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A B S T R A C T

Weather observations are essential for crop monitoring and forecasting but they are not always available and in
some cases they have limited spatial representativeness. Thus, reanalyses represent an alternative source of
information to be explored. In this study, we assess the feasibility of reanalysis-based crop monitoring and
forecasting by using the system developed and maintained by the European Commission- Joint Research Centre,
its gridded daily meteorological observations, the biased-corrected reanalysis AgMERRA and the ERA-Interim
reanalysis. We focus on Europe and on two crops, wheat and maize, in the period 1980–2010 under potential
and water-limited conditions.

In terms of inter-annual yield correlation at the country scale, the reanalysis-driven systems show a very good
performance for both wheat and maize (with correlation values higher than 0.6 in almost all EU28 countries)
when compared to the observations-driven system. However, significant yield biases affect both crops. All si-
mulations show similar correlations with respect to the FAO reported yield time series.

These findings support the integration of reanalyses in current crop monitoring and forecasting systems and
point to the emerging opportunities linked to the coming availability of higher-resolution reanalysis updated at
near real time.

1. Introduction

Weather and climate are among the main drivers of variability in
agricultural production. Climate extremes, which intensity and fre-
quency are projected to increase (e.g. Russo et al., 2014; Toreti et al.,
2013a), can have serious consequences on crop production, security
and safety. Extremes can affect food availability, quality and accessi-
bility and trigger market instabilities, thus inducing impacts on local,
regional and potentially global economy (IPCC, 2014; Schmidhuber and
Tubiello, 2007). Crop monitoring and forecasting systems can become
an essential climate service tool for end-users at different levels, from
farmers to policy makers. For instance, they can be used to implement
technical mitigation measures and to prevent agricultural market in-
stabilities and reduce price volatility (Challinor, 2009).

Crop monitoring and forecasting systems heavily rely on observed
daily meteorological data (e.g. Baruth et al., 2007) that influence crop

development and then final yield (e.g. Delincé, 2017; Zampieri et al.,
2017; Ceglar et al., 2016). The primary source of meteorological ob-
servations is represented by weather stations measuring the main me-
teorological parameters at regular time intervals, e.g.: 2-meter air
temperature, cumulated precipitation, solar radiation, wind and re-
lative humidity. The availability of such data, especially with near-real-
time updates, strongly depends on the region of interest. While in re-
gions such as Europe data are often available and retrievable with daily
updates, strong limitations often characterise other regions of the
world. Nevertheless, even in regions such as Europe, there are issues
linked to the density of weather observations and their representa-
tiveness of local weather conditions. The density of observations is a
crucial factor for meteorological parameters like precipitation, char-
acterised by shorter spatial decorrelation scale (e.g. Gervais et al., 2014;
Hofstra and New, 2009). Furthermore, the meteorological time series of
observations are usually affected by inhomogeneities caused by non-
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climatic factors such as station relocations, changes of instruments, etc.
(e.g. Toreti et al., 2010a and references therein).

Besides observations, other products combining different sources of
information have been developed in the last decades. For instance, re-
analyses have become an essential tool in climate and climate-impact
related sciences (e.g. Ceglar et al., 2017a, 2017b; Toreti et al., 2013b;
Toreti et al., 2010b). Reanalyses combine observations from different
sources (e.g. weather stations, satellites) and numerical models through
data assimilation (Kalnay, 2012) to provide a representation, as reliable
as possible, of past and current weather conditions at the global scale.
The spatial resolution of these products varies, e.g. ~55 km for JRA55
(Kobayashi et al., 2015) and 80 km for ERA-Interim (ERA-I; Dee et al.,
2011), and their quality is regional and parameter dependent (e.g.
Ceglar et al., 2017a, 2017b). Some reanalyses focus on longer time
scales, e.g. since 1900 (ERA-20C; Poli et al., 2016) and since 1871
(2OCR; Compo et al., 2011), while others cover the last decades (e.g.
ERA-Interim, JRA-55) and offer higher spatial resolution. Moreover,
some of these reanalyses have been bias-corrected to get closer to ob-
servations, e.g. ERA-Interim Land (Balsamo et al., 2015), JRA-55
(Iizumi et al., 2017), and AgMERRA (based on NASA Modern Era
Retrospective-analysis for Research and Applications; Ruane et al.,
2015 and Rienecker et al., 2011). It is worth to mention that the last
one has been specifically developed to investigate the impact of past
climate on agricultural productions in the framework of the Agri-
cultural Model Intercomparison and Improvement Project (AgMIP;
Rosenzweig et al., 2013) and it has been already used in several gridded
crop model exercises (e.g. Müller et al., 2017; Schauberger et al., 2017).

Reanalyses could offer a valid alternative to observations in regions
of the world with sparse data and/or limited accessibility and/or un-
availability of daily updates. Even in regions such as Europe, these
products could bring added value for crop monitoring systems; for in-
stance, in terms of reliability and weather representation in areas af-
fected by lower station density and/or temporal gaps. As for maize in
the U.S., Glotter et al. (2016) explored the sensitivity of a crop model on
the driving climate data by mainly comparing simulations based on
observations, reanalysis and bias-corrected reanalysis. The use of older
reanalyses, such as ERA-40 and JRA-25, was also investigated by
Challinor et al. (2005) and Iizumi et al. (2013), respectively.

This study explores the feasibility of a crop monitoring system
driven by climate reanalysis over Europe, a data-rich region that makes
possible the comparison with high quality meteorological observations.
This evaluation is timely as new reanalyses having higher spatial re-
solution will be made available in the coming years.

2. Data and methods

In the following sub-sections we shortly introduce the crop yield
forecasting system on which this study is focused on, describe the
meteorological data here used, the two case studies and the associated
simulation settings.

2.1. Crop yield monitoring and forecasting system

The MARS Crop Yield Forecasting System (MCYFS) of the European
Commission-Joint Research Centre is used to monitor the weather
conditions, the crop growth and development, and to provide monthly
crop yield forecasts for all countries of the European Union (EU28) as
well as neighbouring regions. The system is based on five components
(Baruth et al., 2007; Genovese and Bettio, 2004): observed weather
data and forecasts, remote sensing data, crop growth model simula-
tions, statistical models, expert evaluation and expert-driven risk-as-
sessment. Here, we focus on the meteorological component and the one
based on crop growth model simulations (the Crop Growth Monitoring
System-CGMS; Supit and Van der Goot, 2003).

2.2. Weather observations and reanalysis

The weather monitoring component of the MCYFS (Van der Goot
et al., 2004) is currently based on daily collection of data coming from
approx. 4000 weather stations in Europe (Fig. S1 in the Supplementary
material) interpolated on a regular grid with a resolution of 25 km
(hereafter MarsMet). Archived meteorological data start in 1975 and
are updated in near-real-time. To evaluate the feasibility of the same
system driven by reanalysis, AgMERRA (Ruane et al., 2015) is here
used. As mentioned in the previous section, this reanalysis offers at 0.25
degree resolution: bias-corrected daily temperatures with respect to
CRU (Harris et al., 2013) and WM (Willmott and Matsuura, 1995)
gridded observations; bias-corrected daily cumulated precipitation with
respect to CRU, WM, GPCC (Schneider et al., 2011) gridded observa-
tions and satellite data (see Ruane et al., 2015 for more details); ra-
diation data from satellite observations, modelled wind and relative
humidity. Since AgMERRA is bias-corrected with global observational
datasets, a raw reanalysis is also tested as benchmark: ERA-I (Dee et al.,
2011). It is worth to note that an earlier version of the MCYFS driven by
this reanalysis was tested for a limited number of years by de Wit et al.
(2010).

AgMERRA covers the period 1980–2010; thus, all the analyses are
here based on these 31 years. An assessment of the main differences
between AgMERRA and MarsMet is performed at the grid level by
analysing seasonal/monthly mean temperatures and cumulated pre-
cipitation, cumulated radiation in the period April to July, the monthly
Standardised Precipitation-Evapotranspiration Index (SPEI-1;Vicente-
Serrano et al., 2010), events with daily maximum temperatures above
31 °C (TX31). The significance of the seasonal differences is assessed by
applying a Welch test, the spatial representation of AgMERRA-based
monthly SPEI-1, cumulated precipitation and mean temperature is
compared to the one of MarsMet by using a reference-varying Taylor
diagram (Taylor, 2001). While, the TX31 events are evaluated by using
the Fractions Skill Score (FSS; Roberts and Lean, 2008) at several dif-
ferent spatial scales. Although this comparison of AgMERRA and
MarsMet is partial, it provides a very good overview of the main dif-
ferences in the key parameters. As ERA-I is here used as a benchmark
and considering that it has been extensively evaluated over Europe (e.g.
Lavaysse et al., 2018; Cornes and Jones, 2013; Belo-Pereira et al., 2011,
Trager-Chatterjee et al., 2010), the meteorological analysis is restricted
to AgMERRA.

2.3. Crop growth simulations and yield data

As case studies, two among the most important staple crops in the
world are selected: winter wheat and grain maize. In the EU28, winter
wheat is the most important crop with a cultivated area of more than 24
Mha and 152 Mt. of production, while grain maize is the third most
important crop (after barley) with a cultivated area of 9 Mha, and 59
Mt. of production (EUROSTAT 2015, http://ec.europa.eu/eurostat). In
this study, MarsMet, AgMERRA and ERA-I daily data are used to feed
the crop growth model of CGMS: WOFOST (Boogaard et al., 2014 and
references therein). The growth and eventually the yield of wheat and
maize are simulated for the entire European region from 1980 to 2010.
The reanalysis-driven and the observation-driven simulations share the
same standard crop parameters (Boons-Prins et al., 1993; Van Heemst,
1988), soil, and crop sowing calendars settings used in the CGMS. The
soil data of the Soil Geographic Database of Europe (v4.0) is used in the
CGMS. This soil database contains a list of soil typological units (STUs)
described by attributes and grouped into soil mapping units (SMUs).
STUs include information about the soil chemo-physical properties such
as soil depth (defining the potential rooting depth), wilting point, field
capacity, saturation, salinity and alkalinity (Baruth et al., 2006; Lazar
and Genovese, 2004). At the grid level, WOFOST simulations are run
primarily on each suitable STU of each SMU, then the outputs are ag-
gregated by weighting according to the share of the SMU in the grid cell

A. Toreti et al. Agricultural Systems 168 (2019) 144–153

145

http://ec.europa.eu/eurostat


considered.
Here, the two crops are simulated under potential and water limited

conditions (van Ittersum et al., 2003). The final yields are then eval-
uated by using the CGMS aggregation schemes and the Nomenclature of
Territorial Units for Statistics (NUTS) classification. The NUTS classi-
fication divides the territory of the European Union (EU28) in several
levels of spatial aggregation for statistical analysis of socio-economic
relevance. At the NUTS3 level (i.e. district), the CGMS aggregation
scheme is based on agricultural land; while at the NUTS0 level (i.e.
country), it is based on reported yield statistics by the EU28 countries.
Two measures are used for the evaluation: Spearman correlation and
mean difference, with the significance being assessed by the Welch test.

Furthermore, simulated crop yields are evaluated w.r.t. the EU-28
crop yield statistics recorded by FAO (www.fao.org/faostat) from 1980
to 2010. Since the FAO-time series are in most cases affected by sig-
nificant trend (mainly caused by technological development, improved
agro-management practices, etc.), a detrending procedure based on
LOESS (Cleveland and Devlin, 1988) is applied before testing the si-
mulated crop yield series. The same detrending is applied to the si-
mulated yield time series exhibiting significant non-stationarities.

3. Results and discussion

3.1. A comparison of AgMERRA and MarsMet

At the seasonal scale (by using the standard meteorological sea-
sons), AgMERRA reproduces reasonably well mean temperatures w.r.t.
MarsMet and significant differences are mainly detected in the
Mediterranean region (Fig. S2 in the Supplementary material). As for
precipitation cumulated at the seasonal scale, some significant differ-
ences can only be observed in mountainous regions (Fig. S3 in the
Supplementary material), where weather stations are sparse and have
less spatial representativeness. As for the cumulated radiation (from
April to July), Fig. 1 shows significant differences detected in southern
Spain, Italy, eastern and south-eastern Europe with lower cumulated
radiation provided by AgMERRA w.r.t. MarsMet (especially in July).

At the monthy time scale, the spatial pattern of mean temperature is
very well reproduced by AgMERRA (Fig. 2) in all four seasons. In
summer, the performance slightly degrades but still remains very good
(i.e. with correlations higher than 0.9). Concerning monthly cumulated
precipitation, AgMERRA achieves good performance although not
comparable (as expected) with the one of temperature (Fig. 2). In all
seasons, there is a higher variability in the spatial correlation with the

observations. Furthermore, some winter and autumn months show a
very pronounced spatial variability w.r.t. the observed pattern (Fig. 2).
However, these are less important in determining the final yields.

As for the SPEI-1 analysis, Fig. 3 shows the relatively good agree-
ment of AgMERRA and MarsMet with spatial correlations centred
around 0.8 and root mean squared error between 0.5 and 1.

Concerning the TX31 events, four spatial scales are here analysed:
0.25, 0.5, 1 and 2 degrees. These values represent the spatial tolerance
allowed in comparing the events reproduced by AgMERRA to the ones
given by MarsMet. As the FSS is equal to 1 only when the events are
perfectly reproduced (within the given spatial tolerance), Fig. 4 shows
the very good agreement of AgMERRA and MarsMet with FSS values
above 0.8 already at the 0.25 degree scale. The better results at higher
spatial scales are expected as an effect of the increased tolerance.

3.2. Wheat

Overall, the simulated AgMERRA driven and MarsMet driven wheat
yields are very well correlated in almost all regions (NUTS3) for both
the potential and water-limited simulations (Fig. 5). 16 and 17 coun-
tries (potential and water-limited simulations, respectively) out of 34
show no regions with no-significant correlation; and only 9 and 5, re-
spectively, show a percentage of regions with no-significant correla-
tions above 15%. However, there are some countries having a relatively
high percentage of no-significant regions. For instance, 38% and 21% of
the Austrian regions do not show significant correlations between Ag-
MERRA-driven and MarsMet driven water-limited and potential simu-
lated yields, respectively (Fig. 5). These results are spatially homo-
geneous (with very limited spatial variability) in countries such as
Belarus, Denmark, Latvia, Lithuania and the Netherlands (Fig. 5).
While, higher spatial differences can be observed in countries such as
Italy (in the potential yield simulations) and Romania (for water-lim-
ited simulations). The ERA-I driven simulations are also well correlated
with the MarsMet driven yield simulations for both potential and water-
limited conditions (Fig. S4 in the Supplementary material).

Considering mean yield differences, in many countries a very high
percentage of regions does not show any significant difference between
the values obtained by driving the crop model with AgMERRA and the
ones obtained by using MarsMet (Fig. 6). This holds, for instance, in the
Netherlands under potential conditions where 92% of the regions (40
NUTS3 regions) achieves similar (in statistical terms) yields using Ag-
MERRA and MarsMet (Fig. 6). Overall, Fig. 6 points to more favourable
conditions for yields given by AgMERRA, and higher mean yields in the
regions where there are significant differences. This holds both under
potential and water-limited conditions.

Concerning ERA-I driven simulations, the first countries in terms of
production have more regions showing significant mean differences in
yield especially under water-limited conditions (Fig. S5 in the
Supplementary material). Similarly to AgMERRA, more favourable
conditions are given by ERA-I, with generally higher mean yield in both
potential and water limited conditions (Fig. S5 in the Supplementary
material).

At NUTS0 in the EU28 countries, the water-limited simulations
driven by AgMERRA show very high correlation with the ones driven
by MarsMet. Estimated values are above 0.8 in western, central and
north-eastern Europe as well as in Hungary and Romania, and between
0.6 and 0.8 elsewhere (Fig. 7). The only exception is Croatia with a
significant estimated correlation value between the AgMERRA and
MarsMet driven simulations equal to 0.46 (Fig. 7). In the potential yield
simulations, correlation decreases (remaining above 0.6) in France,
Italy, Slovenia, Spain, and Romania (Fig. 7). The lowest correlations are
observed in Croatia and Greece (0.38 and 0.59, respectively). The dif-
ferences between AgMERRA and MarsMet driven yields are not sig-
nificant in most of the countries under both potential and water-limited
conditions (Fig. S9 in the Supplementary material). As for the potential
conditions, AgMERRA induces higher mean yields in Spain and Greece

Fig. 1. Differences in cumulated (from April to July) radiation (%) in MarsMet
and AgMERRA. Significant grid-values (at 95% level) are shown according to
the colour scale. Grey denotes grid-points with non-significant differences.
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with mean differences not exceeding 0.6 t ha−1. It results in lower mean
yield in Austria, Hungary, Slovakia, the Czech Republic, Poland and
Sweden with mean differences not exceeding 0.8 t ha−1. In the water-
limited simulations significant differences are identified only in 5
countries out of 28, all showing higher mean yield when driven by
AgMERRA, especially in Spain, Luxembourg and Slovakia (Fig. S6 in the
Supplementary material).

ERA-I driven simulations are also very well correlated with the
MarsMet-driven ones for both potential and water-limited conditions
(Fig. S7 in the Supplementary material). In terms of mean differences,
the ERA-I driven water-limited simulations are not statistically different
from the MarsMet-driven ones, except in Greece and Bulgaria (Fig. S8 in
the Supplementary material). While, they are significantly higher
(w.r.t. the Mars-Met mean yield values) in western, central and south-
eastern Europe (Fig. S8 in the Supplementary material).

When compared to the FAO reported yield values, the AgMERRA
driven simulations in the EU28 countries perform reasonably well
(w.r.t. the MarsMet driven simulations), except for Germany, Denmark,
Austria, Slovakia and the Czech Republic (Fig. 8). While, AgMERRA
outperforms MarsMet in Poland, Lithuania and Latvia. ERA-Interim also
performs well when compared to MarsMet in reproducing the FAO re-
ported yield time series, except for Germany, Denmark and Greece.
Moreover, it is characterised by (weak) significant correlations also in
Ireland, the Netherlands and Lithuania (Fig. S9 in the Supplementary
material).

3.3. Maize

The results for maize yield simulations are very similar to the wheat
ones. At NUTS3 level, correlations between AgMERRA and MarsMet
driven simulations are good in almost all countries for both potential
and water-limited conditions (Fig. 9). 11 and 15 countries (for potential

Fig. 2. Taylor diagram of the monthly mean temperature (left panel) and cumulated precipitation (right panel) derived from AgMERRA with respect to MarsMet,
here used as time-varying reference in the period 1980–2010. Each point in the diagram reports the comparison of the AgMERRA monthly variables in a specific
month with the MarsMet variables of the same month. Colours are associated with the four meteorological seasons. Blue, green, yellow and violet represent,
respectively, winter, spring, summer and autumn. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. Taylor diagram of the SPEI-1 derived from AgMERRA with respect to the
MarsMet SPEI-1, here used as time-varying reference in the period 1980–2010.
Each point in the diagram reports the comparison of AgMERRA SPEI-1 in a
specific month with MarsMet SPEI-1 of the same month.
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and water-limited simulations respectively) show no regions with no
significant correlation, and only 10 and 4 countries showing regions
with more than 15% of regions with no significant correlation. In a few
countries, there is also a very high spatial homogeneity in the estimated
correlation (e.g., the Netherlands and Lithuania under potential con-
ditions; Fig. 9). Whereas, there are other countries having a relatively
high percentage of regions showing no-significant correlations, e.g.,
Slovenia (36%, potential conditions; Fig. 9) and Austria (30% for both
potential and water-limited conditions; Fig. 9).

ERA-I driven simulations are also very well correlated with the
MarsMet ones (Fig. S10 in the Supplementary material).

Concerning the mean yield differences, Fig. 10 shows a different
behaviour under potential and water-limited conditions. As for the
potential simulations, AgMERRA driven simulations achieve lower
mean yield in most of the countries with respect to the MarsMet si-
mulations. Conversely, higher mean yields result for the AgMERRA-
driven simulations under water-limited conditions (Fig. 10). Under both

settings (potential and water-limited), many countries show a high
percentage of regions having no significant differences between the
AgMERRA and the MarsMet driven simulations, e.g., in the Netherlands
(98%, potential conditions; Fig. 10) and Germany (68%, water-limited
conditions; Fig. 10).

Concerning ERA-I driven simulations, there is an overall positive
bias under potential conditions, although a high percentage of regions
does not show any significant difference (Fig. S11 in the Supplementary
material). While, the water-limited simulations show a more hetero-
geneous behaviour without a clear common tendency (Fig. S11 in the
Supplementary material).

At NUTS0 level in the EU28 countries, the correlation between the
AgMERRA and the MarsMet driven simulations is very high under both
potential and water limited conditions (Fig. 11). In the water limited
simulations, values are above 0.8 in western, central and south-eastern
Europe; while they range between 0.6 and 0.8 in eastern Europe
(Fig. 11). In the potential simulations, they are above 0.8 except for:

Fig. 4. FSS at four different spatial scales of TX31 events as reproduced by AgMERRA and compared with the one given by MarsMet in the period 1980–2010.

Fig. 5. Estimated significant (at 95% level) correlation between wheat yield at NUTS3 level simulated by using AgMERRA and MarsMet under potential (left panel)
and water-limited (right panel) conditions. The numbers above each boxplot show the percentage of regions having no-significant correlation. Countries are ranked
according to the reported production in 2010 (FAOSTAT).
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Italy, the Czech Republic and Croatia (where correlation values be-
tween 0.6 and 0.8 are estimated); Austria and Slovakia (with correla-
tion values between 0.4 and 0.6); Slovenia (where no significant cor-
relation is estimated). Similar findings characterise the ERA-I driven
simulations at NUTS0 in the EU28 countries (Fig. S12 in the Supple-
mentary material).

When compared to the reported FAO maize yield values, MarsMet
and AgMERRA show a very similar behaviour, the main difference
being a slightly weaker correlation for the latter one in Germany
(Fig. 12). Similar results are shown for the ERA-I driven simulations

(Fig. S13 in the Supplementary material).
In terms of mean yield differences at NUTS0 level in the EU28

countries, most of them do not show any significant difference between
the AgMERRA and the MarsMet driven simulated yields under water
limited conditions (Fig. S14 in the Supplementary material). In
Hungary, Bulgaria, Slovakia and the Czech Republic, significant mean
differences range from 0.8 to 1 t ha−1, while in Spain it is equal to
0.58 t ha−1. Under potential conditions, AgMERRA driven simulations
achieve significant lower yields in eastern Europe and Spain with mean
differences up to 1 t ha−1 (Fig. S14 in the Supplementary material).

Fig. 6. Estimated significant (at 95% level) mean differences (t ha−1) between wheat yield at NUTS3 level simulated by using AgMERRA and MarsMet under
potential (left panel) and water-limited (right panel) conditions. The numbers above each boxplot show the percentage of regions having no-significant differences.
Countries are ranked according to the reported production in 2010 (FAOSTAT).

Fig. 7. Estimated significant (at 95% level) correlation between the AgMERRA and the MarsMet driven wheat yield simulations in the EU28 countries under potential
(left panel) and water-limited (right panel) conditions.
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Concerning ERA-I, simulations under potential conditions show sig-
nificantly higher mean yields in almost all countries of western and
central Europe (Fig. S15 in the Supplementary material). While under
water-limited conditions, only 4 countries have significantly different
mean yields (Fig. S15 in the Supplementary material).

4. Conclusions

The comparison of the Crop Growth Monitoring System-CGMS
driven by AgMERRA, ERA-I and MarsMet meteorological data has re-
vealed the good performance of both reanalysis driven systems. At the

seasonal scale, significant differences between the selected bias-cor-
rected AgMERRA reanalysis and the gridded observational dataset are
mainly found in regions characterised by complex orography and in the
Mediterranean region. While, significant differences have been detected
for cumulated radiation especially in eastern and south-eastern Europe.
These differences, however, seem to have a reduced influence on the
mean yield difference. This could be explained by a delay in the
AgMERRA simulated flowering due to a slightly lower thermal accu-
mulation (w.r.t. the MarsMet driven simulations). This delay gives the
crop more time to accumulate biomass and leads to a higher LAI and
thus a better radiation interception during the grain filling that can

Fig. 8. Estimated significant (at 95% level) correlation between the MarsMet driven (left panel), the AgMERRA driven (right panel) wheat yield simulations and the
FAO reported yields in the EU28.

Fig. 9. As Fig. 5 but for maize.
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partially counterbalance the lower radiation of AgMERRA.
In terms of yield, similar findings characterise wheat and maize. For

both crops, simulated yields are well correlated at the NUTS3 level and
very well correlated at the country scale in the EU28 region. Although

the mean differences between the AgMERRA, ERA-I and the MarsMet
simulated yields are quite relevant at NUTS3 level, they are sig-
nificantly reduced at NUTS0 in the EU28 countries. The identified
differences between AgMERRA and MarsMet are relatively limited,

Fig. 10. As Fig. 6 but for maize.

Fig. 11. As Fig. 7 but for maize.
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however can still induce significant yield differences. Concerning the
meteorological differences, they could reflect issues either in the re-
analysis or in the observations (e.g. lack of stations, inhomogeneities).

When compared to the reported FAO yields, both AgMERRA and
ERA-I achieve performance similar to the MarsMet driven simulations.
This demonstrates the similarity of the analysed systems in the key
European producing areas of both wheat and maize. Interestingly, both
the bias-corrected AgMERRA and the raw ERA-I achieve very good
results in terms of correlation. This could be explained by the use of
global observational dataset in the AgMERRA bias correction and by the
high number of observations assimilated in Europe by ERA-I. Since the
bias-correction approach implemented by AgMERRA requires ob-
servations to be updated in near-real-time, a distributional bias-cor-
rection of ERA-I (that would not require near-real-time observations;
e.g. Iizumi et al., 2014) could in principle offer a valid alternative. As in
a few countries (e.g. Poland), the reanalysis driven system outperforms
the MarsMet driven one, a spatially dependent bias-correction should
be developed to take into account the different station density/quality
available. Finally, it is important to highlight the spatial scale depen-
dence of all these results (e.g. Challinor et al., 2003) and the associated
uncertainties coming, for instance, by the aggregation procedures, the
reported yields and the scale-dependent uncertainties of the meteor-
ological data.

All these findings support the feasibility of reanalysis driven crop
monitoring and forecasting system. Thus, a reanalysis-based com-
plementary tool could be used both as backup solution when near-real-
time data retrieval from weather stations fails and/or for areas char-
acterised by sub-optimal weather station availability. Furthermore, in-
teresting opportunities are about to emerge since in the coming years
new higher resolution reanalyses are going to be released.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.agsy.2018.07.001.
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