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Abstract

control of the differentiation-inducing stimulus.

the power of time-stamped single-cell data.
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Background: Inference of gene regulatory networks from gene expression data has been a long-standing and
notoriously difficult task in systems biology. Recently, single-cell transcriptomic data have been massively used for
gene regulatory network inference, with both successes and limitations.

Results: In the present work we propose an iterative algorithm called WASABI, dedicated to inferring a causal
dynamical network from time-stamped single-cell data, which tackles some of the limitations associated with current
approaches. We first introduce the concept of waves, which posits that the information provided by an external
stimulus will affect genes one-by-one through a cascade, like waves spreading through a network. This concept
allows us to infer the network one gene at a time, after genes have been ordered regarding their time of regulation.
We then demonstrate the ability of WASABI to correctly infer small networks, which have been simulated in silico
using a mechanistic model consisting of coupled piecewise-deterministic Markov processes for the proper
description of gene expression at the single-cell level. We finally apply WASABI on in vitro generated data on an avian
model of erythroid differentiation. The structure of the resulting gene regulatory network sheds a new light on the
molecular mechanisms controlling this process. In particular, we find no evidence for hub genes and a much more
distributed network structure than expected. Interestingly, we find that a majority of genes are under the direct

Conclusions: Together, these results demonstrate WASABI versatility and ability to tackle some general gene
regulatory networks inference issues. It is our hope that WASABI will prove useful in helping biologists to fully exploit

Keywords: Single-cell transcriptomics, Gene network inference, Multiscale modelling, Proteomic, High parallel

Background

It is widely accepted that the process of cell decision mak-
ing results from the behavior of an underlying dynamic
gene regulatory network (GRN) [1]. The GRN maintains a
stable state but can also respond to external perturbations
to rearrange the gene expression pattern in a new rele-
vant stable state, such as during a differentiation process.
Its identification has raised great expectations for practi-
cal applications in network medicine [2] like somatic cells
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[3-5] or cancer cells reprogramming [6, 7]. The inference
of such GRNs has, however, been a long-standing and
notoriously difficult task in systems biology.

GRN inference was first based upon bulk data [8] using
transcriptomics acquired through micro array or RNA
sequencing (RNAseq) on populations of cells. Different
strategies has been used for network inference includ-
ing dynamic Bayesian networks [9, 10], boolean networks
[11-13] and ordinary differential equations (ODE) [14]
which can be coupled to Bayesian networks [15].

More recently, single-cell transcriptomic data, espe-
cially RNAseq [16], have been massively used for GRN
inference (see [17, 18] for recent reviews). The arrival of
those single-cell techniques led to question the funda-
mental limitations in the use of bulk data. Observations
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at the single-cell level demonstrated that any and every
cell population is very heterogeneous [19-21]. Two dif-
ferent interpretations of the reasons behind single-cell
heterogeneity led to two different research directions:

1. In the first view, this heterogeneity is nothing but
a noise that blurs a fundamentally deterministic smooth
process. This noise can have different origins, like tech-
nical noise (“dropouts”) or temporal desynchronization
as during a differentiation process. This view led to
the re-use of the previous strategies and was at the
basis of the reconstruction of a “pseudo-time” trajectory
(reviewed in [22]). For example, SingleCellNet [23] and
BoolTraineR [24] are based on boolean networks with
preprocessing for cell clustering or pseudo-time recon-
struction. Such asynchronous Boolean network models
have been successfully applied in [25]. Other probabilis-
tic algorithms such as SCOUP [26], SCIMITAR [27] or
ARIMA1-VBEM [28] also use pseudo-time reconstruc-
tion complemented with correlation analysis. ODE based
methods can be exemplified with SCODE [29] and Infer-
enceSnapshot [30] algorithms which also use pseudo-time
reconstruction.

2. The other view is based upon a representation of
cells as dynamical systems [31, 32]. Within such a frame
of mind, “noise” can be seen as the manifestation of
the underlying molecular network itself. Therefore cell-
to-cell variability is supposed to contain very valuable
information regarding the gene expression process [33].
This view was advocated among others by [34], sug-
gesting that heterogeneity is rooted into gene expres-
sion stochasticity, and that cell state dynamic is a highly
stochastic process due to bursting that jumps discon-
tinuously between micro-states. Dynamic algorithms like
SINCERITIES [35] are based upon comparison of gene
expression distributions, incorporating (although not
explicitly) the bursty nature of gene expression. We have
recently described a more explicit network formulation
view based upon the coupling of probabilistic two-state
models of gene expression [36]. We devised a statistical
hidden Markov model with interpretable parameters,
which was shown to correctly infer small two-gene
networks [36].

Despite their contributions and successes, all existing GRN
inference approaches are confronted to some limitations:

1. The inference of interactions through the calculation
of correlation between gene expression, whether based
upon or linear [27] or non-linear [26] assumptions, is
problematic. Such correlations can only reproduce events
that have been previously observed. As a consequence,
predictions of GRN response to new stimulus or modi-
fications is not possible. Furthermore, correlation should
not be mistaken for causality. The absence of causal
relationship severely hampers any predictive ability of the
inferred GRN.
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2. The very possibility of making predictions relies upon
our ability to simulate the behavior of candidate networks.
This implicitly implies that network topologies are explic-
itly defined. Nevertheless, several inference algorithms
[27-29, 35] propose a set of possible interactions with
independent confidence levels, generally represented by
an interaction matrix. The number of possible actionable
networks deduced from combining such interactions is
often too large to be simulated.

3. Regulatory proteins within a GRN are usually
restricted to transcription factors (TF), like in [24, 26-30].
Possible indirect interactions are completely ignored. A
trivial example is a gene encoding a protein that induces
the nuclear translocation of a constitutive TF. In this case,
the regulator gene will indirectly regulate TF target genes,
and its effect will be crucial in understanding the GRN
behavior.

4. Most single-cell inference algorithms rely upon the
use of a single type of data, namely transcriptomics. By
doing so, they implicitly assume protein levels to be pos-
itively correlated with RNA amounts, which has been
proven to be wrong in case of post-translational reg-
ulation (see [33] for an illustration in circadian clock).
Besides, at single-cell scale, mRNA and proteins typically
have a poor linear correlation [34], even in the absence of
post-translational regulation.

5. The choices of biological assumptions are also impor-
tant for the biological relevance of GRN models. The use
of statistical tools can be really powerful to handle large-
scale network inference problem with thousand of genes,
but the price to pay is loss of biological representativeness.
By definition a model is a simplification of the system,
but when simplifying assumptions are induced by math-
ematical tools, like linear [27-29, 35] or binary (boolean)
requirements [23, 24], the model becomes solvable at the
expense of its biological relevance.

In the present work we address the above limitations
and we propose an iterative algorithm called WASABI,
dedicated to inferring a causal dynamical network from
time-stamped single-cell transcriptomic data, with the
capability to integrate protein measurements. In the first
part we present the WASABI framework which is based
upon a mechanistic model for gene-gene interactions [36].
In the second part we benchmark our algorithm using in
silico GRNs with realistic gene parameter values. Finally
we apply WASABI on our in vitro data [37] and analyze
the resulting GRN candidates.

Results

Our goal is to infer causalities involved in GRN through
analysis of dynamic multi-scale/level data with the help of
a mechanistic model [36]. We first present an overview of
the WASABI principles and framework. We then bench-
mark its ability to correctly infer in silico-generated toy
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GRNs. Finally, we apply WASABI on our in vitro data
on avian erythroid differentiation model [38] to generate
biologically relevant GRN candidates.

WASABI inference principles and implementation

WASABI stands for “WAveS Analysis Based Inference” It
is a framework built on a novel inference strategy based
on the concept of “waves”. We posit that the information
provided by an external stimulus will affect genes one-

Page 3 0f 19

by-one through a cascade, like waves spreading through
a network (Fig. 1-a). This wave process harbors an iner-
tia determined by mRNA and protein half-lives which are
given by their degradation rate.

By definition, causality is the link between cause and
consequence, and causes always precede consequences.
This temporal property is therefore of paramount impor-
tance for causality inference using dynamic data. In our
mechanistic and stochastic model of GRN [36] (detailed
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Fig. 1 WASABI at a glance. a Schematic view of a GRN: the stimulus is represented by a yellow flash, genes by blue circles and interactions by green
(activation) or red (inhibition) arrows. The stimulus-induced information propagation is represented by blue arcs corresponding to wave times.
Genes and interactions that are not affected by information at a given wave time are shaded. At wave time 5, gene C returns information on gene A
and B by feedback interaction creating a backflow wave. b Promoter wave times: Promoter wave times correspondto inflections point of gene
promoter activity defined as the kon/(kon + Koff) ratio. € Protein wave times: Protein wave times correspondto inflections point of mean protein level.
d Inference process. Blue arrows represent interactions selected for calibration. Based on promoter waves classification genes are iteratively added
to sub-GRN previously inferred to get new expanded GRN. Calibration is performed by comparison of marginal RNA distributions between in silico
and in vitro data. Inference is initialized with calibration of early genes interaction with stimulus, which gives initial sub-GRN. Latter genes are added
one by one to a subset of potential regulators for which a protein wave time is close enough to the added gene promoter wave time. Each resulting
sub-GRN is selected regarding its fit distance to in vitro data. If fit distance is too important sub-GRN can be eliminated (red cross). An important
benefit of this process is the possibility to parallelize the sub-GRN calibrations over several cores, which results in a linear computational time
regarding the number of genes. Note that only a fraction of all tested sub-GRN is shown
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in “Methods” section Fig. 7), the cause corresponds either
to the protein of the regulating gene or a stimulus, which
level modulates as a consequence the promoter state
switching rates kon (i.e. probability to switch from inac-
tive to active state) and kof (active to inactive) of the
target gene. A direct consequence of causality principle
for GRNSs is that a dynamical change in promoter activity
can only be due to a previous perturbation of a regulating
protein or stimulus. For example, assuming that the sys-
tem starts at a steady-state, early activated genes (referred
to as early genes) can only be regulated by the stimulus,
because it is the only possible cause for their initial evo-
lution. An illustration is given in Fig. 1-a: gene A initial
variation can only be due to the stimulus and not by the
feedback from gene C, which will occur later. A general-
ization of these concepts is that for a given time after the
stimulus, we can infer the subnetwork composed exclu-
sively by genes affected by the spreading of information
up to this time. Therefore we can infer iteratively the net-
work by adding one gene at a time (Fig. 1-d) regarding
their promoter wave time order (Fig. 1-b) and comparing
with protein wave time of previous added genes (Fig. 1-c).

For this, we need to estimate promoter and protein
wave times for each gene and then sort them by pro-
moter wave time. We define the promoter activity level by
the kon/(kon + Koff) ratio, which corresponds to the local
mean active duration (Fig. 1-b). Promoter wave time is
defined as the inflection time point of promoter activity
level where 50% of evolution between minimum and max-
imum is reached. Since promoter activity is not observ-
able, we estimate the inflection time point of mean RNA
level from single-cell transcriptomic kinetic data [37], and
retrieve the delay induced by RNA degradation to deduce
promoter wave time. Protein wave times correspond to
the inflection point of mean protein level, which can be
directly observed with our proteomic data [39]. A detailed
description of promoter and protein wave time estimation
can be found in the “Methods” section. One should note
that a gene can have more than one wave time in case
of non monotonous variation of promoter activity, due
to feedbacks (like gene A in our example) or incoherent
feed-forward loop.

The WASABI inference process (Fig. 1-c) takes advan-
tage of the gene wave time sorting by adopting a divide
and conquer strategy. We remind that a main assumption
of our interaction model is the separation between mRNA
and protein timescales [36]. As a consequence, for a given
interaction between a regulator gene and a regulated gene,
the regulated promoter wave time should be compati-
ble with the regulator protein wave time. At each step,
WASABI proposes a list of possible regulators in order to
reduce the dimension of the inference problem. This list
is limited to regulators with compatible protein wave time
within the range of 30 hours before and 20 hours after
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the promoter wave time of the added regulated gene. This
constraint has been set up from in silico study (see next
section). For example, in Fig. 1, gene B can be regulated by
gene A or D since their protein wave time are close to gene
B promoter wave time. Gene C can be regulated by gene B
or D, but not A because its protein wave time is too earlier
compared to gene C promoter wave time.

For new proposed interactions, a typical calibration
algorithm can be used to finely tune interaction parameter
in order to fit simulated mRNA marginal distribution with
experimental marginal distribution from transcriptomic
single-cell data. To avoid over-fitting issues, only effi-
ciency interaction parameter 6;; (Fig. 7) is tuned. To esti-
mate fitting quality we define a GRN fit distance based on
the Kantorovitch distances between simulated and exper-
imental mRNA marginal distributions (please refer to
“Methods” section for a detailed description of interaction
function and calibration process). If the resulting fitting
is judged unsatisfactory (i.e. GRN fit distance is greater
than a threshold), the sub-GRN candidate is pruned. For
genes presenting several waves, like gene A, each wave
will be separately inferred. For example, gene A initial
increase is fitted during initialization step, but only the
first experimental time points during promoter activity
increase will be used for calibration. Genes B and C reg-
ulated after gene A up-regulation will be added to expand
sub-GRN candidates. Finally, the wave corresponding to
gene A down-regulation is then fitted considering possi-
ble interactions with previously added genes (namely gene
B and C), which permits the creation of feedback loops or
incoherent feed-forward loops.

Positive feedback loops cannot be easily detected by
wave analysis because they only accelerate, and eventually
amplify, gene expression. Yet, their inference is impor-
tant for the GRN behavior since they create a dynamic
memory and, for example, may thus participate to irre-
versibility of the differentiation process. To this end, we
developed an algorithm to detect the effect of positive
feedback loops on gene distribution before the iterative
inference (see Supporting information). We modeled the
effect of positive feedback loops by adding auto-positive
interactions. Note that such a loop does not necessarily
mean that the protein directly activates its own promoter:
it simply means that the gene is influenced by a positive
feedback, which can be of different nature. For example,
in the GRN presented in Fig. 1-a, genes B and C mutually
create a positive feedback loop. If this positive feedback
loop is detected we consider that each gene has its own
auto-positive interaction as illustrated in Fig. 1-c. Posi-
tive feedback loops could also arise from the existence
of self-reinforcing open chromatin states [40] or be due
to the fact that binding of one TF can shape the DNA
in a manner that it promotes the binding of the second
TF [41].
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In silico benchmarking
We decided to first calibrate and then assess WASABI
performance in a controlled and representative setting.

Calibration of inference parameters

In the first phase we assessed some critical values to be
used in the inference process. We generate realistic GRNs
(Fig. 2-a) where 20 genes from in vitro data were randomly
selected with associated in vitro estimated parameters
(see Supporting information). Interactions were randomly
defined in order to create cascade networks with no feed-
back nor auto-positive feedback as an initial assessment
phase.

We limited ourselves to 4 network levels (with 5
genes at each level, see Fig. 2-a for an example)
because we observed that the information provided
by the stimulus is almost completely lost after 4 suc-
cessive interactions in the absence of positive feed-
back loops. This is very likely caused by the fact that
each gene level adds both some intrinsic noise, due
to the bursty nature of gene expression, as well as
a filtering attenuation effect due to RNA and protein
degradation.

We first analyzed the special case of early genes that are
directly regulated by the stimulus (Fig. 2-b). Their pro-
moter wave times were lower than all other genes but one.
Therefore we can identify early genes with good confi-
dence, based on comparison of their promoter wave time
with a threshold. Given these in silico results, we then
decided in the WASABI pre-processing step to assume
that genes with a promoter wave time below 5h must
be early genes, and that genes with a promoter wave
time larger than 7h can not be early genes. Interac-
tions between the stimulus and intermediate genes, with
promoter wave times between 5h and 7h, have to be
tested during the inference iterative process and preserved
or not.
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We then assessed what would be the acceptable bounds
for the difference between regulator protein wave time
and regulated gene promoter activity. Ten in silico cas-
cade GRNs were generated and simulated for 500 cells
to generate population data from which both protein and
promoter wave times were estimated for each gene. Based
on these data, we computed the difference between esti-
mated regulated promoter wave time minus its regulator
protein wave time for all interactions in all networks. The
distribution of these wave differences is given in Fig. 2-c.
One can notice that some wave differences had negative
values. This is due to the shape of the Hill interaction
function (see Eq. 3 in “Methods” section) with a moderate
transition slope (y = 2). If the protein threshold (which
corresponds to typical EC50 value) is too close to the ini-
tial protein level, then a slight protein increase will activate
target promoter activity. Therefore, promoter activity will
be saturated before regulator protein level and thus the
difference of associated wave times is negative. This shows
that one can accelerate or delay information, depending
on the protein threshold value. In order to be conserva-
tive during the inference process, we set the RNA/Protein
wave difference bounds to [— 20h; 30h] in accordance with
the distribution in Fig. 2-c. One should note that this
range, even if conservative, already removes two thirds of
all possible interactions, thereby reducing the inference
complexity.

We finally observed that for interactions with genes har-
boring an auto-positive feedback, wave time differences
could be larger. In this case, wave difference bounds were
estimated to [— 30h, 50h] (see supporting information).
We interpret this enlargement by an under-sampling time
resolution problem since auto-positive feedback results in
a sharper transition. As a consequence, promoter state
transition from inactive to active is much faster: if it hap-
pens between two experimental time points, we cannot
detect precisely its wave time.

count
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Fig. 2 Cascade in silico GRN a Cascade GRN types are generated to study wave dynamics. Genes correspond to in vitro ones with their estimated
parameters. S1 corresponds to stimulus. Genes are identified by our list gene ID. b Based on 10 in silico GRN we compare promoter wave time of
early genes (blue) with other genes (red). Displayed are promoter waves with a wave time lower than 15h for graph clarity. € For each interactions of
10 in silico GRNs we compute the difference between estimated regulated promoter wave time minus its regulator protein wave time. Distribution
of promoter/protein wave time difference is given for all interactions of all in silico GRNs
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Inference of in silico GRNs

WASABI was then tested for its ability to infer in sil-
ico GRNs (complete definition in supporting information)
from which we previously simulated experimental data
for mRNA and protein levels at single-cell and population
scales. We first assessed the simplest scenario with a toy
GRN composed of two branches with no feedback (a cas-
cade GRN; Fig. 3-a). The GRN was limited to 6 genes and
to 3 levels in order to reduce computational constraints.
Nevertheless, even in such a simple case, the inference
problem is already a highly complex challenge with more
than 10%° possible directed networks.

Wave times were estimated for each gene from simu-
lated population data for RNA and protein (data available
in supporting information). Table 1 provides estimated
waves time for the cascade GRN. It is clear that the gene
network level is correctly reproduced by wave times.

We then ran WASABI on the generated data and
obtained 88 GRN candidates (Fig. 3-b). The huge reduc-
tion in numbers (from 10%° to 88) illustrates the power
of WASABI to reduce complexity by applying our waves-
based constraints. We defined two measures for further
assessing the relevance of our candidates:

1. Quality quantifies proportion of real interactions
that are conserved in the candidate network (see sup-
porting information for a detailed description). A 100%
corresponds to the true GRN.

2. A fit distance, defined as the mean of the 3 worst gene
fit distances, where gene fit distance is the mean of the 3
worst Kantorovitch distances [42] among time points (see
the “Methods” section).

We observed a clear trend that higher quality is associ-
ated with a lower fit distance (Fig. 3-b), which we denote as
a good specificity. When inferring in vitro GRNs, one does
not have access to quality score, contrary to fit distance.
Hence, having a good specificity enables to confidently
estimate the quality of GRN candidates from their fit dis-
tance. Thus, this result demonstrates that our fit distance
criterion can be used for GRN inference. Nevertheless,
even in the case of a purely in silico approach, quality and
fit distance can not be linked by a linear relationship. In
other words, the best fit distance can not be taken for the

Table 1 Wave times

GRN Gene Wromoter Whorotein
4 412 12.99
1 426 2233
5 15.19 4550
Cascade 2 17.67 44.88
3 37.88 60.10
6 40.06 60.72

Promoter and protein wave times (in hours) estimated from in silico simulated data
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best quality (see below for other toy GRNSs). This is likely
to be due to both the stochastic gene expression process
as well as the estimation procedure. We therefore needed
to estimate an acceptable maximum fit distance threshold
for true GRN. For this, we ran directed inferences, where
WASABI was informed beforehand of the true interac-
tions, but calibration was still run to calibrate interaction
parameters. We ran 100 directed inferences and defined
the maximum acceptable fit distance (Fig. 3-c) as the dis-
tance for which 95% of true GRN fit distance was below.
This threshold could also be used as a pruning thresh-
old (green dashed line in Fig. 3-b) in subsequent iterative
inferences, thereby progressively reducing the number of
acceptable candidates. We then analyzed a situation where
we added either an auto-activation loop or a negative
feedback (Fig. 4-a and c and supporting information for
estimated wave times).

In both cases, GRN inference specificity was lower than
for cascade network inference. Nevertheless in both cases
the true network was inferred and ranked among the first
candidates regarding their fit distance (Fig. 4-b and d),
demonstrating that WASABI is able to infer auto-positive
and negative feedback patterns. However there were more
candidates below the acceptable maximum fit distance
threshold and there was no obvious correlation between
high quality and low fit distance. We think it could be due
to data under-sampling regarding the network dynamics
(see upper and discussion).

In vitro application of WASABI

We then applied WASABI on our in vitro data, which con-
sists in time stamped single-cell transcriptomic [37] and
bulk proteomic data [39] acquired during T2EC differen-
tiation [38], to propose relevant GRN candidates.

We first estimated the wave times (Fig. 5). Promoter
waves ranged from very early genes regulated before
1h to late genes regulated after 60h. Promoter activity
appeared bimodal with an important group of genes reg-
ulated before 20h and a second group after 30h. Protein
wave distribution was more uniform from 10h to 60h, in
accordance with a slower dynamics for proteins. Remark-
ably, 10 genes harbored non-monotonous evolution of
their promoter activity with a transient increase. It can
be explained by the presence of a negative feedback loop
or an incoherent feed-forward interaction. These results
demonstrate that real in vitro GRN exhibits distinguish-
able “waves”.

In order to limit computation time, we decided to fur-
ther restrict the inference to the most important genes
in term of the dynamical behavior of the GRN. We first
detected 25 genes that are defined as early with a pro-
moter time lower than 5h. We then defined a second class
of genes called “readout” which are influenced by the net-
work state but can not influence in return other genes.
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Fig. 5 Promoter and protein wave time distributions. Distribution of in vitro promoter (a) and protein (b) wave times for all genes estimated from
RNA and proteomic data at population scale. Counts represent number of genes. Note: a gene can have several waves for its promoter or protein
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Their role for final cell state is certainly crucial, but their
influence on the GRN behavior is nevertheless limited. 41
genes were classified as readout so that 24 genes were kept
for iterative inference, in addition to the 25 early genes. 9
of these 24 genes have 2 waves due to transient increase,
which means that we have 33 waves to iteratively infer.

In vitro GRN candidates

After running for 16 days using 400 computational cores,
WASABI returned a list of 381 GRN candidates. Can-
didate fit distances showed a very homogeneous distri-
bution (see supporting information) with a mean value
around 30, together with outliers at much higher dis-
tances. Removing those outliers left us with 364 candi-
dates. Compared to inference of in silico GRN, in vitro
fitting is less precise, as we could expect. But it is an appre-
ciable performance and it demonstrates that our GRN
model is relevant.

We then analyzed the extent of similarities among
the GRN candidates regarding their topology by build-
ing a consensus interaction matrix (Fig. 6-a). The first
observation is that the matrix is very sparse (except for
early genes in first raw and auto-positive feedbacks in
diagonal) meaning that a sparse network is sufficient
for reproducing our in vitro data. We also clearly see
that all candidate GRNs share closely related topologies.
This is clearly obvious for early genes and auto-positive
feedbacks. Columns with interaction rates lower than
100% correspond to latest integrated genes in the iter-
ative inference process with gene index (from earlier to
later) 70, 73, 89, 69 and 29. Results from existing algo-
rithms are usually presented in such a form, where the
percent of interactions are plotted [27-29, 35]. But one
main advantage of our approach is that it actually pro-
poses real GRN candidates, which may be individually
examined.

We therefore took a closer look at the “best” candidate
network, with the lowest Fit distance to the data (Fig. 6-b).
We observed very interesting and somewhat unexpected
patterns:

1. Most of the genes (84%) with an auto-activation
loop. As mentioned earlier, this was a consensual finding
among the candidate networks. It is striking because typ-
ical GRN graphs found in the literature do not have such

predominance of auto-positive feedbacks.
2. A very large number of genes were found to be early

genes that are under the direct control of the stimulus. It
is noticeable that most of them were found to be inhibited
by the stimulus, and to control not more than one other
gene at one next level.

3. We previously described the genes whose prod-
uct participates in the sterol synthesis pathway, as being
enriched for early genes [37]. This was confirmed by our
network analysis, with only one sterol-related gene not
being an early gene.

4. Among 7 early genes that are positively controlled by
the stimulus, 6 are influenced by an incoherent feedfor-
ward loop, certainly to reproduce their transient increase
experimentally observed [37].

5. One important general rule is that the network depth
is limited to 3 genes. One should note that this is not
imposed by WASABI which can create networks with
unlimited depth. It is consistent with our analysis on signal
propagation properties in in silico GRN. If network depth
is too large, signal is too damped and delayed to accurately
reproduce experimental data.

6. One do not see network hubs in the classical sense.
The genes in the GRNs are connected to at most four
neighbors. The most impacting “node” is the stimulus
itself.

7. One can also observe that the more one progress
within the network, the less consensual the interaction
are. Adding the leaves in the inference process might help
to stabilize those late interactions.

Altogether those results show the power of WASABI
to offer a brand-new vision of the dynamical control of
differentiation.

Discussion
In the present work we introduced WASABI as a new
iterative approach for GRN inference based on single-
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Fig. 6 Inference from in vitro data a In vitro interaction consensus matrix. Each square in the matrix represents either the absence of any interaction,
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cell data. We benchmarked it on a representative in silico  is a problem per se due to the lack of a gold standard

environment before its application on in vitro data. against which different algorithms might be benchmarked
[46]. For example, typical in silico model like [47] are
WASABI tackles GRN inference limitations based on population deterministic behavior (only a Gaus-

Usually, to demonstrate that a new inference method sian white-noise is added) and do not consider post-
outperforms previous ones benchmarking is performed translational regulation (degradation rates are constant).
[43-45]. However, evaluation of GRN inference methods  If we benchmark WASABI with other inference algorithm
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based on our GRN mechanistic model it is quite obvious
that we will outperform other methods, for example just
because we consider post-translational regulation inte-
grating both transcriptomic and proteomic data, unlike
other methods. Another point comes from the metric
usually used to compare inference methods like ROC
(Receiver Operating Characteristic). This metric focuses
on the number of true inferred interactions instead of
the overall network topology, or the dynamical network
behavior.

More over, in our view it would be meaningless to com-
pare our approach to any other approach that would not
yield a representative executable model [48, 49] which
most approach do not provide. For example, SINCERI-
TIES [35] analyses single cell transcriptomic time-course
data to reconstruct an interaction matrix, but this matrix
is not executable and can not reproduce time series of
transcriptomic data. Other methods, like Single Cell Net-
work Synthesis toolkit [49] based on a boolean model,
propose to reconstruct executable models from single cell
data. However, to our knowledge, none of these executable
methods is able to reproduce time series of experimen-
tal distribution observed at single cell level, which limits
fundamentally they ability to produce testable predictions.
We definitively consider that the only way to evaluate
an inference algorithm is to experimentally validate its
predictions. This is the reason why we are willing to
couple WASABI with an iterative process of Design Of
Experiment (DOE) as discussed later.

However, despite experimental validation, we are con-
vinced that WASABI has the ability to tackle some general
GRN inference issues based on the assumptions on which
WASABI as been designed and on in silico validation
results.

1. WASABI goes beyond mere correlations to infer
causalities from time stamped data analysis as demon-
strated on in silico benchmark (Fig. 3) even in the presence
of circular causations (Fig. 4), based upon the principle
that the cause precedes the effect.

2. Contrary to most GRN inference algorithms [27-29,
35] based upon the inference of interactions, WASABI is
network centered and generates several candidates with
explicitly defined networks topology (Fig. 6-b), which is
required for prediction making and simulation capabil-
ity. Generating a list of interactions and their frequency
from such candidates is a trivial task (Fig. 6-a) whereas the
reverse is usually not possible. Moreover, WASABI explic-
itly integrates the presence of an external stimulus, which
surprisingly is never modeled in other approaches based
on single-cell data analysis. It could be very instrumental
for simulating for example pulses of stimuli.

3. WASABI is not restricted to TFs. Most of the in vitro
genes we modeled are not TFs. This is possible thanks to
the use of our mechanistic model [36] which integrates
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the notion of timescale separation. It assumes that every
biochemical reaction such as metabolic changes, nuclear
translocations or post-translational modifications are
faster than gene expression dynamics (imposed by mRNA
and protein half-life) and that they can be abstracted in
the interaction between 2 genes. Our interaction model is
therefore an approximation of the underlying biochemi-
cal cascade reactions. This should be kept in mind when
interpreting an interaction in our GRN: many intermedi-
aries (fast) reactions may be hidden behind this interac-
tion.

4. Optionally, WASABI offers the capability to inte-
grate proteomic data to reproduce translational or
post-translational regulation. Our proteomic data [39]
demonstrate that nearly half of detected genes exhibit
mRNA/protein uncoupling during differentiation and
allowed to estimate the time evolution of protein pro-
duction and degradation rates. Nevertheless, we are not
fully explanatory since we do not infer causalities of these
parameters evolution. This is a source of improvement
discussed later.

5. We deliberately developed WASABI in a “brute
force” computational way to guarantee its biological rel-
evance and versatility. This allowed to minimize simpli-
fying assumptions potentially necessary for mathemati-
cal formulations. During calibration, we used a simple
Euler solver to simulate our networks within model (1).
This facilitates addition of any new biological assumption,
like post-translation regulations, without modifying the
WASABI framework, making it very versatile. Thanks to
the splitting and parallelization allowed by WASABI orig-
inal gene-by-gene iterative inference process, the infer-
ence problem becomes linear regarding the network size,
whereas typical GRN inference algorithms face combina-
torial curse. This strategy also allowed the use of High
Parallel Computing (HPC) which is a powerful tool that
remains underused for GRN inference [23, 50].

WASABI performances, improvements and next steps

WASABI has been developed and tested on an in sil-
ico controlled environment before its application on in
vitro data. Each in silico network true topology was suc-
cessfully inferred. Cascade type GRN is totally inferred
(Fig. 3) with a good specificity. Auto-positive and negative
feedback networks (Fig. 4) were also inferred, demon-
strating WASABI's ability to infer circular causations, but
specificity is lower. This might be due to a time sam-
pling of experimental data being longer than the net-
work dynamic time scale. Auto-positive feedback creates
a switch like response, the dynamic of which is much
quicker than simple activation. Thus, to capture accu-
rately auto-positive feedback wave time, we should use
high frequency time sample for RNA experimental data
during auto-positive feedback activation short period. For
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negative feedback interactions, WASABI calibrated initial
increase considering only first experimental time points
before feedback effect. Consequently, precision of first
interaction was decreased and more false positive sub-
GRN candidates were selected. Increasing the frequency
of experimental time sampling during initial phase should
overcome this problem.

As it stands our mechanistic model is only account-
ing for transcriptional regulation through proteins. It does
not take into account other putative regulation level,
including translational or post-translational regulations,
or regulation of the mRNA half-life, although there is
ample evidence that such regulation might be relevant [51,
52]. Provided that sufficient data is available, it would be
straightforward to integrate such information within the
WASABI framework. For example, the estimation of the
degradation rates at the single-cell level for mRNAs and
proteins has recently been described [53], the distribution
of which could then be used as an input into the WASABI
inference scheme.

Cooperativity and redundancies are not considered in
the current WASABI framework, so that a gene can only
be regulated by one gene, except for negative feedback
or incoherent feedforward interactions. However, many
experimentally curated GRN show evidence for cooper-
ations (2 genes are needed to activate a third gene) or
redundant interactions (2 genes independently activating
a third gene) [54]. We intentionally did not considered
such multi-interactions because our current calibration
algorithm relies on the comparison of marginal distribu-
tions which are not sufficiently informative for inferring
cooperative effects. It is our belief that the use of joint
distribution of two genes or more should enable such
inference. We previously developed in our group a GRN
inference algorithm which is based on joint distribution
analysis [36] but which does not consider time evolution.
We are therefore planning to integrate joint-distribution-
based analyses within the WASABI framework in order to
improve calibration, by upgrading the objective function
with measurement considering joint-distribution compar-
ison.

HPC capacities used during iterative inference impacts
WASABI accuracy. Indeed late iterations are supposed
more discriminative than the first one because false GRN
candidates have accumulated too many wrong interac-
tions so that calibration is not able to compensate for
errors. However, if the expansion phase is limited by avail-
able computational nodes, the true candidate may be elim-
inated because at this stage inference is not discriminative
enough. Therefore improving computing performances
would represent an important refinement and we have
initiated preliminary studies in that direction [50].

As it stands, WASABI is limited to infer networks with
less than 100 genes in a reasonable time. However, by
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means of all improvements described above, WASABI can
be upscaled to infer network with more than 1000 genes
using recent sc-RNA-seq technologies [55]. This is achiev-
able because WASABI inference computational time is
linear regarding the number of genes. As a consequence,
increasing the number of genes by one order of magnitude
only imposes to decrease computational time by the same
ratio, which is fairly workable.

Nevertheless, despite all possible improvements, GRN
inference will remain per se an asymptotically solvable
problem due to inferability limitations [56], intrinsic bio-
logical stochasticity, experimental noise and sampling.
This is why we propose a set of GRN candidates with
acceptable confidence level. A natural companion of the
WASABI approach would be a phase of design of exper-
iments (DOE) specifically aiming at selecting the most
informative experiments to discriminate among the can-
didates. Such DOE procedures have already been devel-
oped for GRN inference, but none of them takes into
account the mechanistic aspects and the stochasticity of
gene expression [56, 57]. Extending the DOE framework
to stochastic models is currently being developed in our

group.

New insights on typical GRN topology

The application of WASABI on our in vitro model of dif-
ferentiation generated several GRN candidates with a very
interesting consensus topology (Fig. 6).

1. We can see that the stimulus (i.e. medium change
[37]) is a central regulator of our GRN. We are strongly
confident with this result because initial RNA kinetic of
early genes can only be explained by fast regulation at
promoter level several minutes after stimulation. Proteins
dynamics are way too slow to justify these early variations.

2. Twenty-two of the 29 inferred early genes are inhib-
ited by the stimulus, while inhibitions are only present
in 7 of the 28 non-early interactions. Thus inhibitions
are overrepresented in stimulus-early genes interactions.
An interpretation is that most of genes are auto-activated
and their inhibition requires a strong and long enough
signal to eliminate remaining auto-activated proteins. A
constant and strong stimulus should be very efficient for
this role like in [32] where stimulus long duration and
high amplitude is required to overcome an auto-activation
feedback effect. It could be very interesting in that respect
to assess how the network would respond to a tempo-
rary stimulus, mimicking the commitment experiment
described in [37] or [58].

3. None of our GRN candidates do contain so-called
“hubs genes” affecting in parallel many genes, whereas
existing GRN inferred generally present consequent hubs
[26, 28, 29, 35] . A possible interpretation is that hub iden-
tifications is mostly a by-product of correlation analysis.
This interpretation is in line with the sparse nature of



Bonnaffoux et al. BMIC Bioinformatics (2019) 20:220

our candidate networks, as compared to some previous
network (see e.g. [25] or [59]). This strongly departs with
the assumption that small-world network might represent
“universal laws” [60].

4. In order to reproduce non-monotonous gene
expression variations, WASABI inferred systematically
incoherent feedforward pattern instead of “simpler”
negative feedback. This result is interesting because
nothing in WASABI explain this bias since in silico
benchmarking proved that WASABI is able to infer
simple negative feedbacks (Fig. 4). Such “paradoxical
components” have been proposed to provide robust-
ness, generate temporal pulses, and provide fold-change
detection [61].

5. WASABI candidates are limited in network depth by
a maximum of 3 levels. We did not include readout genes
during inference but addition of these genes would only
increase GRN candidate depth by one level. GRN realistic
candidates depth are thus limited by 4 levels. This might
be due to the fact that information can only be relayed by
limited number of intermediaries because of induced time
delay, damping and noise. Indeed, general mechanism of
molecules production/degradation behaves exactly as a
low pass filter with a cutting frequency equivalent to the
molecule degradation rate. Furthermore, protein infor-
mation will be transmitted at the promoter target level
by modulation of burst size and frequency, which are
stochastic parameters, thereby adding noise to the original
signal.

Such a strong limitation for information carrying
capacity in GRN is at stake with long differentiation
sequences, say from the hematopoietic stem cell to a
fully committed cell. In such a case, tens of genes
will have to be sequentially regulated. This might be
resolved by the addition of auto-positive feedbacks. Such
auto-positive feedbacks will create a dynamic mem-
ory whereby the information is maintained even in the
absence of the initial information. An important impli-
cation is the loss of correlation between auto-activated
gene and its regulator gene. Consequently, all algo-
rithms based on stationary RNA single-cell correlation
[26, 27] will hardly catch regulators of auto-activated
genes.

Considering the importance of auto-positive feedback
benefits on GRN information transfert, it is therefore
not surprising to see that more than 80% of our GRN
genes present auto-positive feedback signatures in their
RNA distribution. Moreover, experimentally observed
auto-positive feedback influence is stronger in our in
vitro model than in our in silico models. Such a
strong prevalence of auto-positive feedbacks has also
been observed in a network underlying germ cell dif-
ferentiation [59]. As mentioned earlier, care should be
taken in interpreting such positive influences, which
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very likely rely on indirect influences, like epigenomic
remodeling.

Conclusions

Inferring the structure of GRN is an inverse problem
which has occupied the systems biology community for
decades. This last few years, with the arrival of single
cell transcriptomic data, many GRN inference algorithms
based on the analysis of these data have been devel-
oped. Despite their contributions and successes, these
approaches are confronted to some limitations such as:

® restriction to correlations which impairs predictive
ability

e restriction to transcription factors to target gene
interactions

e mono-data type, namely transcriptomic, ignoring
protein level regulation

¢ biological over-simplifying assumptions induced by
mathematical tools

Our work aims to provide a significant innovation
in GRN inference problem to tackle these issues. We
propose a divide-and-conquer strategy called WASABI,
which splits the potentially untractable global problem
into much simpler subproblems. We show that by adding
one gene at a time, we can infer small networks, the
behavior of which has been simulated in silico using a
mechanistic model which incorporates the fundamentally
probabilistic nature of the gene expression process. When
applied to real-life data, our algorithm sheds a new fasci-
nating light onto the molecular control of a differentiation
process. GRN candidates were generated with a very inter-
esting common topology which stands apart from typical
literature and which is biologically relevant regarding sev-
eral aspects as the very central role of the stimulus, the
absence of “hub genes’, the limitation in network depth
and the presence of many auto-activation loops.

Together, these results demonstrate WASABI ability to
tackle some general GRN inference issues:

inference of causalities even in case of feedbacks
definition of functional interactions underlying
indirect regulations as post-translational regulation
or nuclear translocation

e capability to integrate proteomic data to reproduce
translational or post-translational regulation
(observed in 50% of our genes)

e versatility and computational tractability using HPC
facilities enabled by WASABI original iterative
process

We believe that WASABI should be of great interest
for biologists interested in GRN inference, and beyond
for those aiming at a dynamical network view of their
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biological processes. We are convinced that this could
really advance the field, opening an entire new way of
analyzing single cell data for GRN inference.

Methods

Mechanistic GRN model

Our approach is based on a mechanistic model that has
been previously introduced in [36] and which is summed-
up in Fig. 7.

In all that follows, we consider a set of G interacting
genes potentially influenced by a stimulus level Q. Each
gene i is described by its promoter state E; = 0 (off) or 1
(on), its mRNA level M; and its protein level P;. We recall
the model definition in the following equation, together
with notations that will be extensively used throughout
this article.

kon k()
E®:0 231, 130

M(t) = s0,Ei(t) — do;iM;() 1)
Pi(t) = s1,:M;(t) — d1,:Pi(¢)

The first line in model (1) represents a discrete, Markov
random process, while the two others are ordinary dif-
ferential equations (ODEs) describing the evolution of
mRNA and protein levels. Interactions between genes and
stimulus are then characterized by the assumption that
kon and ko are functions of P = (P, ...,Pg) and Q. The
form for koy, is the following (for koff, replace 6;; by —6;):
%beginlinenomath

konfmin,i + konfmax,i,Bi@i(P’ Q)
1+ Bi®:i(P,Q)

kon(P: Q) = (2)
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This interaction function slightly differs from [36] since
auto-feedback is considered as any other interactions and
stimulus effect is explicitly defined. Exponent parameter
y is set to default value 2. Interaction threshold H; is
associated to protein j. Interaction parameters 6;; will be
estimated during the iterative inference. Parameter j; cor-
responds to GRN external and constant influence on gene
to define its basal expression: it is computed at simula-
tion initialization in order to set ko, and ko to their initial
value. From now on, we drop the index i to simplify our
notation when there is no ambiguity.

Overview of WASABI workflow

WASABI framework is divided in 3 main steps as
described in Fig. 8. First, individual gene parameters
defined in model (1) (all except 6 and H) are esti-
mated before network inference from a number of exper-
imental data types acquired during T2EC differentiation.
They include time stamped single-cell transcriptomic
[37], bulk transcription inhibition kinetic [37] and bulk
proteomic data [39]. In a second step, genes are sorted
regarding their wave times (see “Results” section for a
description of wave concept) estimated from the mean
of single cell transcriptomic data for promoter waves,
and bulk proteomic data for protein waves. Finally, net-
work iterative inference step is performed from single
transcriptomic data, previously inferred gene parame-
ters and sorted genes list. All methods are detailed in
following sections, an overview of workflow is given
by Fig. 8.

Fig. 7 GRN mechanistic and stochastic model. Our GRN model is composed of coupled piecewise deterministic Markov processes. In this example 2
genes are coupled. A gene i is represented by its promoter state (dashed box) which can switch randomly from ON to OFF, and OFF to ON,
respectively at kon,; and kofr; mean rate. When promoter state is ON, mRNA molecules are continuously produced at a so, rate. mRNA molecules are
constantly degraded at a dy, rate. Proteins are constantly translated from mRNA at a s, rate and degraded at a d;; rate. The interaction between a
requlator gene j and a target gene i is defined by the dependence of kon, and koft; with respect to the protein level P; of gene j and the interaction
parameter 6;;. Likewise, a stimulus (yellow flash) can requlate a gene i by modulating its kon, and kofr; switching rates with interaction parameter 6;o
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Fig. 8 Parameters estimation workflow. Schematic view of WASABI workflow with 3 main steps: (1) individual gene parameters estimation (red
zone), (2) waves sorting (green zone) and (3) network iterative interaction inference (blue zone). Wave concept is introduced in “Results” section.
Model parameters (square boxes) are estimated from experimental data (flasks) with a specific method (grey hexagones). All methods are detailed
in “Methods” section. Estimated data relative to waves are represented by round boxes. Input arrows represent data required by methods to
compute parameters. There are 3 types of experimental data, (i) bulk transcription inhibition kinetic (green flask), (ii) single-cell transcriptomic (blue
flask) and (iii) proteomic data (orange flask). Model parameters are specific to each gene, except for 6, which is specific to a pair of
regulator/regulated genes. Notations are consistent with Eq. (1), yauro represents exponent term of auto-positive feedback interaction. Only do(t),
di (t) and 1 (¢) are time dependent. One gene can have several wave times

For T2EC in vitro application, tables of gene param-
eters and wave times are provided in supporting infor-
mation. For in silico benchmarking we assume that gene
parameters do, d1,s1 are known. Single-cell data and bulk
proteomic data are simulated from in silico GRNs for time
points 0, 2, 4,8, 24, 33, 48, 72 and 100h.

First step - Individual gene parameters estimation
Exponential decay fitting for mRNA degradation rate (d)
estimation

The degradation rate dy corresponds to active decay (i.e.
destruction of mRNA) plus dilution due to cell division.
The RNA decay was already estimated in [37] before dif-
ferentiation (Oh), 24h and 72h after differentiation induc-
tion from population-based data of mRNA decay kinetic
using actinomycin D-treated T2EC (https://osf.io/k2q5b).
Cell division dilution rate is assumed to be constant dur-
ing the differentiation process and cell cycle time has been
experimentally measured at 20h [38].

Maximum estimator for mRNA transcription rate (sg)
estimation

To infer the transcription rate sy, we used a maximum
estimator based on single-cell expression data generated
in [37]. We suppose that the highest possible mRNA

level is given by so/dp. Thus so corresponds to the maxi-
mum mRNA count observed in all cells and time points
multiplied by mtax(do 1)).

Method of moments and bootstrapping for range of
promoter switching rates (Kon/off min/max) €stimation
Dynamic parameters kon and kof are bounded respec-
tively by constant parameters [kon min; Kon max] and
[ Koff_min; Koff max] (see Eq. (2)) which are estimated as
follows from time course single-cell transcriptomic data.
Parameters sp and do(f) are supposed to be previously
estimated for each gene at time ¢.

Range parameters shall be compliant with constraints
(Eq. (4)) imposed by the transcription dynamic regime
observed in vitro. RNA distributions [37] have many
zeros, which is consistent with the bursty regime of tran-
scription. There is no observed RNA saturation in dis-
tributions. Moreover, all GRN parameters should also
comply with computational constraints. On the one hand,
the time step dt used for simulations shall be small
enough regarding GRN dynamics to avoid aliasing (under-
sampling) effects. On the other hand, d¢ should not be
too small to save computation time. These constraints
correspond to
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1
kon < do < koft < % (4)
and we deduce inequalities for ranges:
1
kon_min < kon_max <dy < kofffmin < l<off7max < % (5)

We set the default value kon min to 0.001 h~!. Param-
eter kon max iS estimated from time course single-cell
transcriptomic data after removing zeros. This truncation
mimics a distribution where gene is always activated, so
that kop, is close to its maximum value kon_max. With these
truncated distributions, for each time point £, we estimate
kon,t using a moment-based method defined in [62]. We
bootstrapped 1000 times to get a list of kop ¢, with index n
corresponding to bootstrap sample #. For each time point
we compute the 95% percentile of ko £, then we consider
the mean value of these percentiles to have a first esti-
mate of kon_max- This kon_max is then down and up limited
respectively between Kon max lim_min and Kon_max_lim_max
given in Eq. (6) to guarantee that observed ko can be eas-
ily reached during simulations with reasonable values of
protein level (because of asymptotic behavior of interac-
tion function). In other words kon_max shall not be too
close from minimum or maximum observed k,,, consider-
ing 10% margins. Finally, this limited kon_max is up-limited
by 0.5 x mtax(do(t)) to guarantee a 50% margin with dy(z).

mtax(median(kon,t,n)) — 0.1 X kon_min
n

konfmaxflimfmin =

0.9
mtax(median(kon,t,,,)) — 0.9 X kon min
< _

kon_max_lim_max =

0.1
(6)

Parameter Koff min is set to mtax(do(t)) to comply with

equation Eq. (5). Parameter koff max is estimated like
kon_max from time course single-cell transcriptomic data
but without zero truncation.For each time point ¢, we
estimate kofr; using a moment-based method defined in
[62]. We bootstrapped 1000 times to get a list of kofts
with index # corresponding to bootstrap sample n. For
each time point we compute the 95% percentile of ko ,
then we consider the mean value of these percentiles to
have a first estimate of Kot max. This Koff max is then down
and up limited respectively between koff max lim_min and
Koft_max_lim_max given in Eq. (7) to guarantee that observed
kot can be easily reached during simulations with reason-
able values of protein level (because of asymptotic behav-
ior of interaction function). In other words koff max shall
not be too close from minimum or maximum observed
koft considering 10% margins. Finally, this limited Kot max
is up-limited by 1/dt to guaranty simulation anti-aliasing.
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m;lx <median(koff¢,,,)> — 0.1 X koff min
< &

koff_max_lim_min =

0.9
m?x <median(koff,t,n)> — 0.9 X koff min
d i

kofffmaxflimfmax =

0.1
(7)

ODE fitting for protein translation and degradation rates
(d1,s1) estimation

Rates d;(¢) and s1(f) are estimated from comparison of
proteomic population kinetic data [39] with RNA mean
value kinetic data computed from single-cell data [37].
Parameter d;(¢) corresponds to protein active decay rate
while total protein degradation rate dj s:(f) includes
decay plus cell division dilution. Associated total pro-
tein half-life is referred to as 1 (). Parameters s; ()
and d_s:(t) are estimated using a calibration algorithm
based on a maximum likelihood estimator (MLE) from
package [63]. Objective function is given by the Root
Mean Squared Error function (provided by the package)
comparing experimental protein counts with simulated
ones given by ODEs from our model (1) with RNA level
provided by experimental mean RNA data:

P'(t) = s1())M(t) — dr(¢)P(t)

Fifty two out of our 90 selected genes were detected in
proteomic data. 23 of these fit correctly experimental data
with a constant d; and s; during differentiation. 5 genes
were estimated with a variable s;(#) and a constant d; to
fit a constant protein level with a decreasing RNA level.
For the remaining 24 genes, protein level decreased while
RNA is constant, which is modeled with s; constant and
d1(¢t) variable.

For the genes that were not detected in our proteomic
data we turned to the literature [64] and found 13 homolo-
gous genes with associated estimation of d; and s;. For the
remaining 25 genes, we estimated parameters with the fol-
lowing rationale: we consider that the non-detection in the
proteomic data is due to low protein copy number, lower
than 100. Moreover [64] proposed an exponential relation
between s; and the mean protein level that we confirmed
with our data (see supporting information), resulting in
the following definition:

s = 107147  pos1

Linear regression was performed using the Python
scipy.stats.linregress() method from Scipy package with
the following parameters: 7> = 0.55, slope = 0.81,
intercept = —1.47 and p = 2.97 x 10~°. Therefore, if
we extrapolate this relation for low protein copy num-
bers assuming P < 100 copies, s; should be lower than 1
molecule/RNA/hour. Assuming the relation
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Prot = RNA x 51

1_tot

between mean protein and RNA levels, we deduced a min-
imum value of d; from mean RNA level given by: d; >
RNA/100. We set s; and d respectively to their maximum
and minimum estimated values.

Bimodal distribution likelihood for auto-positive feedback
exponent (yauto) estimation

We inferred the presence of auto-positive feedback by fit-
ting an individual model for each gene, based on [36]. The
model is characterized by a Hill-type power coefficient.
The value of this coefficient was inferred by maximiz-
ing the model likelihood, available in explicit form. The
key idea is that genes with auto-positive feedback typi-
cally show, once viewed on an appropriate scale, a strongly
bimodal distribution during their transitory regime. The
interested reader may find some details in the Addi-
tional file 1 of [36], especially in sections 3.6 and 5.2.
Note that such auto-positive feedback may reflect either
a direct auto-activation, or a strong but indirect positive
loop, potentially involving other genes. Estimated Hill-
type power coefficients for in silico and in vitro networks
are provided in supporting information.

Second step - Waves sorting

Inflexion estimator for wave time estimation

Wave time for gene promoter Worom and protein Wrot are
estimated regarding their respective mean trace E and P.
Estimation differs depending on mean trace monotony. In
vitro wave times are provided in supporting information.

1) If the mean trace is monotonous (checked manually),
it is smoothed by a 3rd order polynomial approxima-
tion using method poly1d() from python numpy package.
Wave time is then defined as the inflection time point
of polynomial function where 50% of evolution between
minimum and maximum is reached.

2) If the mean trace is not monotonous, it is approxi-
mated by a piecewise-linear function with 3 breakpoints
that minimizes the least square error. Linear interpola-
tions are performed using the polynomial.polyfit() func-
tion from python numpy package. Selection of break-
points is performed using optimize.brute() function from
python numpy package.

We obtained a series of 4 segments with associated
breakpoints coordinate and slope. Slopes are thresholded:
if absolute value is lower than 0.2 it is considered null.
Then, we looked for inflection break times where seg-
ments with non null slope have an opposite sign compare
to the previous segment, or if previous segment has a null
slope. Each inflection break time corresponds to an initial
effect of a wave. A valid time, when wave effect applies, is
associated and corresponds to next inflection break time
or to the end of differentiation. Thus, we obtained couples
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of inflection break time and valid time which defined the
temporal window of associated wave effect. For each wave
window, if mean trace variation between inflection break
time and valid time is large enough (i.e., greater than 20%
of maximal variation during all differentiation process for
the gene), a wave time is defined as the time where half of
mean trace variation is reached during wave time window.

Protein mean trace P is given by proteomic data if avail-
able, else it is computed from simulation traces with 500
cells using the model with the parameters estimated ear-
lier. Promoter mean trace E is computed as follows from
mean RNA trace (from single-cell transcriptomic data)
with time delay correction induced by mRNA degradation
rate dj.

kon(t)
kon () + kott(£)

E(t—l) _ % x M(t) x (t—1>
dy(¢) h S0 do(t)

Genes sorting

Genes are sorted regarding their promoter waves time
Wyrom. Genes with multiple waves, in case of feedback for
example, are present several times in the list. Moreover,
genes are classified by groups regarding their position in
the network. Genes directly regulated by the stimulus are
called the early genes; Genes that regulates other genes
are defined as regulatory genes; Genes that do not influ-
ence other genes are identified as readout genes. Note that
genes can belong to several group.

We can deduce the group type for each gene
from its wave time estimation. Subsequent constraints
have been defined from in silico benchmarking (see
“Results” section). A gene i belongs to one of these groups
according to following rules:

E@) =

if Wyrom < 5h then it is an early gene
if Wyrom < 7h then it could be an early gene or
another types

o if max(Wprom,i) + 30h < W then it is a readout
gené

e else it could be a regulatory or a readout gene

Third step - Network iterative inference

Interaction threshold (H)

Interaction threshold H is estimated for each protein. It
corresponds to mean protein level at 25% between mini-
mum and maximum mean protein level observed during
differentiation by in silico simulations:

H = Puin + 0-25(Pmax -

min)

We choose the value of 25% to maximize the amplitude
variation of kon and kofr of gene target induced by the shift
of the regulator protein level from its minimal to maximal
value (see Eq. (2)).
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Iterative calibration algorithm (0; )
The following algorithm gives a global overview of the
iterative inference process:

Algorithm 1 WASABI GRN iterative inference

1: List GRN_candidates = Generate_ EARLY_network()

2: for Gene, Wave in List_genes_sorted_by_Wave_time
do

3: for GRN in List. GRN_candidates() do

4 List new_GRN_to_calibrate =
Get_all_possible_interaction(GRN, Gene, Wave)

5: for New_GRN in New_GRN_List do

6: Calibrate(New_GRN)

7: List_ GRN_candidate = Select_Best_ New_GRN()

Generate_EARLY_network(): In a first step we calibrate
the interactions between early genes and stimulus (6;0)
to obtain an initial sub-GRN. Calibration algorithm Cali-
brate() is defined below.

List_genes_sorted_by_Wave_time: This list is com-
puted prior to iterative inference (see previous subsec-
tion).

Get_all_possible_interaction(GRN, Gene, Wave): For
each GRN candidate we estimate all possible interactions
with the new gene and prior regulatory genes, or stimu-
lus, regarding their respective promoter wave and protein
wave with the following logic: if promoter wave is lower
than 7h, interaction is possible between stimulus and the
new gene. If the difference of promoter wave minus pro-
tein wave is between —20h and + 30h, then there is a
possible interaction between the new gene and regulatory
gene. Note: if WASABI is run in “directed” mode, only the
true interaction is returned.

Calibrate(New_GRN): For interaction parameter cali-
bration we used a Maximum Likelihood Estimator (MLE)
from package spotpy [63]. The goal is to fit simulated
single-cell gene marginal distribution with in vitro ones
tuning efficiency interaction parameter 6;;. For in silico
study we defined GRN Fit distance as the mean of the
3 worst gene-wise fit distances. For in vitro study we
defined GRN Fit distance as the mean of the fit dis-
tances of all genes. Gene-wise fit distance is defined as the
mean of the 3 higher Kantorovitch distances[42] among
time points. For a given time point and a given gene,
the Kantorovitch fit distance corresponds to a distance
between marginal distributions of simulated and exper-
imental expression data. At the end of calibration the
set of interaction parameter 6;; with associated GRN Fit
distance is returned.
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Select_Best New_GRN() We fetch all GRN calibration
fitting outputs from remote servers and select best new
GRNs to be expanded for next iteration updating list of
List GRN_candidate. New networks candidates are lim-
ited by number of available computational cores.

GRN simulation

We use a basic Euler solver with fixed time step (dt =
0.5 h) to solve mRNA and protein ODEs [36]. The pro-
moter state evolution between ¢ and ¢ + dt is given by a
Bernoulli distributed random variable

E(t 4+ dt) = Bernoulli(p(t))

drawn with probability p(¢) depending on current kon, Koff
and promoter state:

p() :E(t)e*dt(komLkoff) kon (1 _ e*dt(kon+koff)) .
kon + koff

Time-dependent parameters like dy, d; and s; are lin-

early interpolated between 2 points. The stimulus Q is

represented by a step function between 0 and 1000 at

t = 0 h. Simulation starts at ¢ = —60 h to ensure

convergence to steady state before the stimulus is applied.
Parameters kon and koff are given by Eq. (2).

Additional file

Additional file 1: Additional file with several tables and figures related to
in vitro genes parameters and waves estimation, in silico benchmarking
and in vitro GRN candidates fit distance distribution. (PDF 312 kb)

Abbreviations
DOE: Design of experiments; GRN: Gene regulatory network; HPC: High parallel
computing; TF: Transcription factor; WASABI: WAveS analysis based inference

Acknowledgements

We thank the computational center of IN2P3 (Villeurbanne/France), specially
Pascal Calvat, for access to HPC facilities; Eddy Caron (Avalon, ENS Lyon/INRIA)
for his support on parallel computing implementation; Patrick Mayeux for
proteomic data; and Rudiyanto Gunawan (ETH, Zdrich) for critical reading of
the manuscript. We would like to thank all members of the SBDM team,
Dracula team, and Camilo La Rota (Cosmotech) for enlightening discussions,
We also thank the BioSyL Federation and the Ecofect Labex
(ANR-11-LABX-0048) of the University of Lyon for inspiring scientific events.

Funding

This work was supported by funding from the French agency ANR (ICEBERG;
ANR-IABI-3096 and SinCity; ANR-17-CE12-0031) and the Association Nationale
de la Recherche Technique (ANRT, CIFRE 2015/0436). The funders had no role
in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Availability of data and materials

Single-cell transcriptomic data are available from [37]. Proteomic data are
available from [39]. In silico generated data are available at https://osf.io/
gkedt/.

Authors’ contributions

AB, UH, PAG and OG designed the study. AB performed the theoretical
derivations, implemented the algorithms and conceived/analyzed the in silico
study. UH implemented the algorithm for auto-positive feedback exponent
estimation. AR, SG and AG participated in data generation. OG secured the


https://doi.org/10.1186/s12859-019-2798-1
https://osf.io/gkedt/
https://osf.io/gkedt/

Bonnaffoux et al. BMIC Bioinformatics (2019) 20:220

funding. AB drafted the paper. UH, AR, AG, SG, PAG and OG revised the paper.
All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The results of this work will be exploited within the frame of a new company
VIDIUM for which AB will serve as CSO.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

University Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239,
INSERM U1210, Laboratory of Biology and Modelling of the Cell, Lyon, France.
ZInria Team Dracula, Inria Center Grenoble Rhéne-Alpes, Lyon, France.
3Cosmotech, Lyon, France. *Univ Lyon, Université Claude Bernard Lyon 1,
CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France.

Received: 15 March 2019 Accepted: 9 April 2019
Published online: 02 May 2019

References

1. MacNeil LT, Walhout AJ. Gene regulatory networks and the role of
robustness and stochasticity in the control of gene expression. Genome
Res. 2011;21(5):645-57.

2. Greene JA, Loscalzo J. Putting the patient back together - social
medicine, network medicine, and the limits of reductionism. N Engl J
Med. 2017;377(25):2493-9. https://doi.org/10.1056/NEJMms1706744.

3. Sugimura R, Jha DK, Han A, Soria-Valles C, daRocha EL, Lu Y-F, Goettel JA,
Serrao E, Rowe RG, Malleshaiah M, Wong |, Sousa P, Zhu TN, Ditadi A,
Keller G, Engelman AN, Snapper SB, Doulatov S, Daley GQ.
Haematopoietic stem and progenitor cells from human pluripotent stem
cells. Nature. 545:432. https://doi.org/10.1038/nature22370.

4. Lis R, Karrasch CC, Poulos MG, Kunar B, Redmond D, Duran JGB, Badwe CR,
Schachterle W, Ginsberg M, Xiang J, Tabrizi AR, Shido K, Rosenwaks Z,
Elemento O, Speck NA, Butler JM, Scandura JM, Rafii S. Conversion of
adult endothelium to immunocompetent haematopoietic stem cells.
Nature. 545:439. https://doi.org/10.1038/nature22326.

5. ledaM, FuJ-D, Delgado-Olguin P, Vedantham V, HayashiY, Bruneau
BG, Srivastava D. Direct reprogramming of fibroblasts into functional
cardiomyocytes by defined factors. Cell. 2010;142(3):375-86.

6. Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA.
Gene regulatory network inference: evaluation and application to ovarian
cancer allows the prioritization of drug targets. Genome Med. 2012;4(5):
41. https://doi.org/10.1186/gm340.

7. Creixell P, Schoof EM, Erler JT, Linding R. Navigating cancer network
attractors for tumor-specific therapy. Nat Biotechnol. 2012,30(9):842.

8. ChaiLE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z. A review on
the computational approaches for gene regulatory network construction.
Comput Biol Med. 48:55-65. https://doi.org/10.1016/j.compbiomed.2014.
02011,

9. DojerN, Gambin A, Mizera A, Wilczynski B, Tiuryn J. Applying dynamic
bayesian networks to perturbed gene expression data. BMC
Bioinformatics. 2006;7(1):249. https://doi.org/10.1186/1471-2105-7-249.

10. Vinh NX, Chetty M, Coppel R, Wangikar PP. Gene regulatory network
modeling via global optimization of high order dynamic bayesian
networks. BMC Bioinf. 2012;27:2765-6.

11. Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a
small number of gene expression pattern under the boolean model. Pac
Symp Biocomput. 1999;4:17-28.

12. Saadatpour A, Albert R. Boolean modeling of biological regulatory
networks: A methodology tutorial. Methods. 2013;62(1):3-12. https://doi.
org/10.1016/j.ymeth.2012.10.012.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

Page 18 of 19

Zhao W, Serpedin E, Dougherty ER. Inferring gene regulatory networks
from time series data using the minimum description length principle.
Bioinformatics. 2006;22(17):2129-35. https://doi.org/10.1093/
bioinformatics/btl364.

Polynikins A, Hogan SJ, Bernardo M. Comparing different ode modelling
approaches forgene regulatory networks. J Theor Biol. 2009;261:511-30.
Bansal M, Belcastro V, Ambesi-Impiombato A, DiBernardo D. How to
infer gene networks from protein profiles. Mol Syst Biol. 2007;3:1-10.
Svensson V, Vento-Tormo R, Teichmann S. Exponential scaling of
single-cell raseq in the last decade. Nat Protoc. 2018;13:599-604.

Fiers M, Minnoye L, Aibar S, Bravo Gonzalez-Blas C, Kalender Atak Z,
Aerts S. Mapping gene regulatory networks from single-cell omics data.
Brief Funct Genomics. 2018. https://doi.org/10.1093/bfgp/elx046.

Babtie A, Chan TE, Stumpf MPH. Learning regulatory models for cell
development from single cell transcriptomic data. Curr Opin Syst Biol.
2017,5:72-81.

Yvert G. ‘particle genetics”: treating every cell as unique. Trends Genet.
2014;30(2):49-56. https://doi.org/10.1016/j:tig.2013.11.002.

Dueck H, Eberwine J, Kim J. Variation is function: Are single cell
differences functionally important?: Testing the hypothesis that single cell
variation is required for aggregate function. Bioessays. 2016;38(2):172-80.
https://doi.org/10.1002/bies.201500124.

Symmons O, Raj A. What's luck got to do with it: Single cells, multiple
fates, and biological nondeterminism. Mol Cell. 2016;62(5):788-802.
https://doi.org/10.1016/j.molcel.2016.05.023.

Cannoodt R, Saelens W, Saeys Y. Computational methods for trajectory
inference from single-cell transcriptomics. Eur J Immunol. 2016;46(11):
2496-506. https://doi.org/10.1002/eji.201646347.

Chen H, Guo J, Mishra SK, Robson P, Niranjan M, Zheng J. Single-cell
transcriptional analysis to uncover regulatory circuits driving cell fate
decisions in early mouse development. Bioinformatics. 2015;31(7):1060-6.
https://doi.org/10.1093/bioinformatics/btu777.

Lim CY, Wang H, Woodhouse S, Piterman N, Wernisch L, Fisher J,
Gottgens B. Btr: training asynchronous boolean models using single-cell
expression data. BMC Bioinformatics. 2016;17(1):355. https://doi.org/10.
1186/512859-016-1235-y.

Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC,
Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa S, Piterman N,
Kouskoff V, Theis FJ, Fisher J, Gottgens B. Decoding the regulatory
network of early blood development from single-cell gene expression
measurements. Nat Biotechnol. 33(3):269-76. https://doi.org/10.1038/
nbt.3154.

Matsumoto H, Kiryu H. Scoup: a probabilistic model based on the
ornstein-uhlenbeck process to analyze single-cell expression data during
differentiation. BMC Bioinformatics. 2016;17(1):232. https://doi.org/10.
1186/512859-016-1109-3.

Cordero P, Stuart JM. Tracing co-regulatory network dynamics in noisy,
single-cell transcriptome trajectories: World scientific; 2016, pp. 576-87.
https://doi.org/10.1142/9789813207813-0053.

Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y. A
bayesian framework for the inference of gene regulatory networks from
time and pseudo-time series data. Bioinformatics. 2017. https://doi.org/
10.1093/bioinformatics/btx605.

Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, Hayashi T,
Nikaido I. Scode: an efficient regulatory network inference algorithm from
single-cell ra-seq during differentiation. Bioinformatics. 2017;33(15):
2314-21. https://doi.org/10.1093/bioinformatics/btx194.

Ocone A, Haghverdi L, Mueller NS, Theis FJ. Reconstructing gene
regulatory dynamics from high-dimensional single-cell snapshot data.
Bioinformatics. 2015;31(12):89-96. https://doi.org/10.1093/
bioinformatics/btv257.

Huang S. Non-genetic heterogeneity of cells in development: more than
just noise. Development. 2009;136(23):3853-62. https://doi.org/10.1242/
dev.035139.

Sokolik C, Liu'Y, Bauer D, McPherson J, Broeker M, Heimberg G, Qi LS,
Sivak DA, Thomson M. Transcription factor competition allows
embryonic stem cells to distinguish authentic signals from noise. Cell
Syst. 2015;1(2):117-29. https://doi.org/10.1016/j.cels.2015.08.001.
Munsky B, Trinh B, Khammash M. Listening to the noise: random
fluctuations reveal gene network parameters. Mol Syst Biol. 2009;5:318.
https://doi.org/10.1038/msb.2009.75.


https://doi.org/10.1056/NEJMms1706744
https://doi.org/10.1038/nature22370
https://doi.org/10.1038/nature22326
https://doi.org/10.1186/gm340
https://doi.org/10.1016/j.compbiomed.2014.02.011
https://doi.org/10.1016/j.compbiomed.2014.02.011
https://doi.org/10.1186/1471-2105-7-249
https://doi.org/10.1016/j.ymeth.2012.10.012
https://doi.org/10.1016/j.ymeth.2012.10.012
https://doi.org/10.1093/bioinformatics/btl364
https://doi.org/10.1093/bioinformatics/btl364
https://doi.org/10.1093/bfgp/elx046
https://doi.org/10.1016/j.tig.2013.11.002
https://doi.org/10.1002/bies.201500124
https://doi.org/10.1016/j.molcel.2016.05.023
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1093/bioinformatics/btu777
https://doi.org/10.1186/s12859-016-1235-y
https://doi.org/10.1186/s12859-016-1235-y
https://doi.org/10.1038/nbt.3154
https://doi.org/10.1038/nbt.3154
https://doi.org/10.1186/s12859-016-1109-3
https://doi.org/10.1186/s12859-016-1109-3
https://doi.org/10.1142/9789813207813-0053
https://doi.org/10.1093/bioinformatics/btx605
https://doi.org/10.1093/bioinformatics/btx605
https://doi.org/10.1093/bioinformatics/btx194
https://doi.org/10.1093/bioinformatics/btv257
https://doi.org/10.1093/bioinformatics/btv257
https://doi.org/10.1242/dev.035139
https://doi.org/10.1242/dev.035139
https://doi.org/10.1016/j.cels.2015.08.001
https://doi.org/10.1038/msb.2009.75

Bonnaffoux et al. BMIC Bioinformatics

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

(2019) 20:220

Moris N, Pina C, Arias AM. Transition states and cell fate decisions in
epigenetic landscapes. Nat Rev Genet. 2016;17(11):693-703. https://doi.
org/10.1038/nrg.2016.98.

Papili Gao N, Ud-Dean MSM, Gandrillon O, Gunawan R. Sincerities:
Inferring gene regulatory networks from time-stamped single cell
transcriptional expression profiles. 2016. https://doi.org/10.1101/089110.
Herbach U, Bonnaffoux A, Espinasse T, Gandrillon O. Inferring gene
regulatory networks from single-cell data: a mechanistic approach. BMC
Syst Biol. 2017;11:105. https://doi.org/10.1186/512918-017-0487-0.
Richard A, Boullu L, Herbach U, Bonnaffoux A, MorinV, Vallin E,
Guillemin A, Papili Gao N, Gunawan R, Cosette J, Arnaud O, Kupiec JJ,
Espinasse T, Gonin-Giraud S, Gandrillon O. Single-cell-based analysis
highlights a surge in cell-to-cell molecular variability preceding
irreversible commitment in a differentiation process. PLoS Biol.
2016;14(12):1002585. https://doi.org/10.1371/journal.pbio.1002585.
Gandrillon O, Schmidt U, Beug H, Samarut J. Tgf-beta cooperates with
tgf-alpha to induce the self-renewal of normal erythrocytic progenitors:
evidence for an autocrine mechanism. Embo J. 1999;18(10):2764-81.
Leduc M, Gautier E-F, Guillemin A, Broussard C, Salnot V, Lacombe C,
Gandrillon O, Guillonneau F, Mayeux P. Deep proteomic analysis of
chicken erythropoiesis. bioRxiv. 2018. https://doi.org/10.1101/289728.
https://www.biorxiv.org/content/early/2018/03/27/289728 full.pdf.

Liu Z, Tjian R. Visualizing transcription factor dynamics in living cells. J Cell
Biol. 2018. https://doi.org/10.1083/jcb.201710038.

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin'Y, Albu M, ChenX,
Taipale J, Hughes TR, Weirauch MT. The human transcription factors. Cell.
2018;172:650-65.

Baba A, Komatsuzaki T. Construction of effective free energy landscape
from single-molecule time series. Proc Natl Acad Sci U S A. 2007;104(49):
19297-302. https://doi.org/10.1073/pnas.0704167104.

Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z. A review on
the computational approaches for gene regulatory network construction.
Comput Biol Med. 2014;48:55-65. https://doi.org/10.1016/j.compbiomed.
2014.02.011.

Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R. Gene
regulatory network inference: data integration in dynamic models—a
review. Biosystems. 2009;96(1):86-103.

Chen'S, Mar JC. Evaluating methods of inferring gene regulatory
networks highlights their lack of performance for single cell gene
expression data. BMC Bioinformatics. 2018;19(1):232. https://doi.org/10.
1186/512859-018-2217-z.

Stolovitzky G, Monroe D, Califano A. Dialogue on reverse engineering
assessment and methods. Ann N'Y Acad Sci. 2007;1115(1):1-22.
Schaffter T, Marbach D, Floreano D. Genenetweaver: in silico benchmark
generation and performance profiling of network inference methods.
Bioinformatics. 2011;27(16):2263-70.

Fisher J, Henzinger TA. Executable cell biology. Nat Biotechnol.
2007;25(11):1239-49. https://doi.org/10.1038/nbt1356.

Woodhouse S, Piterman N, Wintersteiger CM, Gottgens B, Fisher J. Scns:
a graphical tool for reconstructing executable regulatory networks from
single-cell genomic data. BMC Syst Biol. 2018;12(1):59. https://doi.org/10.
1186/512918-018-0581-y.

Bonnaffoux A, Caron E, Croubois H, Gandrillon O. A cloud-aware
autonomous workflow engine and its application to gene regulatory
networks inference. Presented at CLOSER 2018-8th International
conference on Cloud computing and Service Science. Funchal; 2018.

p. 1-8.

Olsen JV, Mann M. Status of large-scale analysis of post-translational
modifications by mass spectrometry. Mol Cell Proteomics. 2013;12(12):
3444-52. https://doi.org/10.1074/mcp.0113.034181.

Manning KS, Cooper TA. The roles of rna processing in translating
genotype to phenotype. Nat Rev Mol Cell Biol. 2017;18(2):102-14. https://
doi.org/10.1038/nrm.2016.139.

Mandic A, Strebinger D, Regali C, Phillips NE, Suter DM. A novel method
for quantitative measurements of gene expression in single living cells.
Methods. 2017;120:65-75. https://doi.org/10.1016/j.ymeth.2017.04.008.
Lin YT, Hufton PG, Lee EJ, Potoyan DA. A stochastic and dynamical view
of pluripotency in mouse embryonic stem cells. PLoS Comput Biol.
2018;14(2):1006000. https://doi.org/10.1371/journal.pcbi.1006000.
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo
SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J,

56.

57.

58.

59.

60.

62.

63.

64.

Page 19 0f 19

Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-
Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW,
Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA,
Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital
transcriptional profiling of single cells. Nat Commun. 2017;8:14049.
Ud-Dean SM, Gunawan R. Optimal design of gene knockout experiments
for gene regulatory network inference. Bioinformatics. 2016;32(6):875-83.
https://doi.org/10.1093/bioinformatics/btv672.

Kreutz C, Timmer J. Systems biology: experimental design. FEBS J.
2009;276(4):923-42. https://doi.org/10.1111/j.1742-4658.2008.06843 x.
Semrau S, Goldmann J, Soumillon M, Mikkelsen TS, Jaenisch R,

van Oudenaarden A. Lineage commitment revealed by single-cell
transcriptomics of differentiating embryonic stem cells. 2016. https://doi.
org/10.1101/068288.

Jang S, Choubey S, FurchtgottL, Zou LN, Doyle A, Menon V, Loew EB,
Krostag AR, Martinez RA, Madisen L, LeviBP, Ramanathan S. Dynamics
of embryonic stem cell differentiation inferred from single-cell
transcriptomics show a series of transitions through discrete cell states.
Elife. 2017;6.. https://doi.org/10.7554/eLife.20487.

Barabasi AL, Oltvai ZN. Network biology: understanding the cell's
functional organization. Nat Rev Genet. 2004;5(2):101-13.

Hart Y, Alon U.The utility of paradoxical components in biological circuits.
Mol Cell. 2013;49(2):213-21. https://doi.org/10.1016/j.molcel.2013.01.004.
Peccoud J, Ycart B. Markovian modelling of gene product synthesis.
Theor Popul Biol. 1995;48:222-34.

Houska T, Kraft P, Chamorro-Chavez A, Breuer L. Spotting model
parameters using a ready-made python package. PLoS ONE. 2015;10(12):
0145180. https://doi.org/10.1371/journal.pone.0145180.

Schwanhausser B, Busse D, LiN, Dittmar G, Schuchhardt J, Wolf J, Chen W,
Selbach M. Corrigendum: Global quantification of mammalian gene
expression control. Nature. 2013;495(7439):126-7.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1038/nrg.2016.98
https://doi.org/10.1038/nrg.2016.98
https://doi.org/10.1101/089110
https://doi.org/10.1186/s12918-017-0487-0
https://doi.org/10.1371/journal.pbio.1002585
https://doi.org/10.1101/289728
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/03/27/289728.full.pdf
https://doi.org/10.1083/jcb.201710038
https://doi.org/10.1073/pnas.0704167104
https://doi.org/10.1016/j.compbiomed.2014.02.011
https://doi.org/10.1016/j.compbiomed.2014.02.011
https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.1038/nbt1356
https://doi.org/10.1186/s12918-018-0581-y
https://doi.org/10.1186/s12918-018-0581-y
https://doi.org/10.1074/mcp.O113.034181
https://doi.org/10.1038/nrm.2016.139
https://doi.org/10.1038/nrm.2016.139
https://doi.org/10.1016/j.ymeth.2017.04.008
https://doi.org/10.1371/journal.pcbi.1006000
https://doi.org/10.1093/bioinformatics/btv672
https://doi.org/10.1111/j.1742-4658.2008.06843.x
https://doi.org/10.1101/068288
https://doi.org/10.1101/068288
https://doi.org/10.7554/eLife.20487
https://doi.org/10.1016/j.molcel.2013.01.004
https://doi.org/10.1371/journal.pone.0145180

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	WASABI inference principles and implementation
	In silico benchmarking
	Calibration of inference parameters
	Inference of in silico GRNs

	In vitro application of WASABI
	In vitro GRN candidates


	Discussion
	WASABI tackles GRN inference limitations
	WASABI performances, improvements and next steps
	New insights on typical GRN topology

	Conclusions
	Methods
	Mechanistic GRN model
	Overview of WASABI workflow
	First step - Individual gene parameters estimation
	Exponential decay fitting for mRNA degradation rate (d0) estimation
	Maximum estimator for mRNA transcription rate (s0) estimation
	Method of moments and bootstrapping for range of promoter switching rates (kon/off_min/max) estimation
	ODE fitting for protein translation and degradation rates (d1, s1) estimation
	Bimodal distribution likelihood for auto-positive feedback exponent (auto) estimation

	Second step - Waves sorting
	Inflexion estimator for wave time estimation
	Genes sorting

	Third step - Network iterative inference
	Interaction threshold (H)
	Iterative calibration algorithm (i,j)
	Generate_EARLY_network():
	List_genes_sorted_by_Wave_time:
	Get_all_possible_interaction(GRN, Gene, Wave):
	Calibrate(New_GRN):
	Select_Best_New_GRN()


	GRN simulation

	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

