 hybrid, − 0.008 − 0.037∗∗∗

14-d lag (0.014) (0.013)
K–12 remote, − 0.082∗∗∗ − 0.102∗∗∗

14-d lag (0.016) (0.015)
K–12 in person 0.041∗∗

× no mask, (0.019)
14-d lag

K–12 hybrid 0.049∗∗∗

× no mask, (0.017)
14-d lag

College visits, 0.139∗ 0.070 0.132∗∗ 0.010
14-d lag (0.071) (0.073) (0.064) (0.076)

Mandatory − 0.113∗∗∗ − 0.123∗∗∗ − 0.128∗∗∗ − 0.128∗∗∗

mask, (0.018) (0.017) (0.020) (0.019)
14-d lag

Ban gatherings, − 0.124∗∗∗ − 0.136∗∗∗ − 0.135∗∗∗ − 0.137∗∗∗

14-d lag (0.033) (0.044) (0.033) (0.042)
Stay at home, − 0.264∗∗∗ − 0.260∗∗∗ − 0.261∗∗∗ − 0.268∗∗∗

14-d lag (0.031) (0.039) (0.034) (0.040)

Log(cases), − 0.101∗∗∗ − 0.101∗∗∗ − 0.098∗∗∗ − 0.099∗∗∗

14-d lag (0.009) (0.010) (0.010) (0.010)
Log(cases), − 0.061∗∗∗ − 0.060∗∗∗ − 0.060∗∗∗ − 0.059∗∗∗

21-d lag (0.005) (0.005) (0.005) (0.005)
Log(cases), − 0.030∗∗∗ − 0.033∗∗∗ − 0.031∗∗∗ − 0.034∗∗∗

28-d lag (0.003) (0.003) (0.004) (0.004)
Test growth 0.009∗∗ 0.008∗ 0.009∗∗ 0.009∗∗

rates (0.004) (0.004) (0.004) (0.004)

County Yes Yes Yes Yes
dummies

State × Yes Yes Yes Yes
week
dummies

Observations 690,297 545,131 612,963 528,941
R2 0.092 0.093 0.092 0.094

Dependent variable is the log difference over 7 d in weekly positive cases.
Regressors are 7-d moving averages of corresponding daily variables and
lagged by 2 wk to reflect the time between infection and case reporting
except for test growth rates. All regression specifications include county
fixed effects and state-week fixed effects. The debiased fixed effects es-
timator is applied. The results from the estimator without bias correction
are presented in SI Appendix, Table S5. Asymptotic clustered SEs at the state
level are reported in parentheses. ∗ P < 0.1; ∗∗ P < 0.05; ∗∗∗ P < 0.01.

mitigation measures. For example, school districts with staff
mask-wearing requirements frequently require students to wear
masks and often increase online instructions.

Other studies on COVID-19 spread in schools have also
pointed to the importance of mitigation measures. In contact
tracing studies of cases in schools, ref. 19 found that six of seven
traceable case clusters were related to clear noncompliance with
mitigation protocols, and ref. 20 found that most secondary
transmissions were related to absent face coverings. Ref. 21
found that children who tested positive for COVID-19 are
considerably less likely to have reported consistent mask use
by students and staff inside their school.

The estimated coefficient of per-device visits to colleges is 0.14
(SE = 0.07) in Table 2, column 1. With the change in top 5
percentile values of college visits between June and September as
a benchmark for full openings, which is about 0.1, fully opening
colleges may be associated with (0.14 × 0.1 =) 1.4 percentage

points increase in case growth. Therefore, the estimated asso-
ciation of opening colleges with case growth is much smaller
than that of opening K–12 schools. Furthermore, alternative
specifications in Table 2, columns 2 and 4 and those in Fig. 5 yield
smaller, and sometimes insignificant, estimates for college visits.
This sensitivity may be due to the limited variation in changes
in college visits over time across counties in the data, where the
75th percentile value of college visits is consistently very low
(SI Appendix, Fig. S4F). SI Appendix presents more discussions
on the association of opening colleges with the spread of COVID-
19, where SI Appendix, Figs. S2 and S3 provide descriptive evi-
dence that opening colleges and universities may be associated
with the spread of COVID-19 in counties where large public
universities are located.

Consistent with evidence from US state-level panel data anal-
ysis in ref. 11, the estimated coefficients of county-wide mask
mandate policy are negative and significant in Table 2, columns
1 to 4, suggesting that mandating masks reduces case growth.

Case Growth Estimates

School
Visits

College
Visits

0.0 0.4 0.8 1.2
Estimated Coefficients

model

(1) Baseline
(2) Lag = 10
(3) Lag = 18
(4) Alt. Case Growth
(5) Past Cases
(6) Bars etc.
(7) Fulltime + Home
(8) All of (5)-(7)

Case Growth Estimates with School Visits ��No Mask

School
Visits

x No-Mask

School
Visits

College
Visits

0.0 0.4 0.8 1.2
Estimated Coefficients

model

(1) Baseline
(2) Lag = 10
(3) Lag = 18
(4) Alt. Case Growth
(5) Past Cases
(6) Bars etc.
(7) Fulltime + Home
(8) All of (5)-(7)

A

B

Fig. 5. Sensitivity analysis for the estimated coefficients of K–12 visits and
college visits of case growth regressions: debiased estimator. A presents the
estimates of college visits and K–12 school visits with the 90% confidence
intervals across different specifications taking Table 2, column 1 as baseline.
B presents the estimates of college visits, K–12 school visits, and the interac-
tion between K–12 school visits and no mask-wearing requirement for staff
taking Table 2, column 2 as baseline. The results are based on the debiased
estimator. SI Appendix, Fig. S8 presents the results based on the estimator
without bias correction.
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The estimated coefficients of bans on gatherings and stay-at-
home orders are also negative. The negative estimates of the log
of past weekly cases are consistent with a hypothesis that the
information on higher transmission risk induces people to take
precautionary actions voluntarily to reduce case growth. Table 2
also highlights the importance of controlling for the test growth
rates as a confounder.

Evidence on the role of schools in the spread of COVID-19
from other studies is mixed. Papers that focus on contract trac-
ing of cases among students find limited spread from student
infections (19, 20, 22–25). There is also some evidence that
school openings are associated with increased cases in the sur-
rounding community. Ref. 26 provides suggestive evidence that
school openings are associated with increased cases in Montreal
neighborhoods. Ref. 27 uses US state-level data to argue that
school closures at the start of the pandemic substantially reduced
infection.

Three closely related papers also examine the relationship
between schools and county-level COVID-19 outcomes in the
United States. Ref. 28 examines the relationship between school-
ing and cases in counties in Washington and Michigan. They
find that in-person schooling is associated with increased cases
only in areas with high preexisting COVID-19 cases. Similarly,
ref. 29 analyzes US county-level data on COVID-19 hospital-
izations and finds that in-person schooling is not associated
with increased hospitalizations in counties with low preexisting
COVID-19 hospitalization rates. The outcome variable of our
regression analysis is case growth rates instead of new cases or
hospitalizations. Consistent with refs. 28 and 29, our finding of
a constant increase in growth rates implies a greater increase
in cases in counties with more preexisting cases. Ref. 30 finds
that counties with hybrid or remote openings had fewer cases
than those with in-person openings but finds no association of
teaching modes with deaths during the first 3 wk of the school
year in Illinois. Our finding on death rates does not necessarily
contradict that of ref. 30 because the 3-wk period is too short to
identify the effect on deaths, whereas we examine the effect on
deaths after 3 to 5 wk of openings.

We next provide sensitivity analysis by changing our regression
specifications and assumptions about delays between infection
and reporting cases as follows:

1) Baseline specifications in Table 2, columns 1 and 2.
2) and 3) Alternative time lags of 10 and 18 d for visits to colleges

and K–12 schools as well as NPIs.
4) Setting the log of weekly cases to 0 when we observe zero

weekly cases to compute the log difference in weekly cases
for the outcome variable.

5) Add the log of weekly cases lagged by 5 wk and per-capita
cumulative number of cases lagged by 2 wk as controls.

6) Add per-device visits to restaurants, bars, recreational places,
and churches lagged by 2 and 4 wk as controls.

7) Add per-device visits to full-time and part-time workplaces
and a proportion of devices staying at home lagged by 2 wk
as controls.

8) All of 5) to 7).

Because the actual time lag between infection and reporting
cases may be shorter or longer than 14 d, we consider the alterna-
tive time lags in specifications 2 and 3. Specification 4 checks the
sensitivity of handling zero weekly cases to construct the outcome
variable of the log difference in weekly cases.

A major concern for interpreting our estimate in Table 2 as
the causal effect is that a choice of opening timing, teaching
methods, and mask requirements may still reflect (residual, un-
accounted) sources of confounding. Our baseline specification
models are confounding by controlling for past infection rates
(log of cases), other past implemented policies, and “latent”

county- and state-week fixed effects. However, a choice of school
openings may still be correlated with unmodeled time-varying
unobserved factors at the county level. To further examine the
sensitivity to the inclusion of potential other confounders, we
estimate a specification with additional time-varying county-level
controls in specifications 5 to 8.

Fig. 5A takes Table 2, column 1 as a baseline specification
and plots the estimated coefficients for visits to colleges and K–
12 schools with the 90% confidence intervals across different
specifications using the debiased estimator; the estimates using
the standard estimator without bias correction are qualitatively
similar and reported in SI Appendix, Fig. S8. The estimated co-
efficients of K–12 school visits and college visits are all positive
across different specifications, suggesting that an increase in visits
to K–12 schools and colleges is robustly associated with higher
case growth. On the other hand, the estimated coefficients often
become smaller when we add more controls. In particular, rel-
ative to the baseline, adding full-time/part-time workplace visits
and staying-home devices leads to somewhat smaller estimated
coefficients for K–12 school and college visits, suggesting that
opening K–12 schools and colleges is associated with people
returning to work and/or going outside more frequently.

In Fig. 5B, the estimated interaction terms of K–12 school visits
and no mask-wearing requirements for staff in Table 2, column
1 are all positive and significant, robustly indicating a possibility
that a mask-wearing requirement for staff may have helped to
reduce the transmission of SARS-CoV-2 at schools when K–12
schools opened with the in-person teaching method.

SI Appendix, Tables S6 and S7 provide further robustness
checks, showing that the results are similar even when we use
the log of weekly cases in place of the log difference of weekly
cases as the outcome variable.

Association between School Openings and Mobility. As highlighted
by a modeling study for the United Kingdom (31), there are
at least two reasons why opening K–12 schools in person may
increase the spread of COVID-19. First, opening K–12 schools
increases the number of contacts within schools, which may
increase the risk of transmission among children, parents, edu-
cation workers, and communities at large. Second, reopening K–
12 schools allows parents to return to work and increase their
mobility in general, which may contribute to the transmission of
COVID-19 at schools and workplaces.

To give insight into the role of reopening K–12 schools for
parents to return to work and to increase their mobility, we
conduct panel data regression analysis by taking visits to full-time
workplaces and a measure of staying-home devices as outcome
variables and use a similar set of regressors as in Table 2 but
without taking 2-wk time lags.

Table 3 shows how the proportion of devices at full-time work-
places and that of staying-home devices are associated with visits
to K–12 schools as well as their in-person openings. In Table 3,
columns 1 and 2, the estimated coefficients of per-device K–12
school visits and opening K–12 schools for full-time work out-
come variables are positive and especially large for in-person
K–12 school opening. Similarly, the estimates in Table 3, columns
3 and 4 suggest the negative association of per-device K–12 school
visits and opening K–12 schools with the proportion of devices
that do not leave their home. SI Appendix, Table S4 also provides
evidence that the visits to restaurants and bars are positively
associated with the visits to K–12 schools and colleges. This is
consistent with a hypothesis that opening K–12 schools allows
parents to return to work and spend more time outside. This
result may also reflect education workers returning to work. In
Table 3, columns 3 and 4, the positive coefficient of current and
past log cases suggests that people voluntarily choose to stay
home when the transmission risk is high.
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Table 3. Predictive effects (association) of school/college open-
ings on full-time workplace visits and staying home in the United
States: standard fixed effects estimator without bias correction

Dependent variable
Full time: 1 Full time: 2 Stay home: 3 Stay home: 4

K–12 school 0.085∗∗∗ − 0.019
visits (0.006) (0.026)

Open K–12 0.999∗∗∗ − 0.924∗∗

in person (0.125) (0.382)
Open K–12 0.490∗∗∗ − 0.127

hybrid (0.051) (0.186)
Open K–12 0.236∗∗∗ − 0.271

remote (0.048) (0.307)

College − 0.040∗∗∗ − 0.046∗∗∗ − 0.144∗∗∗ − 0.148∗∗∗

visits (0.004) (0.006) (0.024) (0.026)
Mandatory − 0.057 − 0.141∗∗ 0.016 0.036

mask (0.042) (0.053) (0.259) (0.250)
Ban 0.060 0.075 0.436 0.351

gatherings (0.047) (0.051) (0.560) (0.520)
Stay at − 0.060∗ − 0.066∗ 2.793∗∗∗ 2.809∗∗∗

home (0.031) (0.033) (0.329) (0.340)

Log(cases) 0.005 0.003 0.288∗∗∗ 0.282∗∗∗

(0.004) (0.005) (0.028) (0.028)
Log(cases), − 0.001 − 0.005∗ 0.209∗∗∗ 0.207∗∗∗

7-d lag (0.002) (0.003) (0.019) (0.017)
Log(cases), − 0.0005 − 0.003 0.098∗∗∗ 0.097∗∗∗

14-d lag (0.002) (0.002) (0.023) (0.024)

Observations 670,895 595,872 670,895 595,872
R2 0.870 0.853 0.889 0.888

Dependent variables are full-time workplace visits and staying-home
devices per residing device. All regression specifications include county fixed
effects and state-week fixed effects. The standard fixed effects estimator
without bias correction is used. Clustered SEs at the state level are reported
in parentheses. ∗ P < 0.1; ∗∗ P < 0.05; ∗∗∗ P < 0.01.

Table 4 presents regression analysis similar to that in Table 2
but including the proportion of devices at full-time/part-time
workplaces and those at home as additional regressors, which
corresponds to specification 7 in Fig. 5. The estimates indicate
that the proportion of staying-home devices is negatively asso-
ciated with the subsequent case growth, while the proportion of
devices at full-time workplaces is positively associated with the
case growth. Combined with the estimates in Table 3, these results
suggest that school openings may have increased the transmission
of SARS-CoV-2 by encouraging parents to return to work and to
spend more time outside. This mechanism can partially explain
the discrepancy between our findings and various studies that
focus on cases among students. Contract tracing of cases in
schools, such as in refs. 20 and 22–25, often finds limited direct
spread among students. On the other hand, ref. 32 finds that
parents and teachers of students in open schools experience
increases in infection rates.

In Table 4, columns 1 and 2 the estimated coefficients on K–12
school visits remain positive and large even after controlling for
the mobility measures of returning to work and being outside
home, which are mediator variables to capture the indirect effect
of school openings on case growth through its effect on mobility.
The coefficient on K–12 school visits is ∼75% as large in Table 4
as in Table 2, suggesting that that within-school transmission may
be the primary channel through which school openings affect the
spread of COVID-19. Furthermore, the estimated coefficient of
the interaction of K–12 school visits with the no-mask variable in
Table 4, column 2 does not change after adding these measures
of returning to work, indicating the importance of precautionary
measures at schools even after conditioning parents’ going back
to work.

Table 4. Predictive effects (association) of school/college open-
ing, full-time/part-time work, and staying home on case growth
in the United States: debiased estimator

Dependent variable: case growth rates

1 2 3 4

K–12 visits, 0.393∗∗∗ 0.283∗∗∗

14-d lag (0.075) (0.087)
K–12 visits × 0.287∗∗∗

no mask, (0.071)
14-d lag

K–12 in person, 0.015 − 0.007
14-d lag (0.016) (0.020)

K–12 hybrid, − 0.028∗∗ − 0.055∗∗∗

14-d lag (0.013) (0.013)
K–12 remote, − 0.094∗∗∗ − 0.115∗∗∗

14-d lag (0.015) (0.014)
K–12 in person 0.034∗

× no mask, (0.020)
14-d lag

K–12 hybrid × 0.043∗∗∗

no mask, (0.017)
14-d lag

Full-time − 0.117 0.186 0.956∗∗ 0.967∗∗

work device, (0.417) (0.490) (0.384) (0.436)
14-d lag

Part-time 0.262 0.466 0.820∗∗∗ 0.915∗∗∗

work device, (0.259) (0.305) (0.276) (0.309)
14-d lag

Staying-home − 0.290∗∗∗ − 0.283∗∗∗ − 0.352∗∗∗ − 0.332∗∗∗

device, (0.057) (0.069) (0.061) (0.067)
14-d lag

Observations 690,297 545,131 612,963 528,941
R2 0.092 0.093 0.092 0.094

Dependent variable is the log difference over 7 d in weekly positive
cases. All regression specifications include county fixed effects and state-
week fixed effects; college visits; three NPIs; and 2-, 3-, and 4-wk lagged
log of cases. See SI Appendix, Table S8 for the estimated coefficients for
NPIs and the log of current and past cases. The debiased fixed effects
estimator is applied. Asymptotic clustered SEs at the state level are reported
in parentheses. ∗ P < 0.1; ∗∗ P < 0.05; ∗∗∗ P < 0.01.

Death Growth Regression. We also analyze the effect of school
openings on death growth by estimating

Δ21 log Deathit = β′Visiti,t−35 +
∑

τ=35,42,49

βy,τ log Deathi,t−τ

+ γ′NPIi,t−35 + αi + δs(i),w(t) + εit , [6]

where the outcome variable Δ21 log Deathit := log Deathit −
log Deathi,t−21 is the log difference over 21 d in reported weekly
deaths with Deathit denoting the number of reported deaths
from day t − 6 to t. The log of weekly deaths, log Deathit , is set
to be −1 when we observe zero weekly deaths. We take the log
difference over 21 d rather than 7 d for measuring death growth
because the time lag between infection and death reporting is
stochastic and spreads over at least 2 wk.**

The explanatory variables in [6] are lagged by 35 d to capture
the time lag of infection and death reporting. Taking a longer time
lag than 35 d may capture the effect of school openings on deaths
through the secondary infection better (e.g., an infection from
children to parents/grandparents); therefore, we also consider a
lag length of 42 and 49 d.

Fig. 6 illustrates the estimated coefficients of visits to colleges
and K–12 schools across different specifications for death growth

**For deceased persons above 65 y old between 1 March 2020 and 31 January 2021, the
CDC estimates that the interquartile range for the number of days from symptom onset
to death is (9, 25) d while the interquartile range from death to reporting is (4, 59) d.
See table 2 of https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.
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Fig. 6. Sensitivity analysis for the estimated coefficients of K–12 visits and
college visits of death growth regressions: debiased estimator. A presents
the estimates of college visits and K–12 school visits with the 90% confi-
dence intervals across different specifications taking SI Appendix, Table S9,
column 1 as baseline. B presents the estimates of college visits, K–12 school
visits, and the interaction between K–12 school visits and no mask-wearing
requirement for staff taking SI Appendix, Table S9, column 2 as baseline.

regressions. Fig. 6A shows that the coefficients of visits to colleges
and K–12 schools are positively estimated for 1) baseline, 2) and
3) an alternative time lag of 42 and 49 d, 4) setting the log of
weekly deaths to 0 when we observe zero weekly deaths to com-
pute death growth over 3 wk, and 5) to 8) adding more controls,
providing robust evidence that an increase in visits to colleges
and K–12 schools is positively associated with the subsequent
increase in weekly death growth rates. Fig. 6B corresponds to
Fig. 5B, showing that the association of K–12 school visits with
death growth is stronger when no mask mandate for staff is in
place.

SI Appendix, Table S9 reports the baseline estimates while
SI Appendix, Table S10 shows those for the specification with
staying-home devices and workplace visits. The estimated
coefficients on K–12 school visits remain positive and large
even after controlling for the variables of returning to work and
being outside the home in SI Appendix, Table S10, suggesting the
possible role of within-school transmission for a rise in deaths
after school openings. These results are consistent with our
findings in case growth regressions.

Limitations
Our study has the following limitations. First, our study is obser-
vational and should be interpreted with great caution. Indeed,
the potential presence of unobserved/unaccounted confounding
factors can invalidate the interpretation of the predictive effects
as causal effects. While we control for a variety of potential
confounding factors, including other mitigation policies, past
infection rates, and county- and state-week fixed effects, the
decisions to open K–12 schools may be still correlated with
other unobserved time-varying county-level factors that affect
the spread of COVID-19. For example, people’s attitudes toward
social distancing, hand washing, and mask wearing may change
over time (which we cannot observe in the data). Their changes
may be correlated with school opening decisions beyond the
controls we added to our regression specifications.

Our analysis is also limited by the quality and the availability
of the data as follows. The reported number of cases is likely to
understate true COVID-19 incidence, especially among children
and adolescents because they are less likely to be tested than
adults given that children exhibit milder or no symptoms. This
is consistent with Centers for Disease Control (CDC) data that
show the lower testing volume and the higher rate of positive test
among children and adolescents than among adults (9). County-
level testing data are not used because of a lack of data, although
state-week fixed effects control for the weekly difference across
counties within the same state and we also control daily state-
level test growth rates.

Because foot traffic data are constructed from mobile phone
location data, the data on K–12 school visits likely reflect the
movements of parents and older children who are allowed to
carry mobile phones to schools and exclude those of younger
children who do not own mobile phones.#

Because COVID-19–infected children and adolescents are
known to be less likely to be hospitalized or die from COVID-19,
the consequence of transmission among children and adolescents
driven by school openings crucially depends on whether the
transmission of SARS-CoV-2 from infected children and adoles-
cents to the older population can be prevented.## Our analysis
does not provide any empirical analysis on how school opening
is associated with the transmission across different age groups
due to data limitations.### Ref. 32 shows that teachers in open
schools experience higher COVID-19 infection rates compared
to teachers in closed schools. They also show that this increase in
infection rate also occurs in partners of teachers and parents of
students in open schools.

The impact of school openings on the spread of COVID-19
on case growth may be different across counties and over time
because it may depend not only on in-school mitigation measures
but also on contact tracing, testing strategies, and the prevalence
of community transmissions (16, 35). We do not investigate
how the association between school openings and case growths
depends on contact tracing and testing strategies at the county
level due to data limitation.

#We also focus on limited points of interest: K–12 schools, colleges and universities,
restaurants, drinking places, other recreational places including recreational facilities,
and churches. We check the robustness by including visits to assisted-living facilities
for the elderly and nursing care facilities as additional controls, but the results are not
sensitive to their inclusion.

##In the meta-analysis of 54 studies on the household transmission of SARS-CoV-2 (33),
estimated household secondary attack rate to child contacts was 16.8%. Ref. 34 reports
that household secondary attack rate from children and adolescents to other family
members was 23.8% and higher than other age groups in Japan.

###The CDC collects the data on the number of reported cases by age groups from each
state whenever such data are available. However, for many counties, the reported cases
by age groups are missing or there exists a substantial gap between the sum of cases
across different age groups reported by the CDC and the total number of cases reported
in NYT case data (see, for example, the case of Ingham, MI, in SI Appendix, Fig. S3).
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The result on the association between school opening and
death growth in Fig. 6 is suggestive but must be viewed with
caution. The time lag between infection and death is stochastic
and spreads over time, making it challenging to uncover the
relationship between the timing of school openings and subse-
quent deaths. Furthermore, while we provide sensitivity analysis
for handling zero weekly deaths to approximate death growth,
our construction of the death growth outcome variable remains
somewhat arbitrary.

Finally, our result does not imply that K–12 schools should
be closed. Closing schools can have negative impacts on chil-
dren’s learning (36) and may cause declining physical and mental
health among children and their parents (35–37). On the other

hand, there is emerging evidence of long-term harm on chil-
dren’s health induced by COVID-19 (40). The decision to open
or close K–12 schools requires careful assessments of the cost
and the benefit by policymakers. However, given their relatively
low implementation costs, our findings strongly support policies
that enforce masking and other precautionary actions at school
and prioritizing vaccines for education workers and elderly par-
ents/grandparents.
Data Availability. Anonymized comma-separated values data have been
deposited in https://github.com/ubcecon/covid-schools.
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