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Walking speed as one index of gait ability is an important component of physical fitness
among older adults. Walking speed-arterial stiffness relationships have been studied, but
whether poor walking speed is associated with higher segment-specific arterial stiffness
in older adults is unclear. We thus aimed to examine the relationship between walking
speed and segmental arterial stiffness among older community dwellers. This study
was a cross-sectional study of 492 older Japanese community dwellers (age range, 65
to 96 years). Heart-brachial PWV (hbPWV), brachial-ankle PWV (baPWV), heart-ankle
PWV (haPWV), and cardio-ankle vascular index (CAVI) were used as arterial stiffness
indices. Walking speed, strength, flexibility, and cognitive function were also assessed.
The participants were categorized into low (Slow), middle (Middle), and high (Fast) tertiles
according to walking speed. The CAVI and baPWV were significantly lower in Fast than
in Slow. Significant decreasing trends in CAVI and baPWV and a tendency toward
decreasing trend in haPWV were observed from Slow to Fast, whereas hbPWV did
not significantly differ among tertiles and no trend was evident. The results remained
significant after normalizing CAVI and PWVs for multicollinearity of arterial stiffness
indices and major confounding factors, such as age, gender, body mass index, blood
pressure, cognitive function, and each physical fitness. Therefore, these findings suggest
that poor walking speed is associated with higher segment-specific arterial stiffness of
the central and lower limbs, but not of upper, in older adult community dwellers.

Keywords: arteriosclerosis, gait ability, cardiovascular disease, cardio-ankle vascular index, pulse wave velocity

INTRODUCTION

Pulse wave velocity (PWV) and cardio-ankle vascular index (CAVI) are widely used as clinical
indicators of arterial stiffness (Tanaka and Safar, 2005; Shirai et al., 2011). Increased arterial
stiffness has been identified as an independent risk factor for future cardiovascular diseases or
mortality (Laurent and Boutouyrie, 2007; Vlachopoulos et al., 2010; Vlachopoulos et al., 2012;
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Ohkuma et al., 2017). Arterial stiffness progressively increases
with advancing age even among healthy individuals (Tomiyama
et al., 2003; Nishiwaki et al., 2014b, 2019b), but the degree is
modulated by levels of physical fitness or physical activity (PA).
In fact, higher levels of physical fitness or PA are associated with
less arterial stiffness among older people (Yamamoto et al., 2009;
Gando et al., 2010; Nishiwaki et al., 2014b; Gando et al., 2016),
and regular PA can also reduce arterial stiffness even among older
people (Miura et al., 2015; Nishiwaki et al., 2018). Maintaining
physical fitness and habitually participating in PA are thus of
paramount importance for preventing and improving arterial
stiffness among older adults.

Walking speed as one index of gait ability is an important
component of physical fitness, especially among older adults
(Barak et al., 2006), is generally considered to predict future
cardiovascular diseases, disability, or mortality (Al Snih et al.,
2002; Cesari et al., 2005, 2009; Rolland et al., 2006; Ostir
et al., 2007; Mozaffarian et al., 2008; Dumurgier et al., 2009;
Sattelmair et al., 2010), and is recognized as important for
preventing frailty (Fried et al., 2001; Shimada et al., 2015).
Although cardiorespiratory fitness, strength, and flexibility are
widely known to be associated with arterial stiffness (Vaitkevicius
et al., 1993; Yamamoto et al., 2009; Nishiwaki et al., 2014b;
Tanisawa et al., 2015; Gando et al., 2016), some studies have
examined relationships between gait ability and arterial stiffness
in older adults (Brunner et al., 2011; Watson et al., 2011;
Gonzales, 2013). The Whitehall II Study identified an inverse
correlation between walking speed and carotid-femoral PWV
(cfPWV) (Brunner et al., 2011). The study of Gonzales also
reported that lower gait performance is significantly associated
with higher cfPWV (Gonzales, 2013). Therefore, these findings
indicate that walking speed is related to aortic arterial stiffness
(cfPWV) in older adults and understanding such relationship
could help partially to explain why gait ability can predict
cardiovascular diseases and mortality.

Although aortic arterial stiffness has been generally proposed
as the reference standard, brachial-ankle PWV (baPWV), heart-
brachial PWV (hbPWV), and CAVI are attracting increasing
attention (Kim et al., 2019; Sugawara et al., 2019). These
parameters do not require higher special technique (i.e.,
placement of transducers) and are significantly associated with
aortic arterial stiffness (Kim et al., 2019; Sugawara et al., 2019).
However, PWV-assessed arterial stiffness would differ in regards
to measurement segmentation (i.e., central vs. peripheral and
active limb vs. non-active limb) (Kume et al., 2020; Nishiwaki
et al., 2020). Indeed, Avolio et al. (1985) and Tomiyama et al.
(2003) indicate that age-related increase in arterial stiffness can be
greater in aortic and leg than in arm. Recent studies also identified
that single-exercise (cycling, resistance exercise, and stretching)
reduces arterial stiffness only in the exercised leg, but not in
the control non-exercised leg (Sugawara et al., 2004; Heffernan
et al., 2006; Yamato et al., 2017). Interestingly, a previous study
indicates that slower gait speed was associated with higher PWV
in older adults with peripheral artery disease (PAD), but not
in older adults without PAD (Watson et al., 2011). Thus, these
findings raise the possibility that walking speed relates to statuses
of artery, especially in central and lower limbs or primarily

exercise-related limbs in older adults. Therefore, further detailed
studies are required to examine the relationship between walking
speed and segmental arterial stiffness. However, these points have
not been addressed in community dwelling older adults as far as
we can ascertain.

With this information as background, we hypothesized that
walking slowly reflects site-specific higher arterial stiffness among
older adults. Therefore, this cross-sectional study aimed to
examine the relationship between walking speed and segmental
arterial stiffness among older community dwellers in Japan.

METHODS

Participants
Japanese community dwellers aged ≥ 65 years in Osaka and
Kawakami village in Nara Prefecture were recruited using
local advertisements and referrals from public offices. The data
collection period was from September 2014 to December 2019,
total 583 participants were recruited in this cross-sectional study.
We excluded 91 participants due to missing data associated
with arterial stiffness and physical fitness (n = 14, 2.4%), refusal
to cooperate (n = 5, 0.9%), pain (n = 4, 0.6%), dementia
(score of the Cognitive Assessment for Dementia, iPad version
2 [CADi2] ≤ 5) (n = 28, 4.8%), chronic diseases that affected
walking (n = 2, 0.3%), features of peripheral arterial disease
(ankle-brachial index [ABI] < 0.90) (n = 20, 3.4%), and
technical errors associated with measuring arterial stiffness such
as an undetectable pulse wave (n = 18, 3.1%). Data from
492 (male, n = 166; female, n = 326; age, 65–96 years) older
Japanese community dwellers who met the inclusion criteria
were analyzed. In accordance with previously reported methods
(Dumurgier et al., 2009), the participants were categorized
according to low (≤ 1.54 m/s in men and ≤ 1.49 m/s in women;
Slow), middle (1.55 – 1.83 m/s in men and 1.50 – 1.78 m/s in
women; Middle), or high (≥ 1.84 m/s in men and ≥ 1.79 m/s
in women; Fast) tertiles based on each walking speed. The
purpose, procedures, and risks of the study were explained to
the recruits, all of whom provided written informed consent to
participate. The Human Ethics Committee at the Osaka Institute
of Technology reviewed and approved the study (2016-7 and
2018-1), which was conducted according to the guidelines of the
Declaration of Helsinki.

Measurements
The participants abstained from vigorous exercise for at least
24 h before, cigarette smoking and medications on the day, and
caffeine and food for 4 h before testing. We measured the height
and weight of participants while wearing light clothing, then body
mass index (BMI) was calculated as weight divided by height
squared (Nishiwaki et al., 2014a). Waist circumference (WC) was
measured around the abdomen at the level of the navel at the late
expiratory phase using a tape measure (Nishiwaki et al., 2017b).
We also determined smoking status, use of anti-hypertensive
or anti-hyperlipidemic medications, and exercise status in face-
to-face interviews (as yes or no answers). All parameters were
measured in a quiet air-conditioned room at 22◦C – 24◦C.
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Arterial Stiffness, Blood Pressure, and
Heart Rate
After resting for 15 min, segmental PWV, blood pressure (BP),
and heart rate (HR) were measured in the supine position
using a VS-1500AE/AN semi-automated device (Fukuda Denshi,
Japan) (Nishiwaki et al., 2017a,c, 2019a). Electrocardiography
(ECG), heart sounds, PWV, and BP were assessed in the
supine position. Electrodes for ECG were placed on both
wrists, and a microphone was placed at the sternum for
phonocardiography. HR was automatically calculated from the
R-R intervals on ECG. Cuffs were wrapped around both
brachial upper arms and ankles and connected to a volume-
plethysmographic sensor that determines volume pulse form
and an oscillometric pressure sensor that measures BP. Ankle-
brachial index (ABI) was obtained by dividing ankle SBP
by brachial SBP. Cardio-ankle vascular index (CAVI) was
automatically calculated from 5 pulse-wave signals using the
following formula: CAVI = a [(2ρ/PP)× ln (SBP/DBP)× PWV2]
+ b, where DBP is diastolic blood pressure, PP is SBP -
DBP, ρ is the blood density, and a and b are constants
(Shirai et al., 2011; Nishiwaki et al., 2014b). The heart-brachial
PWV (hbPWV), brachial-ankle PWV (baPWV), and heart-
ankle PWV (haPWV) were also calculated by dividing the
distance between the recording sites by the transit times, as
described (Yamashina et al., 2002; Nishiwaki et al., 2015). The
means of the left and right brachial BP, PWV, and CAVI
values in each participant were subsequently analyzed. The
coefficients of variation (CV) that reflect the reproducibility of
measurements, were 4.2 ± 0.6%, 2.7 ± 0.3%, 2.6 ± 0.6%, and
3.6 ± 0.6% for hbPWV, baPWV, haPWV, and CAVI, respectively
(Nishiwaki et al., 2017a,c, 2019a).

Cognitive Function and Physical Fitness
Test
Cognitive function was assessed using the CADi2 as described
(Onoda et al., 2013). The CADi2 consists of the following
items: immediate recognition memory for three words, semantic
memory, categorization of six objects, subtraction, backward
repetition of digits, cube rotation, pyramid rotation, trail-
making A, trail-making B, and delayed recognition memory
for three words. Scores for the CADi2 significantly correlate
with Mini-Mental State Examination (MMSE) scores that
serve as the gold-standard of cognitive function assessment
(Onoda et al., 2013). If MMSE cutoff of 23 points is applied,
a cut point corresponding the score is 5 and serve as a
useful tool for assessing dementia in Japanese populations
(Onoda et al., 2013).

Handgrip strength was measured in duplicate using a
dynamometer (T.K.K.5001 Grip-A; Takei Scientific Instruments
Co., Ltd., Tokyo, Japan) and mean left and right values
were analyzed (Nishiwaki et al., 2014b, 2015, 2017c). Knee
extension strength was isometrically measured in duplicate
using a dynamometer (TKK-5715; Takei Scientific Instruments
Co. Ltd., Tokyo, Japan) and mean left and right values were
analyzed. Trunk flexibility was measured with the sit-and-
reach test using a T-283 device (Toei Light, Tokyo, Japan)

as described (Nishiwaki et al., 2014b, 2015). The 6 m walk
test proceeded as follows (Dumurgier et al., 2009; Nishiwaki
et al., 2018, 2019b). The participants started to walk 3 m
before a start line to exclude the duration of acceleration
from normal walking speed, then walked as fast as possible
without running for 6 m. The walk time during the 6 m
walking was measured in duplicate using a stopwatch and the
mean values were used. Walking speed was calculated as the
ratio between distance and time. A previous large prospective
cohort study has demonstrated that slow speed of the short
distance maximum walking is associated with cardiovascular
death in older adults (Dumurgier et al., 2009). Because the
walk test of short distance (6 m) is simple to administer in a
short time and convenient to measure in a room, the present
study used the test as an indicator of gait speed. In order
to compare the observed maximum walking speed with the
theoretical optimal walking speed of the elderly (OWS), the
locomotor rehabilitation index (LRI) was also calculated by
using following formula; LRI (%) = walking speed (maximum)
/

√
0.25 · 9.81 · participants’ height · 0.54 · 100 (Gomenuka

et al., 2019). All daily CVs were < 10% (Nishiwaki et al., 2014b,
2015, 2017c, 2018, 2019b).

Physical Activity
In 338 (108 males and 229 females) of limited participants,
physical activity (PA) data during one week were assessed
by a single-axis activity monitor (Lifecorder PLUS; Suzuken
Co., Ltd., Aichi, Japan) under sealed conditions (uninformed
measured values), as previously described (Nishiwaki et al.,
2017b, 2018). A valid day was defined as wearing the monitor
for > 10 h (Troiano et al., 2008). The length of time that the
monitor was worn was determined by subtracting the length
of time during which it was not worn (non-wear time) from
24 h. Non-wear time was defined as an interval of at least 60
consecutive minutes of zero activity intensity counts (Troiano
et al., 2008). Days when the equipment was not worn were
excluded from analysis, and data from participants who had
four or more valid days per week were subsequently analyzed.
Based on the study of Kumahara et al. (2004), we obtained steps
(steps/day) and the duration of daily PA corresponding to 1.5-
2.9 METs (light), 3.0-5.9 METs (moderate), and > 6.0 METs
(vigorous), and to < 1.4 METs by subtracting the sum of the
duration of light, moderate and vigorous PA from 1440 min
(inactive time).

Statistics
Continuous data were analyzed using one-way ANOVA and
MANCOVA. In particular, the analysis of MANCOVA with
adjusted model 1 were normalized multicollinearity of arterial
stiffness indices and confounding factors such as age, gender,
BMI, mean BP (MBP), HR, cognitive function, strength,
flexibility, smoking status, exercise status, anti-hypertensive
medication, and anti-hyperlipidemic medication. The analysis
of MANCOVA with adjusted model 2 were also normalized
factors of model 1, moderate PA time, and vigorous PA time.
Significant F values were assessed using post hoc tests with the
Bonferroni correction to identify significant differences among
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mean values. Trends were analyzed using linearity tests and
weighted P values were adjusted for sample size. Differences in
non-parametric variables were analyzed using Kruskal–Wallis
tests followed by Schefféì tests. The relationships between walking
speed or LRI and each arterial stiffness indices were assessed
using univariate regression analyses and forced entry multiple
regression analyses. All data were statistically analyzed using
SPSS 25.0J (IBM SPSS Japan, Japan). Data are presented as
means ± SE. Differences and relationships were considered
significant at P < 0.05.

RESULTS

Table 1 shows the characteristics of the participants divided
into tertiles according to walking speed. Age, height, and
weight significantly differed and trends were evident among
the tertiles. Although systolic BP and MBP did not differ
among the tertiles, diastolic BP and ABI were significantly
higher and pulse pressure was significantly lower in Fast group
than in Slow group. Cognitive function and sit-and-reach were

significantly better in Middle and Fast groups than in Slow
group. Walking speed, LRI, handgrip, knee extension strength,
time spent of moderate PA, and steps were significantly higher
in Middle and Fast groups than in Slow group, and notably
higher in Fast group than in Middle group. A significant
increasing trend was evident in cognitive function, physical
fitness, steps, and daily time spent in each physical activity
from Slow to Fast.

Figure 1 shows the results for CAVI and PWVs in
each group. The findings of ANOVA showed significantly
lower CAVI and baPWV in Fast group than in Slow group,
and the CAVI of Fast group was also lower than that in
Middle group. Significant decreasing trends in baPWV and
CAVI and a tendency toward decreasing trend in haPWV
were observed from Slow to Fast, whereas hbPWV did
not significantly differ among groups or exhibit any trends.
MANCOVA of model 1 also indicates that the results of
ANOVA did not change after normalizing CAVI, baPWV,
and hbPWV but significantly changed after adjusting haPWV,
which was lower in Fast group than in Slow and Middle
groups, for multicollinearity of arterial stiffness indices and

TABLE 1 | Characteristics of the participants.

Parameters All Slow group Middle group Fast group Difference P Trend P

n = 492 n = 162 n = 165 n = 165 – –

Number of Women (%) 326 (66.3) 107 (66.0) 109 (66.1) 110 (66.7) =0.991 –

Age, yrs 76.4 ± 0.3 79.5 ± 0.5 76.3 ± 0.5* 73.5 ± 0.4*† < 0.001 < 0.001

Height, cm 153.8 ± 0.4 151.3 ± 0.7 154.0 ± 0.6* 156.0 ± 0.7* < 0.001 < 0.001

Weight, kg 53.9 ± 0.4 52.7 ± 0.8 53.3 ± 0.8 55.7 ± 0.8* = 0.018 = 0.007

Body mass index, kg/m2 22.7 ± 0.1 23.0 ± 0.3 22.4 ± 0.2 22.8 ± 0.2 = 0.245 = 0.558

Waist circumference, cm 83.3 ± 0.4 85.1 ± 0.8 82.0 ± 0.7* 83.0 ± 0.7 = 0.011 = 0.047

Systolic BP, mmHg 141 ± 1 142 ± 1 141 ± 1 141 ± 2 = 0.920 = 0.955

Diastolic BP, mmHg 83 ± 1 82 ± 1 82 ± 1 85 ± 1*† = 0.004 = 0.003

Mean BP, mmHg 108 ± 1 108 ± 1 107 ± 1 109 ± 1 = 0.572 = 0.492

Pulse Pressure, mmHg 58 ± 1 60 ± 1 59 ± 1 56 ± 1* = 0.040 = 0.013

Heart rate, beats/min 71 ± 1 70 ± 1 71 ± 1 71 ± 1 = 0.451 = 0.274

Ankle-brachial index, unit 1.13 ± 0.01 1.12 ± 0.01 1.13 ± 0.01 1.15 ± 0.01* < 0.001 < 0.001

Walking speed, m/s 1.66 ± 0.02 1.30 ± 0.01 1.65 ± 0.01* 2.03 ± 0.02*† < 0.001 < 0.001

Locomotor rehabilitation index, % 116.3 ± 1.1 92.0 ± 1.0 115.9 ± 0.5* 141.2 ± 1.2*† < 0.001 < 0.001

Handgrip strength, kg 25.1 ± 0.4 22.5 ± 0.6 25.3 ± 0.6* 27.4 ± 0.6*† < 0.001 < 0.001

Knee extension strength, kg 23.6 ± 0.4 19.2 ± 0.6 23.9 ± 0.6* 27.8 ± 0.7*† < 0.001 < 0.001

Sit-and-reach, cm 30.3 ± 0.4 27.7 ± 0.8 30.8 ± 0.7* 32.4 ± 0.8* < 0.001 < 0.001

Cognitive function, scores 8.6 ± 0.1 8.2 ± 0.1 8.7 ± 0.1* 9.0 ± 0.1* < 0.001 < 0.001

Number of smokers (%) 29 (5.9) 11 (6.8) 12 (7.3) 6 (3.6) = 0.296 –

Number of participants with exercise habits (%) 284 (57.7) 83 (51.2) 96 (58.2) 105 (63.6) = 0.074 –

Number of participants using HTM (%) 195 (39.6) 70 (43.2) 70 (42.4) 55 (33.3) = 0.107 –

Number of Participants using HLM (%) 148 (30.1) 48 (29.6) 51 (30.9) 49 (29.7) = 0.941 –

Daily time spent in physical activity n = 337 n = 108 n = 107 n = 122 – –

Light, min/day 680 ± 6 653 ± 12 682 ± 10 702 ± 10* = 0.007 = 0.002

Moderate, min/day 14 ± 1 8 ± 1 14 ± 1* 18 ± 1*† < 0.001 < 0.001

Vigorous, min/day 0.8 ± 0.2 0.3 ± 0.1 1.0 ± 0.5 1.0 ± 0.1 = 0.151 = 0.105

Inactivity, min/day 746 ± 7 778 ± 13 744 ± 11 719 ± 10* = 0.001 < 0.001

Steps, steps/day 5850 ± 169 4431 ± 285 5834 ± 280* 7121 ± 261*† < 0.001 < 0.001

BP, blood pressure; HTM, anti-hypertensive medication; HLM, anti-hyperlipidemic medication. Date are mean± SE. ∗P < 0.05 vs. Slow group, †P < 0.05 vs. Middle group.
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FIGURE 1 | Comparisons of CAVI (A), haPWV (B), hbPWV (C), and baPWV (D) in each tertile. CAVI, cardio-ankle vascular index; haPWV, heart-ankle pulse wave
velocity; hbPWV, heart-brachial pulse wave velocity; baPWV, brachial-ankle pulse wave velocity; Slow, lowest tertile (≤ 1.54 m/s in men and ≤ 1.49 m/s in women);
Middle, middle tertile (1.55 m/s to 1.83 m/s in men and 1.50 m/s to 1.78 m/s in women); Fast, highest tertile (≥ 1.84 m/s in men and ≥ 1.79 m/s in women).
MANCOVA; the model was adjusted multicollinearity of arterial stiffness indices and confounding factors such as age, gender, body mass index, mean blood
pressure, heart rate, cognitive function, handgrip strength, flexibility, smoking status, exercise status, anti-hypertensive medication, and anti-hyperlipidemic
medication. *P < 0.05 vs. Slow; †P < 0.05 vs. Middle.

confounding factors such as age, gender, BMI, MBP, HR,
cognitive function, handgrip strength, flexibility, smoking
status, exercise status, anti-hypertensive medication, and anti-
hyperlipidemic medication. For the limited participants, the
analysis of MANCOVA of model 2 indicates that the results
remained significant after normalizing CAVI and PWVs for
moderate PA time and vigorous PA time in addition to
factors of model 1.

The results of the univariate regression analysis indicate
that walking speed correlated especially with handgrip strength
(r = 0.365, P < 0.001), knee extension strength (r = 0.485,
P < 0.001), flexibility (r = 0.183, P < 0.001), cognitive
function (r = 0.240, P < 0.001), CAVI (r = −0.143,

P = 0.001) and baPWV (r = −0.143, P = 0.002), but
not with haPWV (r = −0.069, P = 0.128) and hbPWV
(r = 0.043, P = 0.337). In order to determine the physical
factors predicting walking speed in older adults, we further
performed multiple regression analysis. In addition to BMI,
knee extension strength, flexibility, and cognitive function,
the analyses identified CAVI and baPWV were significant
independent factors that regulate walking speed and haPWV
tended to be an independent factor, but hbPWV were not
(Table 2). LRI also correlated with CAVI (r =−0.165, P < 0.001)
and baPWV (r = −0.138, P = 0.002). However, LRI did not
correlate with haPWV (r = −0.088, P = 0.050) and hbPWV
(r = 0.004, P = 0.936).
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DISCUSSION

Significantly higher CAVI and baPWV and a tendency
toward higher haPWV were identified in Slow group
compared with Fast group and significant decreasing
trends were evident in CAVI and baPWV. Nevertheless,
significant difference and trend in hbPWV were not found
among the tertiles. To our knowledge, this is the first
study to directly evaluate the relationship between walking
speed and segment-specific arterial stiffness in older adult
community dwellers.

During human walking, energy-saving strategy by the
pendular mechanism persists (Gomenuka et al., 2014), and
the theoretical OWS in elderly is the absolute speed at
which participants spend less metabolic energy per meter
of traveled distance. In this study, LRI of Slow group
shows that observed maximum walking speed may be more
limited than OWS (LRI < 100). LRI of Middle and Fast
groups was significantly higher than that of Slow group
(LRI > 100), and LRI of Fast group notably higher than
that of Middle group. Regular exercise intervention can also
enhance metabolic economy in elderly (Gomenuka et al., 2020).
These results thus suggest that observed maximum walking
speed of Slow group is metabolically low economic efficiency
to pendular mechanism and may be physiologically limited
with aging. In fact, our multiple regression analyses support
that BMI, strength, flexibility, and cognitive function affect
maximum walking speed.

Blood pressure strongly affects PWV (Benetos et al., 1993;
Nishiwaki et al., 2014b, 2017c). In this study, neither systolic
BP nor MBP significantly differed among the groups. Here,
we assessed arterial stiffness using CAVI, which is theoretically
adjusted by BP and represents arterial stiffness from the
aorta to the ankle (Shirai et al., 2011). We also adjusted
arterial stiffness for BP and other confounding factors using
MANCOVA. Thus, these findings indicate that BP in our
study did not strongly affect the relationships between walking
speed and segment-specific arterial stiffness in older adult
community dwellers.

ANOVA and MANCOVA indicate significant differences
and trends in baPWV as well as CAVI, but not in hbPWV.
Information derived from baPWV is generally considered to
be comparable that derived from aortic PWV (Yamashina
et al., 2002; Sugawara et al., 2005; Tanaka et al., 2009).
However, baPWV moderately reflects arterial stiffness of the
lower limbs from the brachium (thoracoabdominal level) to
the ankle (Sugawara et al., 2005). Although about 50% of
baPWV variances can be explained by central PWV, at least
20% can be explained by leg PWV (Sugawara et al., 2005).
Conversely, hbPWV reflects arterial stiffness of the upper limbs
from the aorta to the brachium and can serve as a novel
marker of arterial stiffness of the proximal aorta (Sugawara
et al., 2016, 2019). Our data suggest that the relationship
between walking speed and arterial stiffness can vary at
different sites, particularly between the upper and central-
lower limbs, and walking speed can be mainly associated
with arterial stiffness of the central and lower limbs. Indeed,

TABLE 2 | Multiple-regression analyses of each arterial stiffness index and
physical factors affecting walking speed.

β P-value

CAVI (r = 0.545, adjusted r2 = 0.288, P < 0.001)

Body mass index −0.124 = 0.003

Strength 0.470 < 0.001

Flexibility 0.150 < 0.001

Cognitive function 0.119 = 0.005

CAVI −0.111 = 0.008

haPWV (r = 0.539, adjusted r2 = 0.283, P < 0.001)

Body mass index −0.117 = 0.006

Strength 0.476 < 0.001

Flexibility 0.154 < 0.001

Cognitive function 0.121 = 0.004

haPWV −0.081 = 0.052

hbPWV (r = 0.536, adjusted r2 = 0.279, P < 0.001)

Body mass index −0.118 = 0.006

Strength 0.481 < 0.001

Flexibility 0.158 < 0.001

Cognitive function 0.123 = 0.004

hbPWV −0.049 = 0.243

baPWV (r = 0.541, adjusted r2 = 0.284, P < 0.001)

Body mass index −0.110 = 0.009

Strength 0.464 < 0.001

Flexibility 0.157 < 0.001

Cognitive function 0.121 = 0.004

baPWV −0.088 = 0.032

CAVI, cardio-ankle vascular index; haPWV, heart-ankle pulse wave velocity; hbPWV,
heart-brachial pulse wave velocity; baPWV, brachial-ankle pulse wave velocity.

arterial stiffness was inversely related to walking speed in
participants with PAD, but not in participants without PAD
(Watson et al., 2011). Moreover, single-leg cycling, resistance
exercise, and stretching modulate arterial stiffness only in
the exercised leg, and not in the control non-exercised leg
(Sugawara et al., 2004; Heffernan et al., 2006; Yamato et al.,
2017). Therefore, our findings suggest that the relationship
between walking speed and arterial stiffness might be contributed
to regional relationships or effects rather than systemic
relationships or alterations.

We can only speculate on the possibilities underlying the
physiological relationship between walking speed and segmental
arterial stiffness. Because significantly higher PA and steps
were observed in Fast group than in Slow group, repetitive
increases in blood flow or shear stress with regular PA
may have affected the vascular endothelium or mechanical
distension, especially in active parts, which triggers decreased
arterial stiffness. From the perspective of functional changes,
endothelin-1 and nitric oxide might participate in vascular
adaptations to exercise (Tanaka and Safar, 2005; Tanaka, 2019).
From the perspective of structural changes, one study also
inferred that increased pulse pressure and mechanical distension
during aerobic exercise can stretch collagen fibers and modify
their cross links, thus reducing arterial stiffness (Tanaka and
Safar, 2005; Tanaka, 2019). On the other hand, regular PA
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or exercise can also maintain or improve walking speed in
older adults by improving strength, flexibility, or cognitive
function (Miura et al., 2015; Nishiwaki et al., 2018). Indeed, a
study shows that an increase in arterial stiffness is associated
with low skeletal muscle mass index in community-dwelling
older adults, and a close interaction is found between both
parameters (Sampaio et al., 2014). Thus, habitual exercise
or PA can affect both arterial stiffness and walking speed
associated with a maintenance of muscle mass (Gomenuka et al.,
2019), indicating a relationship between walking speed and
arterial stiffness.

Conversely, age-related increase in arterial stiffness can be
greater in aortic and leg than in arm (Avolio et al., 1985;
Tomiyama et al., 2003). Upper limb arterial stiffness did not
differ significantly among different PA individuals (Aoyagi
et al., 2010). That is, even older adults are considered to
use upper limb for many times during daily activity (i.e.,
eating with chopstick, housekeeping, or grooming activities).
Although total PA can decrease with aging, the reduction
in upper limb activity may be relatively less. Furthermore,
walking speed is significantly associated especially with lower
strength (Sallinen et al., 2011). These findings suggest that
segment of upper limbs than that of central and lower limbs
may be less affected by effects of general walking or PA,
and thus, hbPWV did not differ significantly among groups.
In order to prevent an increase in segment-specific arterial
stiffness of the central and lower limbs, our data show the
importance of promoting segment-specific exercise training
or PA, and thereby maintaining or improving walking speed
in older adults.

The studies of Brunner et al. (2011) and Gonzales (2013)
examined relationships between gait ability and aortic arterial
stiffness in older adults, and indicate that gait ability is related
to arterial stiffness for relatively younger older adults with a
mean age of sexagenarian. On the other hand, slower gait speed
was associated with higher PWV in older adults with PAD,
but not in older adults without PAD (Watson et al., 2011).
Contrary to these previous studies, in our study, more elderly
community dwellers aged 65 to 96 years (76 ± 6 years) were
recruited, and thus, many diversities of individuals, such as
physical characteristics, lifestyle habit, or physical inactivity, seem
likely to be included. Nevertheless, our new finding suggests
that maximum walking speed is associated with segment-specific
arterial stiffness of the central and lower limbs, but not of
upper, in older adult community dwellers with a mean age
of septuagenarian.

Walking speed can predict future cardiovascular diseases,
disability, or mortality, and is important for frailty prevention
in older adults (Fried et al., 2001; Al Snih et al., 2002; Cesari
et al., 2005, 2009; Rolland et al., 2006; Ostir et al., 2007;
Mozaffarian et al., 2008; Dumurgier et al., 2009; Sattelmair
et al., 2010; Shimada et al., 2015). Skeletal muscle strength and
body composition are strongly considered as a predictor of
impaired walking speed (Misic et al., 2007), which was partially
supported by our findings of knee extension strength and BMI.
We also found that cognitive function, flexibility, and CAVI or
baPWV were independent factors modulating walking speed,

but hbPWV was not a significant independent factor. Increased
arterial stiffness is widely accepted as an independent risk factor
for future cardiovascular diseases or mortality (Laurent and
Boutouyrie, 2007; Vlachopoulos et al., 2010, 2012; Ohkuma
et al., 2017), and our results of MANCOVA (differences and
trends) and multiple regression analyses raise the possibility
that a direct relationship between walking speed and arterial
stiffness, especially in the central and lower limbs. Thus, the
direct relationship between walking speed and arterial stiffness
might partially mediate the relationship between gait ability and
cardiovascular diseases, disability, or mortality. Such findings
from walking speed and arterial stiffness might lead to the
development of new strategies to prevent arterial stiffness and gait
ability from decreasing or frailty developing in older adults. Our
findings may also show the importance of promoting segment-
specific exercise training or PA for reducing arterial stiffness and
maintaining gait ability.

The strengths of our study include the assessment of walking
speed and segmental arterial stiffness in approximately 500 older
adult community dwellers, but several important limitations
require emphasis. First, our device cannot measure cfPWV at
the same time of CAVI, haPWV, baPWV, and hbPWV and need
to measure cfPWV after making the switch the measurement
mode. Thus, the large population study is difficult to measure
or quantify cfPWV by using our device, and we did not directly
measure only central and leg PWVs (i.e., carotid-femoral and
femoral-ankle). Further detailed studies are needed to examine
variations in arterial stiffness at different sites, especially between
the upper and lower limbs. Second, the cross-sectional design
limits the ability to determine a cause-and-effect relationship
regarding the association between walking speed and arterial
stiffness. In terms of longitudinal design, further detailed studies
are required to elucidate whether walking slowly actually reduces
arterial stiffness.

In conclusion, our findings suggest that walking speed
is associated with segment-specific arterial stiffness of the
central and lower limbs, but not of upper, in older adult
community dwellers.
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