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Hepatitis E virus (HEV) is one of the most common causes of acute viral hepatitis, mainly transmitted by
fecal-oral route but has also been linked to fulminant hepatic failure, chronic hepatitis, and extrahepatic
neurological and renal diseases. HEV is an emerging zoonotic pathogen with a broad host range, and
strains of HEV from numerous animal species are known to cross species barriers and infect humans.
HEV is a single-stranded, positive-sense RNA virus in the family Hepeviridae. The genome typically con-
tains three open reading frames (ORFs): ORF1 encodes a nonstructural polyprotein for virus replication
and transcription, ORF2 encodes the capsid protein that elicits neutralizing antibodies, and ORF3, which
partially overlaps ORF2, encodes a multifunctional protein involved in virion morphogenesis and patho-
genesis. HEV virions are non-enveloped spherical particles in feces but exist as quasi-enveloped particles
in circulating blood. Two types of HEV virus-like particles (VLPs), small T = 1 (270 Å) and native virion-
sized T = 3 (320–340 Å) have been reported. There exist two distinct forms of capsid protein, the secreted
form (ORF2S) inhibits antibody neutralization, whereas the capsid-associated form (ORF2C) self-
assembles to VLPs. Four cis-reactive elements (CREs) containing stem-loops from secondary RNA struc-
tures have been identified in the non-coding regions and are critical for virus replication. This mini-
review discusses the current knowledge and gaps regarding the structural and molecular biology of
HEV with emphasis on the virion structure, genomic organization, secondary RNA structures, viral pro-
teins and their functions, and life cycle of HEV.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Hepatitis E was first recognized in the 1980 s as a ‘non-A, non-B
hepatitis’ associated with waterborne outbreaks in India. The cau-
sative agent, hepatitis E virus (HEV), was identified using immune
electron microscopy, and the viral genomic sequence was deter-
mined in 1990 [1]. HEV is one of the most common causes of acute
viral hepatitis worldwide. Globally, there are an estimated 20 mil-
lion HEV infections, leading to 3.3 million symptomatic cases of
hepatitis E and approximately 44,000 hepatitis E-associated deaths
in 2015 [2,3]. In developing countries with poor sanitation condi-
tions, HEV transmits primarily to humans via the fecal-oral route
through drinking feces-contaminated water. In industrialized
nations, sporadic and cluster cases of hepatitis E are reported due
to ingestion of raw or undercooked animal meat products [4].
Although acute hepatitis E rarely progresses to acute liver failure
or chronicity, HEV infections in pregnant women have a high inci-
dence of developing fulminant hepatic failure with a case-fatality
rate of up to 30% [5]. Furthermore, chronic hepatitis E has become
a significant clinical problem since the majority of HEV infections
in immunosuppressed individuals can progress into chronicity
which requires antiviral treatment, and otherwise chronic infec-
tion leads to cirrhosis that needs transplantation [6]. Ribavirin is
a reasonably effective antiviral for patients chronically infected
with HEV, with sustained virological response (SVR) of approxi-
mately 85%; however, a minority of patients fail to achieve SVR,
possibly because of viral mutants [7]. In addition to acute and
chronic hepatitis, HEV infection is also associated with a wide
range of extrahepatic manifestations such as neurological and
renal injuries [8]. Notwithstanding the above, an HEV-specific
antiviral is still lacking, and a vaccine against HEV is available only
in China [9].

Since the initial discovery of zoonotic HEV in 1997 from domes-
tic pigs in the United States [10], HEV is now recognized as an
important emerging zoonotic pathogen with a large number of ani-
mal reservoirs, including swine, deer, rabbit, camel, and rat. Also,
increasingly diverse strains of HEV have been identified in numer-
ous animal species, although their host range and pathogenicity
are mostly unknown [11].

Tremendous progress has been made in the biological and
structural characterization of HEV. The determination of the
high-resolution three-dimensional structure of HEV virus-like par-
ticle (VLP) and capsid protein helps understand HEV morphogene-
sis and pathogenesis [12]; the development of various reverse
genetic systems for HEV allows to delineate the structural and
functional relationship of HEV genes [13]; the establishment of
more efficient cell culture systems and relevant animal models
for HEV provided tools to understand the molecular mechanisms
of HEV life cycle and virus-host interactions [2]. In this mini
review, we highlight the recent advances that unveil the structural
and molecular biology of HEV.
2. Virus taxonomy and genetic diversity

According to the 10th International Committee on the
Taxonomy of Viruses (ICTV) Report, HEV is classified in the family
Hepeviridae, which contains two distinct genera: Orthohepevirus
and Piscihepevirus. The former genus contains four species (Ortho-
hepevirus A to D), whereas the latter contains a single species (Pis-
cihepevirus A) [14] (Fig. 1A). The species Orthohepevirus A is divided
into at least eight distinct genotypes: genotypes 1 and 2 infect only
humans and cause large waterborne outbreaks in endemic regions
of South and Southeast Asia, Africa, and Mexico; genotypes 3 and 4
infect a wide range of mammals, including humans, swine, deer,
and rabbits, and cause sporadic cases of hepatitis E in comparably
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developed countries of Europe and East Asia; genotypes 5 and 6
were identified fromwild boars in Japan; genotype 7 from dromed-
aries in Middle East countries; genotype 8 from Bactrian camels in
China (Fig. 1B). Orthohepevirus B and D species include viruses from
birds and bats, respectively, and Orthohepevirus C species from rats,
shrews, ferrets, minks, and wild rodents [15]. Although genotypes
3 and 4 HEVs from swine are the main sources of zoonotic infection
in humans, animal strains of genotypes 5, 7, and 8 HEVs from spe-
cies Orthohepevirus A and rat HEVs from species Orthohepevirus C
are also known to have zoonotic potential [11,16]. Additional
strains of distantly-related HEVs remain unclassified due to the
lack of complete genomes or ambiguous phylogenetic position
[14]. With the ever-expanding host range and identification of
genetically divergent HEV strains, the taxonomy of the family
Hepeviridae will continue to evolve.

The genome of HEV shows striking diversity and sequence vari-
ation. Most of the 600 full-length HEV genomes available in the
GenBank database belong to species Orthohepevirus A (Fig. 1C).
Based on the host species, geographical origin, phylogenetic rela-
tionship, and clinical outcome, the species Orthohepevirus A con-
sists of at least eight genotypes and 36 subtypes so far.
According to the ICTV, a subtype assignment requires at least three
complete viral genomes that are phylogenetically distinct from
previous strains and epidemiologically unrelated. Therefore, multi-
ple divergent HEV strains are still unassigned due to the fewer than
three complete genome sequences [17]. To perform enhanced
molecular typing and epidemiological investigations specifically
to HEV, an HEV website (HEVnet) was established in 2017

(https://www.rivm.nl/mpf/typingtool/hev/) [18]. Genotypes 3 and
4 HEVs from diverse animals exhibit remarkable genetic hetero-
geneity. Notably, zoonotic genotypes 3 and 4 HEVs cause chronic
HEV infections in immunocompromised individuals as well as
extrahepatic diseases. As of January 2021, nearly 400 genotype 3
HEV genomic sequences have been identified (Fig. 1D). In addition
to the unique transmission pattern and clinical course of different
genotypes, the relationship between HEV genetic variability and
liver disease status or resistance to antivirals has been investi-
gated. Several mutations in the viral polymerase of genotype 3
HEV are reportedly associated with ribavirin treatment failure in
organ transplant recipients. For example, the Y1320H and
G1634R mutations enhanced viral fitness, and the K1383N muta-
tion suppressed viral replication but increased ribavirin suscepti-
bility [19–21].
3. Virion structure

HEV virions exist in two forms in the infected host, non-
enveloped (neHEV) and quasi-enveloped (eHEV) particles [22].
Virions secreted in feces are non-enveloped, spherical particles of
approximately 27–34 nm in diameter. However, virions secreted
in circulating blood and supernatant of infected cell cultures are
quasi-enveloped as they are covered with a lipid envelope [23].
Although neHEV particles are more infectious, eHEV particles are
resistant to antibody neutralization against the viral capsid protein
[24]. The HEV capsid proteins assemble into virion particles, binds
host cells, and elicit neutralizing antibodies. Expression of a trun-
cated capsid protein in insect cells by baculovirus expression sys-
tem resulted in the self-assembly of capsid protein and
production of two types of virus-like particles (VLPs): the small
T = 1 (270 Å in diameter) (Fig. 2A) and native virion-sized T = 3
VLPs (320–340 Å) (Fig. 2B). It has been demonstrated that amino
acid residues 126 to 601 are the essential elements required for
the T = 1 VLPs assembly. In contrast, amino acids 14–608 including
the signal sequence and N-terminal arginine-rich region are neces-
sary for the T = 3 VLPs formation. Both T = 1 and T = 3 VLPs are

https://www.rivm.nl/mpf/typingtool/hev/


Fig. 1. The taxonomy and genetic diversity of HEV. (A) A maximum-likelihood tree based on the complete genomes of representative members of the family Hepeviridae. HEV
classification of five species within the two genera is shown according to the International Committee on Taxonomy of Viruses (ICTV) consensus proposal. The major host
tropism of each virus species is indicated by animal icons. GenBank accession numbers of representative viral strains used: species Orthohepevirus A (M73218, KX578717,
AB301710, FJ906895, AB197673, AB573435, AB602441, KJ496143, and KX387865); species Orthohepevirus B (AY535004 and KX589065); species Orthohepevirus C
(GU345042, JN998606, KY432899, KY432901, KY432902, MG020022, MG020024, MG021328, and MK192405); species Orthohepevirus D (JQ001749 and KX513953); species
Piscihepevirus A (MN995808 and HQ731075). Complete genomes are aligned using the MAFFT algorithm in Geneious Prime software version 2021.0.3. Evolutionary analyses
are conducted in Molecular Evolutionary Genetics Analysis Software X (MEGA X) version 10.1.7 with 1,000 bootstrap reiterations. General Time Reversible (GTR) + Gamma
Distributed (G) nucleotide substitution model with the lowest Bayesian Information Criterion (BIC) score was selected based on Find Best-Fit Substitution Model (ML) in
MEGA X. Bootstrap values (>80%) are indicated at specific nodes. Bars indicate the number of nucleotide substitutions per site. (B) A maximum-likelihood tree based on the
complete genomes of representative members of the species Orthohepevirus A. The eight different genotypes are shown according to the ICTV consensus proposal. The major
host tropism of each genotype is indicated by animal icons. GTR + G + Invariable Sites (I) nucleotide substitution model with the lowest BIC score was selected. GenBank
accession numbers of representative viral strains used are: Genotype 1 (FJ457024, MH918640, M73218, L08816, X98292, AY230202, AY204877, JF443721, LC225387);
Genotype 2 (KX578717 and MH809516); Genotype 3 (AB290313, KP294371, LC260517, MF959764, MF959765, MK390971, AF082843, AP003430, FJ705359, AB248521,
AB369687, AF455784, JQ013794, FJ998008, AY115488, AB369689, JQ953664, KU513561 and, FJ906895); Genotype 4 (AB369688, MK410048, AB197673, DQ279091,
AB074915, AJ272108, AY723745, AB220974, AB108537, GU119961, and AB369690); Genotype 5 (AB573435); Genotype 6 (AB856243 and AB602441); Genotype 7 (KJ496144
and KJ496143); Genotype 8 (MH410174 and KX387865). (C) Complete genomes of five species within the two genera in the family Hepeviridae. Numbers of genomic
sequences of each species are indicated. (D) Complete genomes of eight different genotypes within the species Orthohepevirus A. Numbers of genomic sequences of each
genotype are indicated. Complete genomes analyzed in this study are acquired in GenBank (retried as of January 2021).
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icosahedral but consist of different copies of the truncated capsid
protein: 60 subunits for T = 1 and 180 subunits for T = 3
[12,25,26]. The production of the T = 1 VLPs is caused by deleting
the N-terminal basic domain of the capsid protein and forms
empty particles with no viral RNA inside [27]. Despite variations
in some amino acid residues, the crystal structure of T = 1 VLPs
of genotypes 1, 3, and 4 HEVs are almost identical [25,28,29].
The cryoelectronic microscope structure of T = 3 VLPs has also been
resolved [25].

Interactions of dimeric, trimeric, and pentameric capsid sub-
units around respective two-, three-, five-fold icosahedral axes
1909
have been demonstrated for T = 1 VLP packaging. The crystal struc-
ture of T = 1 VLP resolved at the resolution of amino acid level
reveals that each capsid monomer contains three distinct domains,
S (shell), M (middle), and P (protruding) (Fig. 2C). The S domain is
composed of jelly roll-like b-sheets; the M domain is tightly linked
to the S domain and locates at the surface around the three-fold
axis of the particle; the P domain dimerizes forming protruding
spikes around the two-fold axis of T = 1 VLP and interacts with host
cells [25,29,30] (Fig. 2D). A flexible proline-rich hinge region linked
between M and P domains contributes to the topological changes
of both T = 1 and T = 3 VLP [12,25]. An in vitro assembly assay indi-



Fig. 2. Structure interpretation of hepatitis E virus. (A) T = 1 HEV virus-like particle (VLP) (PDB accession no. 2ZTN) comprises 60 capsid subunits. (B) T = 3 HEV VLP (PDB
accession no. 3IYO) is composed of 180 capsid subunits. HEV VLP structures are generated in 3D viewer software Cn3D version 4.3.1. (C) Representation of secondary
structure assignment of HEV truncated capsid protein. The ORF2 sequence corresponds to amino acid residues 119 to 606 of the HEV prototype Burma strain (GenBank
accession no. M73218). The S (shell), M (middle), and P (protruding) domains are shown in yellow, blue, and red, respectively. a-helices and b-sheets are indicated in pink and
green, respectively. (D) Secondary structure of HEV truncated capsid protein shows S, M, and P domains at the left, middle, and right, respectively. Modified from various
studies [28,29]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cated that the pentamer formation is preferable, and mutagenesis
analyses showed that the Tyr288 residue in the center of the pen-
tamer was highly conserved and crucial for particle formation [29].
Substitutions of amino acid residues from 489 to 586, located at
the exposed loops of the apical center region of the protruding
spike, significantly reduced HEV attachment activity to its suscep-
tible cells, indicating that this particular region is involved in
receptor binding and neutralization antibody recognition [29]. It
has been shown that the immunogen p239 (residues 368–606) in
the Hecolin vaccine covering the partial M domain and the whole
P domain forms a shrunken version of the T = 1 VLPs and contains
functional HEV immune epitopes [31]. Although the capsid protein
contains three potential N-glycosylation sites (Asn137, Asn310,
and Asn562), there is a lack of a signal peptide-like sequence in
the VLPs, thus the glycosylation process is likely not required for
assembling infectious particles [32]. Notably, it has been recently
validated that the capsid protein for virion packaging has no glyco-
sylation, but the secreted ORF2 product is glycosylated [33,34]. The
available structural information about the HEV capsid protein pro-
vided important molecular insights into viral assembly and entry,
and will aid in future vaccine design and antiviral development.
4. Genomic organization and secondary RNA structures

Apart from the Orthohepevirus A species, the genomic features
of other HEV have not been well characterized. HEV genomes
within Orthohepevirus A are single-stranded, positive-sense RNA
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of ~ 7.2 kb in length, comprising a short 50 untranslated region
(UTR), three partially overlapping open reading frames (ORFs),
and a 30 UTR [14] (Fig. 3). For HEV coding regions, the ORF1
encodes a non-structural polyprotein with multiple potentially
functional domains: methyltransferase (Met), Y domain, papain-
like cysteine protease (PCP), hypervariable region (HVR), X domain,
helicase (Hel), and RNA-dependent RNA polymerase (RdRp). It is
still debatable whether the ORF1 polyprotein undergoes
processing into individual functional protein. The ORF2 encodes
the structural capsid protein, which contains the S, M, and P
domains. The ORF3 overlaps partially with ORF2 and encodes a
multifunctional phosphoprotein harboring two hydrophobic
domains (D1 and D2) and two proline-rich domains (P1 and P2).
Recently, a novel ORF4 has been identified in genotype 1 HEV,
but not in other HEV genotypes, and endoplasmic reticulum (ER)
stress promotes viral replication by inducing translation of the
novel ORF4 in genotype 1 HEV [35].

For HEV non-coding regions, the 50 UTR contains a 7-
methylguanosine cap structure (7mG), which is essential for the
initiation of HEV replication and infectivity [36,37]. The 30 UTR is
polyadenylated (polyA), and the U-rich region in the 30 UTR poly-
A tail acts as a potent pathogen-associated motif pattern (PAMP)
for retinoic acid-inducible gene I (RIG-I) [38]. The ORF2 protein
and ORF3 protein are expressed from a ~ 2.2 kb bicistronic subge-
nomic mRNA (sgRNA) [39] (Fig. 3). A stem-loop structure has been
identified in the junction region (JR) between the end of ORF1 and
the start of ORF3, which is crucial for sgRNA transcription and syn-
thesis [40,41]. At least four cis-reactive elements (CREs) containing



Fig. 3. A schematic diagram of the genomic organization of hepatitis E virus (HEV). The HEV genomic RNA is approximately 7.2 kb in length, comprising a short 50

untranslated region (UTR), three partially overlapping open reading frames (ORFs), and a 30 UTR. The 50 UTR contains a 7-methylguanosine cap (7mG), and the 30 UTR is
polyadenylated (polyA). ORF1 encodes the non-structural polyprotein, including multiple functional domains: methyltransferase (Met), Y domain, papain-like cysteine
protease (PCP), hypervariable region (HVR), X domain, helicase (Hel), and RNA-dependent RNA polymerase (RdRp). ORF2 encodes the structural capsid protein, containing S
(shell), M (middle), and P (protruding) domains. ORF3 overlaps partially with ORF2 and encodes a multifunctional protein harboring two hydrophobic domains (D1 and D2)
and two proline-rich domains (P1 and P2). An additional novel ORF4 has been identified solely in genotype 1 HEV. ORF2 and ORF3 are translated from a bicistronic 2.2 kb
subgenomic mRNA (sgRNA) generated during viral replication. The nucleotide positions are according to the HEV prototype Burma strain (GenBank accession no. M73218).
The genomic RNA in nucleotide bases and ORFs in amino acids are shown on the top.

Fig. 4. RNA stem-loop (SL) structures of cis-reactive elements (CREs) in hepatitis E virus (HEV) genome. The RNA secondary structures are predicted using the Unified Nucleic
Acid Folding and hybridization package (UNAFold). The nucleotide positions are according to the HEV prototype Burma strain (GenBank accession no. M73218) (A)
Organization of the HEV genome. The locations of the four predicted SL secondary structure are depicted. (B) Predicted secondary structure at the N-terminus of ORF1 with
the SL1 indicated here. The sequence corresponds to nucleotide positions 98 to 132. (C) Predicted SL and secondary structure at the junction region (JR) of the negative-
polarity complementary sequence with SL2 indicated here. The sequence corresponds to nucleotide positions 5098 to 5159. The stop codon of ORF1 and start codons of ORF2
and ORF3 are labeled with boxes of solid and dot lines, respectively. (D) Predicted secondary structure at the C-terminus of ORF2 indicated here with SL3, and the 30 UTR
indicated here with SL4. The sequence corresponds to nucleotide positions 7084 to 7194. The stop codon of ORF2 is labeled with a box of dot line.
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stem-loops from secondary RNA structures have been identified in
the HEV genome (Fig. 4): one locates between the end of ORF2 and
30 UTR [36], another between the end of JR and the beginning of
ORF3 [42], the remaining two locate at the start of ORF1 and at
the end of ORF2 coding region [43]. These CREs are highly con-
served across different HEV genotypes and critical for HEV replica-
tion. Future studies are warranted to define the underlying
mechanism of these non-coding regions, especially the stem-loop
structures, in regulating HEV replication.
5. Viral Proteins, their primary structural features and
functions

5.1. Nonstructural polyprotein encoded by ORF1

Putative functional domains, including Met, PCP, Hel, and RdRp,
have been predicted through computer-assisted sequence compar-
ison of HEV ORF1 polyprotein with proteins of other positive-
strand RNA viruses [44]. Whether ORF1 polyprotein is processed
during HEV replication remains disputable. It was reported that
ORF1 polyprotein is not subjected to specific proteolytic process-
ing, which is uncommon for animal positive-stranded RNA viruses
[45]. However, cleavage of both ORF1 polyprotein and ORF2 pro-
tein by the purified PCP expressed from E. coli cells has also been
reported [46]. Nevertheless, some of these predicted functional
domains within ORF1 polyprotein have now been experimentally
confirmed.

The Met domain at the 50 end of ORF1 polyprotein possesses
guanine-7-Met and guanyl transferase activities [47]. The function
of the PCP domain for protease activity is still debatable, although
it does share a high sequence identity to the protease of the rubella
virus [44]. PCP is reportedly involved in HEV immune evasion by
acting as potential interferon (IFN) antagonist and possessing deu-
biquitinase activity for both RIG-I and TANK-binding kinase 1
(TBK-1) [48]. A plethora of positive-stranded RNA viruses encode
RNA helicase and RNA-dependent RNA polymerase (RdRp), which
are essential for viral replication. Similarly, HEV Hel possesses
NTPase and 50 to 30 RNA duplex-unwinding activates. The Hel
domain is also involved in RNA 50-triphosphatase activity that cat-
alyzes the first step of RNA capping [49]. HEV RdRp is likely located
in the ER and binds the 30 UTR of HEV genomic RNA and synthe-
sizes the complementary strand RNA. The RdRp domain contains
a GDD motif essential for HEV replicase activity [50,51]. Certain
RdRp mutations discovered in patients chronically infected with
HEV have reportedly altered viral virulence, pathogenesis, and
antiviral sensitivity, as described earlier.

Three additional domains within ORF1 polyprotein have also
been identified, but their functions remain mostly elusive. The Y
domain maps between the Met and PCP domains. Sequence analy-
ses suggested that the Y domain is an extension of the Met domain,
and mutational analyses showed its severely impaired effect on
viral replication and virion infectivity [52,53]. The HVR has a high
degree of sequence variability and a large number of proline resi-
dues, which leads to an unstable tertiary structure. This intrinsi-
cally disordered HVR may regulate viral transcription and
translation by facilitating the binding of HVR to a variety of ligands,
enzymes, and metal ions [54,55]. Mutational analysis of HVR has
revealed its involvement in the efficiency of viral replication [56].
Moreover, HVR participates in the HEV adaptation. A naturally-
occurring genotype 3 HEV recombinant with an insertion of human
ribosomal protein sequence S17 in the HVR acquired an enhanced
viral fitness and an expanded host range in vitro [57,58]. The func-
tion of the X domain is also unclear, but it may associate with ADP-
ribose-10 0-monophosphatase catalytic activities [59]. The X domain
interacts with both Met domain and ORF3 protein and forms a viral
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replication complex [60]. The X domain serves as another putative
IFN antagonist, which inhibits phosphorylation of interferon regu-
latory factor (IRF-3) and blocks the interferon beta (IFN-b) produc-
tion [48].

5.2. Structural capsid protein encoded by ORF2

The N-terminus of the capsid protein contains a signal peptide
sequence, which translocates the capsid protein into the ER. The
capsid protein self-assembles into VLPs when expressed in recom-
binant baculovirus system or E. coli system [26]. The C-terminus of
the capsid protein is essential for encapsidation of viral genome
and particle stabilization [61]. The capsid protein is abundantly
located in the cytoplasm and binds explicitly to the 50 region of
HEV genome [62,63]. Recently, HEV capsid protein has been
reported to be widely distributed in subcellular organelles, includ-
ing the ER, Golgi, and even nucleus [64]; however, independent
confirmation is still lacking. Large amounts of capsid protein are
produced during HEV infection, with the majority present in the
supernatant of cells or patient sera not associated with virus parti-
cles; only a minority of the capsid protein is assembled into infec-
tious virions. There exist two distinct forms of capsid protein
translated from the ORF2: a secreted form (ORF2S) initiated at
the originally recognized ORF2 start codon and a capsid-
associated form (ORF2C) initiated at an internal ORF2 start codon,
that is 15 amino acids downstream from the ORF2S start [33,34].
ORF2S undergoes post-translational modifications and has a larger
protein size of 84 kDa, compared to 72 kDa for the ORF2C. The
ORF2S is implicated in HEV immune evasion by inhibiting
antibody-mediated neutralization [34] but further in-depth study
is warranted to delineate the precise functions of ORF2S.

The capsid protein is highly immunogenic and elicits neutraliz-
ing antibodies; the amino acid residues between 578 and 607 of a
genotype 1 HEV contain linear and/or conformational epitopes,
important for monoclonal antibody (mAb) recognition [65]. The
Arg512 residue appears to be a crucial residue for interaction with
a mAb 8C11 [66]. The amino acid residues Leu377 and Leu613 of a
genotype 4 HEV are critical in forming neutralizing epitope [67].
Antigenic variations have been observed using strain-specific or
genotype-specific mAb’s against different HEV strains [66]. Also,
cross-genotype neutralizing mAb 8G12 identified several con-
served amino acid residues for both genotypes 1 and 4 HEV neu-
tralization, hinting at the existence of pan-genotypic epitopes
[68]. The potential role of capsid protein in HEV pathogenicity is
unknown, but three amino acid mutations (F51L, T59A, and
S390L) in the capsid protein have been shown to collectively con-
tribute to virus attenuation [69].

The commercial Hecolin HEV vaccine, based on a recombinant
E. coli-expressed capsid protein p239, has demonstrated its safety
and efficacy in a large-scale phase III clinical trial [70] and is
approved and licensed for use in China in 2012 [71]. Furthermore,
the Hecolin vaccine is currently undergoing a phase IV clinical trial
to assess the safety, immunogenicity, and effectiveness in pregnant
women in rural areas of Bangladesh [72].

5.3. A multifunctional protein encoded by ORF3

The ORF3 almost entirely overlaps with ORF2 and encodes a
small phosphoprotein, which is phosphorylated at the Ser71 resi-
due by the extracellularly regulated kinase (ERK), a member of
the mitogen-activated protein kinase (MAPK) family [73,74]. It
appears that ORF3 protein is not required for HEV replication in
hepatoma cells, but is indispensable for HEV infection in both rhe-
sus macaques and pigs [42,75,76]. Remarkably, a study has shown
that phosphorylation of ORF3 protein is not necessary for viral
replication or infectious virions production [42]. The phosphoryla-
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tion status of ORF3 protein remains to be elucidated. The filamen-
tous and punctate distribution patterns have been observed for
ORF3 protein as well as its interaction with microtubules [77].
ORF3 protein upregulates the expression of glycolytic pathway
enzymes via the stabilization of hypoxia-inducible factor 1 (HIF-
1) and attenuates the cell mitochondrial death pathway [78,79].
Sequence analyses indicate that ORF3 protein contains two
hydrophobic domains in its N-terminus: D1 and D2, and two
proline-rich domains toward its C-terminus: P1 and P2. The P2
domain has two PXXP motifs, which bind to many Src homology
3 (SH3) domains-containing cellular proteins and molecules [80],
suggesting that the ORF3 protein is a regulatory protein involved
in the modulation of cell signaling. For example, ORF3 protein
binds CIN85, which competes with the formation of the growth
factor receptor Cbl-CIN85 complex, leading to a delayed degrada-
tion of endomembrane growth factor and prolonged cell survival
[81]. Furthermore, the PXXP motifs in ORF3 protein interact with
tumor susceptibility gene 101 protein (TSG101) [82–84], an essen-
tial cellular factor of endosomal sorting complexes required for the
transport (ESCRT) pathway. Additionally, ORF3 protein downregu-
lates the toll-like receptor 3 (TLR-3) mediated nuclear factor kappa
B (NF-jB) signaling via tumor necrosis factor receptor 1-associated
death domain protein (TRADD) and receptor-interacting protein
kinase 1 (RIP1) [85]. ORF3 protein also shares structural similarity
to class I viroporins, and functions as a membrane ion channel to
facilitate HEV particle release [86]. It has been reported that the
Fig. 5. Proposed life cycle of hepatitis E virus (HEV). (1) Non-enveloped HEV (neHEV) par
enter via an as yet unidentified specific cellular receptor; (2) Quasi-enveloped HEV (eHEV
which requires small GTPases Ras-related proteins Rab5 and Rab7; (3) The viral genom
process; (4) The viral genomic RNA directly serves as mRNA for ORF1 polyprotein tra
template for HEV replication; (5) The intermediate negative-sense RNA then serves as
(sgRNAs); (6) More ORF1 polyproteins are translated from the full-length genomic RNA, a
sgRNAs; (7) ORF2 and ORF3 undergoes post-translational modifications such as glycosyl
into virus-like particles (VLPs) and binds to newly synthesized positive-sense genomic R
interaction with a number of cellular proteins to promote viral replication and virion secr
the budding of nascent virions into multivesicular bodies, which fuse with the plasma me
as eHEV or in the bile duct as neHEV. The figure is created with Biorender.com.
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palmitoylation of ORF3 protein is required to determine its subcel-
lular localization and membrane topology [87]. Taken together,
ORF3 protein is a multifunctional protein and plays a vital role in
the HEV life cycle.

5.4. A novel ORF4 protein in genotype 1 HEV

A novel viral protein designated ORF4 protein, which is mapped
within the ORF1 but translated from a different frame, is identified
in most genotype 1 HEVs but not in other HEV genotypes [35]. The
ORF4 protein has a molecular weight of approximately 20 kDa and
is induced by ER stress [35,88]. ORF4 protein interacts with multi-
ple viral and host proteins, including Hel, RdRp, X, and eukaryotic
elongation factor 1 isoform-1 (eEF1a1), and assembles a protein
complex stimulating viral RdRp activity [35]. It appears that ecto-
pic expression of ORF4 increases the genotype 3 HEV fitness in cell
culture [89]. Nonetheless, many questions remain about the exact
role of ORF4 in the HEV life cycle. For example, why does it exist
only in genotype 1 HEV strains? Are there any functionally equiv-
alent but not-yet-identified protein in other HEV genotypes?

6. Life cycle of HEV replication

The HEV life cycle remains poorly understood to date, largely
due to the lack of an efficient cell culture system to propagate
the virus. As a fecal-orally transmitted virus, HEV first enters the
ticles bind to heparan sulfate proteoglycans (HSPGs) on the surface of liver cells and
) particles enters liver cells via dynamin-dependent, clathrin-mediated endocytosis,
ic RNA is released to cytosol after uncoating of capsid protein with an unknown

nslation, and also synthesizes a complementary negative-sense RNA to serve as a
a template for transcription of full-length genomic as well as subgenomic mRNAs
nd the ORF2 capsid protein and ORF3 multifunctional protein are translated from the
ation, phosphorylation, and palmitoylation; (8) ORF2 capsid protein self-assembles
NA to form progeny HEV virions; (9) ORF3 regulates the host environment through
etion. Specifically, ORF3 binds to TSG101 involved in the ESCRT pathway, facilitating
mbrane, and the virions are released from the liver cells either into the bloodstream
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host via the gastrointestinal tract and replicates in intestinal
epithelial cells. Subsequently, the virus enters the bloodstream
via viremia and reaches its target organ, the liver [90]. Heparan sul-
fate proteoglycans (HSPGs) are important for HEV cellular binding,
but a specific cellular receptor for HEV attachment is still not iden-
tified [91] (Fig. 5). It is believed that the eHEV and neHEV exploited
distinct virus entry mechanisms: eHEV enters cells via a dynamin-
dependent, clathrin-mediated endocytosis, which requires small
GTPases Ras-related proteins Rab5 and Rab7, and the lipid mem-
brane is degraded by a lysosomal protein Niemann-Pick disease
type C1 (NPC1). The knowledge regarding neHEV entry mechanism
is scarce [92]. After an unknown uncoating process of HEV capsid,
the viral genomic RNA directly serves as mRNA for ORF1 polypro-
tein translation, which produces a number of functional enzymes
or domains as outlined above. The viral replicase RdRp synthesizes
a complementary negative-sense RNA to serve as a template for
HEV replication and transcription of the sgRNA, which is responsi-
ble for translating ORF2 protein and ORF3 protein. The negative-
sense RNA has been detected in livers and extrahepatic tissues of
various animals experimentally infected with HEV [90]. It has been
reported that ORF1 polyprotein localizes to ER membranes, which
probably is the site of HEV replication [45,51]. The secreted form
ORF2S undergoes post-translational modifications and acts as
immune decoys, whereas the capsid-associated form ORF2C self-
assembles to VLPs, and packages genomic RNA to progeny HEV
virions [34]. ORF3 protein interacts with microtubules and multi-
ple host cellular proteins in modulating the host environment for
HEV replication [73,77,87]. Importantly, ORF3 protein binds to
TSG101 involved in the ESCRT pathway, facilitating the budding
of nascent virions into multivesicular bodies [83]. Finally, the mul-
tivesicular bodies fuse with the plasma membrane, and the virions
are released from liver cells either into the bloodstream wrapped
with a lipid membrane (eHEV), or in the bile duct where the
quasi-envelope is degraded by bile salts [22]. In-depth reviews
on interactions between viral and host cell factors during HEV
infection can be found elsewhere [93]. The underlying molecular
mechanisms in several steps of HEV life cycle, especially the entry,
uncoating, assembly and release steps, remain poorly understood.
Recent advances in developing cell lines that support more effi-
cient HEV replication will aid mechanistic studies of HEV life cycle,
which will be crucial for developing HEV-specific antiviral drugs in
the future [94–96].

7. Summary and outlook

Significant advances have been made in many aspects of HEV
structural and molecular biology, including determination of the
3D structure of HEV VLPs, identification of quasi-enveloped form
of HEV virions in blood, discovery of two distinct forms of capsid
protein with different functions, identification of four regulatory
cis-reactive elements, and establishment of more efficient cell cul-
ture systems for HEV propagation. These novel discoveries help
understand the underlying mechanisms of HEV replication and
pathogenesis. However, significant scientific gaps remain for this
important but extremely-understudied pathogen. Many novel
strains of HEV still cannot be efficiently propagated, and develop-
ment of more efficient HEV cell culture system should still be a pri-
ority so that we can delineate the virus replication cycle and
develop cost-effective vaccine. Many critical steps in the HEV life
cycle remain poorly understood, which hinders the development
of HEV-specific antivirals. The structural and functional relation-
ship of HEV genes and their roles in HEV pathogenesis especially
cross-species infection also warrant further in-depth study. The
HEV vaccine Hecolin is approved for use only in China, it will be
important to determine its protective efficacy against the diverse
genotypes of HEV, especially the emerging zoonotic HEV strains.
1914
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