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Abstract: Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductases
(CPRs) function as redox partners of cytochrome P450 monooxygenases (P450s). CPRs and P450s
in insects have been found to participate in insecticide resistance. However, the CPR of the moth
Spodoptera litura has not been well characterized yet. Based on previously obtained transcriptome
information, a full-length CPR cDNA of S. litura (SlCPR) was PCR-cloned. The deduced amino acid
sequence contains domains and residues predicted to be essential for CPR function. Phylogenetic
analysis with insect CPR amino acid sequences showed that SlCPR is closely related to CPRs of
Lepidoptera. Quantitative reverse transcriptase PCR (RT-qPCR) was used to determine expression
levels of SlCPR in different developmental stages and tissues of S. litura. SlCPR expression was
strongest at the sixth-instar larvae stage and fifth-instar larvae showed highest expression in the
midgut. Expression of SlCPR in the midgut and fat body was strongly upregulated when fifth-instar
larvae were exposed to phoxim at LC15 (4 µg/mL) and LC50 (20 µg/mL) doses. RNA interference
(RNAi) mediated silencing of SlCPR increased larval mortality by 34.6% (LC15 dose) and 53.5% (LC50

dose). Our results provide key information on the SlCPR gene and indicate that SlCPR expression
levels in S. litura larvae influence their susceptibility to phoxim and possibly other insecticides.

Keywords: Spodoptera litura; NADPH-cytochrome; P450 reductase; RNAi; insecticide
susceptibility; phoxim

1. Introduction

The tobacco cutworm, Spodoptera litura (F.) (Lepidoptera, Noctuidae) is a serious polyphagous
insect pest. The moth has a broad host range that includes economically important crops such as
tomato, cotton, and groundnut [1]. Over recent years, many field populations of S. litura acquired
resistance to various insecticides, particularly in Pakistan, China, and India. The task of controlling
insecticide-resistant S. litura populations is becoming exceedingly challenging [1–3]. Phoxim has
become one of the most widely used organophosphate insecticides for the control of S. litura [1–3].

Cytochrome P450 monooxygenases (CYPs or P450s) belong to a superfamily of heme-containing
enzymes that catalyze the monooxygenation of xenobiotics and endogenous compounds [4,5]. Insect
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P450s can metabolize and detoxify insecticides and thus play an important role in evolution of
insecticide resistance [4,5]. Various studies suggested that expression of specific P450s is induced when
insects are exposed to insecticides. For example, our previous work on S. litura P450s suggested that
insecticide-induced CYP9A40 [6] and CYP321B1 [7] play an important role in insecticide detoxification.
Similarly, transcript levels of CYP49A1, CYP6AB4, CYP9A19, and CYP9A22 in the fat body of Bombyx
mori were expressed at high levels after 24, 48, and 72 h of phoxim treatment, suggesting that P450
genes expressed in the fat body are associated with detoxification of phoxim [8].

Ncotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductases (CPRs),
important redox partners of P450s, play a crucial role in providing electrons from nicotinamide adenine
dinucleotide phosphate (NADPH) to P450s via two flavin cofactors [9,10]. CPRs belong to the electron
transfer flavoprotein family whose members contain conserved binding domains to NADP, the flavin
mononucleotide (FMN) cofactor, and the flavin adenine dinucleotide (FAD) cofactor [11,12]. CPR
genes have been identified in various insect species such as S. litura [13], Spodoptera littoralis [14],
Cimex lectularius [15], Helicoverpa armigera [16], Nilaparvata lugens [17], Bactrocera dorsalis [18], Spodoptera
exigua [19], Laodelphax striatellus [12], Cnaphalocrocis medinalis [20], and Locusta migratoria [21]. Most of
them such as the CPRs from S. exigua [19], B. dorsalis [18], Aphis (Toxoptera) citricidus (Kirkaldy) [22],
L. striatellus [12], Plutella xylostella [23], and L. migratoria [21] have been found to be associated with
metabolism and resistance to insecticides. Due to their possible role in insecticide detoxification, insect
CPRs may represent possible molecular targets for new insecticides [5,12,16,21].

Little information is available on the function of the CPR gene in S. litura and whether silencing of
this gene by RNA interference (RNAi) affects larval susceptibility to insecticides. RNAi is a powerful
and widely used tool to down-regulate expression of specific genes in insects [24]. Previous studies in
our laboratory showed that microinjection of double-stranded RNA (dsRNA) into S. litura larvae can
effectively silence specific target genes [6,25].

In the present study, we cloned a full-length cDNA encoding CPR of S. litura (SlCPR). We used
quantitative reverse transcriptase PCR (RT-qPCR) to analyze the SlCPR expression pattern at the insect’s
different developmental stages and in various tissues prepared from fifth-instar larvae. To investigate
whether SlCPR transcript levels affect the insect’s susceptibility to insecticides, SlCPR-silenced larvae
were exposed to phoxim. The results showed increased mortality of SlCPR-silenced larvae as compared
to control larvae.

2. Results

2.1. Cloning and Sequence Analysis of SlCPR

In a previous study, a whole transcriptome analysis was performed for the midgut of S. litura
fourth-instar larvae [25]. Based on these data, we identified and cloned a full-length SlCPR cDNA
(GenBank Acc. MH638288). The SlCPR cDNA sequence contains a 237-bp 5′-untranslated region
(5′-UTR), a 2070-bp open reading frame, and a 1783-bp 3′-UTR with a poly-A nucleotide sequence.
The predicted protein contains 689 amino acids (77.72 kDa) and possesses a theoretical pI of 5.32. No
signal peptide was identified at the N-terminus of the protein. However, a hydrophobic transmembrane
region consisting of 22 amino acids was predicted (Figure 1). The three amino acid residues R467, Y469,
and S470 constitute a putative FAD binding motif which is ubiquitous in the FAD binding domain of
CPR proteins [26]. Similar to rat and other CPRs, conserved catalytic residues are present in the SlCPR
protein (S470, C641, D686, and W688) (Figure 1A). These active site residues have been demonstrated
to be essential for CPR activity [17,27]. According to Cheng et al. (2017) [13] and nucleotide sequences
deposited at the DDBJ/ENA/GenBank databases, S. litura possesses a single copy of the CPR gene.
The alignment results of the deduced amino acid sequences of SlCPR and some other known CPRs
showed that SlCPR shared 99.6%, 98.4%, and 95.6% amino acid identity with the CPR sequences of
S. littoralis, S. exigua, and H. armigera, respectively. The results also demonstrated that SlCPR is a new
member of the CPR family (Figure 1B).



Int. J. Mol. Sci. 2019, 20, 3839 3 of 14
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 14 

 

 

A 

 

B 

 
Figure 1. Sequence analysis of the SlCPR protein (A). The protein contains predicted flavin 
mononucleotide (FMN)-, flavin adenine dinucleotide (FAD)-, and NADP-binding domains. The 
proteins also conserved residues such as the FAD-binding motif (R467, Y469, and S470) and the 
predicted catalytic residues (S470, C641, D686, and W688). (B) Comparison of the deduced amino acid 
sequence of SlCPR with other NADPH-cytochrome P450 reductases (CPRs). Accession numbers of 
indicated CPR amino acid sequences are shown in Table 1. 

2.2. Phylogenetic Relation Between SlCPR and Other CPRs 

Based on the deduced amino acid sequence of SlCPR and 28 other CPRs, phylogenetic analysis 
was performed using MEGA 7.0 software and the neighbor joining method. The constructed tree 
showed that CPRs from insects of the same order were grouped together. As expected, SlCPR was 
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Figure 1. Sequence analysis of the SlCPR protein (A). The protein contains predicted flavin
mononucleotide (FMN)-, flavin adenine dinucleotide (FAD)-, and NADP-binding domains. The proteins
also conserved residues such as the FAD-binding motif (R467, Y469, and S470) and the predicted
catalytic residues (S470, C641, D686, and W688). (B) Comparison of the deduced amino acid sequence
of SlCPR with other NADPH-cytochrome P450 reductases (CPRs). Accession numbers of indicated
CPR amino acid sequences are shown in Table 1.

2.2. Phylogenetic Relation Between SlCPR and Other CPRs

Based on the deduced amino acid sequence of SlCPR and 28 other CPRs, phylogenetic analysis
was performed using MEGA 7.0 software and the neighbor joining method. The constructed tree
showed that CPRs from insects of the same order were grouped together. As expected, SlCPR was
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most related to CPRs of other Lepidoptera insects, including P. xylostella, Chilo suppressalis, Bombyx
mandarina, Bombyx mori, H. armigera, S. exigua, and S. littoralis (Figure 2, Table 1).
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Figure 2. Phylogenic analysis of SlCPR and related insect CPRs. Multiple sequence alignment of
full-length amino acid sequences of 29 CPR proteins was performed with DNAMAN 6.0 software.
The phylogenetic tree was constructed using MEGA7.0 with the neighbor-joining (NJ) method and
1000 bootstrap replicates. Numbers shown at the tree forks indicate frequency of occurrence among all
bootstrap iterations performed. The scale bar indicates 0.05 amino acid substitutions per site. CPRs
from human and mouse were used as an outgroup. SlCPR is marked by a black solid circle. Accession
numbers of indicated CPR amino acid sequences are shown in Table 1.
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Table 1. Percent amino acid identities between SlCPR and other CPRs.

Order Species Accession Number Identity (%)

Hymenoptera

Monomorium pharaonis XP_012541364 62.8
Solenopsis invicta XP_011157063 62.6

Pogonomyrmex barbatus XP_011643152 61.5
Apis mellifera XP_001119949 62.1

Apis florea NP_001351669 62.6
Orussus abietinus XP_012275162 62.6
Fopius arisanus XP_011306347 63.4

Microplitis demolitor XP_008548684 62.3

Hemiptera

Bemisia tabaci AGT15701 61.9
Cimex lectularius AFD50507 62.7

Laodelphax striatella AID55422 63.8
Sogatella furcifera AHM93009 64.4

Coleoptera Dendroctonus ponderosae AFI45002 64.9
Tribolium castaneum XP_971174 67.6

Diptera

Drosophila mettleri AAB48964 62.8
Drosophila melanogaster NP_477158 66.6

Musca domestica AAA29295 68.4
Anopheles gambiae AAO24765 66.6
Anopheles funestus EF152578 67.5

Lepidoptera

Plutella xylostella NP_001292469 79.4
Chilo suppressalis AGM20565 85.4

Bombyx mandarina ABJ97709 87.0
Bombyx mori NP_001104834 87.0

Helicoverpa armigera ADK25060 95.6
Spodoptera exigua ADX95746 98.4

Spodoptera littoralis AFP20584 99.6
Spodoptera litura MH638288 100

Rodentia Mus musculus NM_008898 53.5
Primates Homo sapiens NP_000932 56.2

2.3. Developmental and Spatial Expression Patterns of SlCPR

We used RT-qPCR to examine the SlCPR expression pattern at different developmental stages of
S. litura, namely eggs, first- to sixth-instar larvae, pupae, and adults. Highest expression levels were
found in sixth-instar larvae (17.8-fold higher than in pupae), followed by fifth-instar larvae (16.9-fold
higher than in pupae), and fifth-instar larvae (9.5-fold higher than in pupae) (Figure 3A). Tissue-specific
expression of SlCPR was further analyzed for the cuticle, fat body, midgut, head, Malpighian tubule,
and hemocytes of fifth-instar larvae (Figure 3B). Strongest expression levels of SlCPR were observed in
the midgut (13.2-fold higher than in the cuticle) and fat body (7.0-fold higher than in the cuticle).

2.4. Expression Response of SlCPR in Larvae Exposed to Phoxim

Phoxim was selected to examine insecticide effects on SlCPR expression in the midgut and fat
body of fifth-instar larvae (Figure 4). Compared to control treatments, larvae exposed to phoxim at
LC15 (4 µg/mL) and LC50 (20 µg/mL) doses showed significantly increased SlCPR expression levels in
the midgut. At LC50, phoxim caused 38.6-fold increased expression of SlCPR. Similarly, exposure to
phoxim significantly induced SlCPR expression levels in the fat body (19.6-fold increase at LC15 and
31.7-fold increase at LC50) (Figure 4).
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Figure 3. Relative expression levels of SlCPR at different development stages (A) and in various
tissues (B). Whole body of S. litura larvae were used for the different development stages, while
fifth-instar larvae were used for various tissues. Expression levels of SlCPR were determined by
quantitative reverse transcriptase PCR (RT-qPCR), and β-actin and EF1 were selected as reference
genes. Each RT-qPCR reaction for each sample was performed in three biological replicates and
three technical replicates. Data shown are means ± SE. Different letters (a,b,c,d) above bars indicate
significant differences (p < 0.05) according to Duncan’s multiple range test. Abbreviations: 1st to
6th—first- to sixth-instar larvae; C—cuticle; FB—fat body; MG—midgut; H—head; MT—Malpighian
tubule; HC—hemocytes.
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Figure 4. Effects of phoxim on SlCPR expression in the midgut and fat body of fifth-instar larvae. Larvae
were exposed to phoxim at LC15 (4 µg/mL) and LC50 (20 µg/mL) doses for 24 h. SlCPR expression
levels were normalized to β-actin and EF1 expression and presented as the means ± SE with three
independent biological replicates and three technical replicates. Different letters (a,b,c) above bars
indicate significant differences (p < 0.05) according to Duncan’s multiple range test.

2.5. Silencing of SlCPR by RNAi

RNAi-mediated silencing of SlCPR by dsCPR microinjection was performed with fifth-instar
larvae. To determine the efficiency of silencing, expression levels of the SlCPR-silenced larvae were
determined by RT-qPCR. Compared to control larvae that were microinjected with dsGFP, SlCPR
expression in the midgut of SlCPR-silenced larvae significantly decreased by 64.3%, 76.0%, and 51.5%
when analyzed at 24, 48, and 72 h after dsCPR microinjection (Figure 5A). Likewise, expression levels
of SlCPR-silenced larvae in the fat body decreased after dsCPR microinjection (by 48.4% at 24 h; by
45.6% at 48 h) (Figure 5B). These results indicated that RNAi suppressed the expression of SlCPR in
S. litura larvae and that the silencing effect was retained for at least 48 h.
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Figure 5. RNA interference (RNAi)-mediated silencing of SlCPR in fifth-instar larvae. Larvae were
microinjected with dsCPR or dsGFP (control). RNA was isolated at indicated time points after microinjection.
Expression levels of SlCPR in the midgut (A) and fat body (B) were then determined by RT-qPCR.
The expression levels of SlCPR were normalized using β-actinand EF1 as reference genes. Each RT-qPCR
reaction for each sample was performed in three technical replicates and three biological replicates. Data
indicate means ± SE. Asterisks indicate significantly reduced expression levels in SlCPR-silenced larvae as
compared to the control group (Student’s t-test, * p < 0.05,** p < 0.01, *** p < 0.001).
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Figure 6. Effect of SlCPR silencing on the susceptibility to phoxim. Fourth-instar larvae were
microinjected with dsCPR or dsGFP (control). Thirty fifth-instar larvae were then exposed to phoxim at
LC15 (4 µg/mL) or LC50 (20 µg/mL) doses for 48 h. All tests were performed in triplicate. Data shown
are mortality rates (means ± SE). Asterisks indicate significant differences between SlCPR-silenced
larvae as compared to the control group (Student’s t-test, ** p < 0.01, *** p < 0.001).

2.6. SlCPR-Silenced Larvae Show Increased Susceptibility to Phoxim

Mortality rates of fifth-instar larvae that were first microinjected with dsCPR (or dsGFP) and then
exposed to phoxim are shown in Figure 6. When larvae were injected with dsGFP, mortality was 19.3%
at the LC15 dose and 47.0% at the LC50 dose, respectively. However, compared to these control larvae,
phoxim-induced mortality of SlCPR-silenced larvae was considerably increased (by 34.6% at the LC15

dose; by 53.5% at the LC50 dose) (Figure 6). These results indicate that SlCPR-silenced larvae exhibit an
increased susceptibility to phoxim.
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3. Discussion

Insect CPRs in phylogenetic trees are clearly segregated into clusters that correspond to different
insect orders [16,21]. In the present study, we cloned and characterized the SlCPR gene of S. litura.
The amino acid sequence of SlCPR shares high similarity with known CPRs. Our phylogenetic analysis
of CPRs indicated that the SlCPR was more closely related to the CPR of S. littoralis than to the CPR
of S. exigua. Likewise, previous phylogenetic analysis indicated that the P450 protein CYP321A7
of S. litura is most similar to CYP321A12 of S. littoralis [25], suggesting a close genetic relationship
between S. litura and S. littoralis detoxification genes. Sequence comparisons also indicated that SlCPR
most probably contains a hydrophobic N-terminal transmembrane domain, suggesting that SlCPR is a
membrane anchored protein. In general, location of CPRs at the endoplasmic reticulum membrane is
considered as essential for CPR function [15,17,19]. In this way, co-localized partner P450s are provided
with electrons [17,28]. Similar hydrophobic transmembrane regions have been predicted for CPRs in
related species such as S. exigua [19], C. lectularius [15], N. lugens [17], C. suppressalis [29], H. armigera [16],
and L. migratoria [21]. Multiple sequence alignment further indicated that the hydrophilic C-terminal
domain of SlCPR likely possesses FMN-, FAD-, and NADP-binding domains that are conserved among
CPRs of insects [17,26]. Furthermore, putative catalytic residues (S470, C641, D686, and W688), known
to be indispensable for rat and human CPR [27,30] were identified in the SlCPR sequence. Taking these
sequence properties together, they indicate that SlCPR is likely an enzymatically functional CPR.

We further used RT-qPCR to investigate the expression profile of SlCPR in S. litura. The results
showed that the expression levels of SlCPR varied among different development stages and tissues.
Expression of SlCPR was strongest in the fifth- and sixth-instar larvae and highest expression levels
were determined for the midgut and fat body of fifth-instar larvae. These differences likely reflect
different levels of CPR activity. The expression pattern of SlCPR was found to be similar to that of CPRs
in other insects such as N. lugens (NlCPR) [17], H. armigera (HaCPR) [31], and L. striatellus (LsCPR) [12].
CPRs likely possess conserved functions in insects [22]. The observed expression profile of SlCPR
suggests that the protein is associated with different co-expressed P450s required for detoxification of
plant allelochemicals and/or insecticides.

Previous studies have shown that CPRs of insects (together with partner P450s) may play an
important role in detoxification of plant allelochemicals and insecticides [5,16,19]. An upregulation of
CPR expression in insects may increase their resistance to insecticides [17,20,32]. For example, expression
levels of the P. xylostella CPR gene in fourth-instar larvae were 13.2-fold higher in a β-cypermathrin
resistant strain than in a susceptible strain [23]. Likewise, as compared to an insecticide-susceptible
strain, CPR expression levels in apterous adult Rhopalosiphum padi were higher in an isoprocarb-resistant
strain and imidacloprid-resistant strain (by 3.74- and 3.52-fold, respectively) [32]. In the present
study, S. litura larvae exposed to phoxim showed significantly increased SlCPR transcript levels in
the midgut and fat body. These findings suggested that SlCPR could be involved in insecticide
detoxification and prompted us to further examine SlCPR-silenced larvae for their susceptibility to
phoxim. In fact, previous reports on various insects showed that microinjection or feeding of dsRNA
can result in successful silencing of CPR genes and this may influence the insect’s susceptibility to
insecticides [12,15,21]. When exposed to β-cypermethrin, the mortality rate of the of NlCPR-silenced
third-instar nymphs of N. lugens was 59.5% whereas control nymphs (microinjected with dsGFP)
showed only 26.2%. Imidacloprid showed similar effects in NlCPR-silenced nymphs [17]. Furthermore,
increased susceptibility to carbaryl was observed for third-instar nymphs of L. migratoria silenced in
LmCPR [21]. Moreover, in A. citricidus, silencing of AcCPR caused significantly increased mortality
when the adult aphids were exposed to abamectin [22]. In the present study, we successfully silenced
the expression of SlCPR in S. litura fifth-instar larvae. Expression levels in the midgut and fat body
were significantly reduced after dsCPR microinjection. When exposed to phoxim at LC15 and LC50

doses, SlCPR silencing significantly increased the mortality of S. litura as compared to the control
group microinjected with dsGFP. Hence, reduced SlCPR expression levels enhanced the susceptibility
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of S. litura larvae to phoxim. These results suggest that SlCPR, in combination with partner P450s,
is implicated in detoxification of phoxim.

In conclusion, we provide in this study key information on the SlCPR gene and our data indicate
that SlCPR expression levels in S. litura larvae influence their susceptibility to phoxim. Further studies
are needed to identify the redox partners of SlCPR and to study their role in resistance of phoxim and
other insecticides.

4. Material and Methods

4.1. Insects

The phoxim susceptible population of S. litura used in this study was originally obtained from the
Insectarium of the Institute of Entomology, Sun Yat-sen University (Guangzhou, China, May 11 2017).
S. litura larvae were fed on an artificial diet [33] and maintained in an insectary (without exposure to
any insecticides for more than two years) at 25 ± 2 ◦C and 70% ± 5% relative humidity under a 16:8 h
light:dark regime at South China Agricultural University (Guangzhou, China).

4.2. RNA Extraction and cDNA Synthesis

RNA was extracted from eggs (20 eggs per RNA extraction), first- to sixth-instar larvae at day
2 (three larvae per RNA extraction), pupae at day 2 (three pupae per RNA extraction) and adult at
day 1 (three adults per RNA extraction) for analyses of the SlCPR expression pattern at different
development stages of S. litura. RNA was extracted from various tissues (cuticle, fat body, midgut, head,
Malpighian tubule, and hemocytes) of fifth-instar larvae for analysis of the SlCPR expression pattern
in different tissue types. Hemocytes were obtained with microcapillaries according to previously
described procedures [34,35]. The material was centrifuged (10,000× g, 4 ◦C, 10 min) to remove debris.
To obtain fat body tissue, the midgut was opened with tweezers and the content was carefully removed.
The white-yellow fat body was then scraped from the midgut with tweezers and transferred into
an Eppendorf tube containing phosphate-buffered saline (PBS). The sample was then centrifuged
(2000 rpm, 4 ◦C, 3 min) to remove PBS. Finally, the fat body was washed twice with PBS.

Tissues from three individuals were pooled to obtain one RNA sample. Three independent
biological replicates were performed for all samples. The RNA extraction procedure was performed
with the RNAiso Plus kit (TaKaRa, Dalian, China) following the manual instructions. Isolated RNA
(1 µg) was reverse transcribed using the ThermoScript™ RT-PCR System kit (Thermo Fisher Scientific,
Carlsbad, CA, USA) following the manufacturer’s instruction.

4.3. Cloning of SlCPR

Based on obtained S. litura transcriptome data [25], primers (SlCPR-full-F: 5′-ATGTCAG
ACAGCGCACAGGACGTTC-3′; SlCPR-full-R: 5′-ACTCCAAACGTCAGCAGAATAT TTC-3′)) were
designed to amplify the complete SlCPR gene. cDNA derived from RNA isolated from S. litura
fourth-instar larvae served as template. The PCR product was purified (Qiagen PCR Purification Kit,
Qiagen, Netherlands) and cloned into the pMD18-T vector (Takara, Dalian, China). Finally, the plasmid
was transformed into Escherichia coli DH5α competent cells (Invitrogen, Carlsbad, CA, USA) following
the supplier’s guidelines and sequenced. The full-length SlCPR sequence can be found in the GenBank
database under the accession number MH638288.

4.4. Bioinformatic Analyses

The predicted molecular weight and isoelectric point of SlCPR were calculated using corresponding
programs available at the ExPASy Proteomics Server (http://cn.expasy.org/tools/pi_tool.html). Signal
peptide and subcellular localization predictions were made with the SignalP 3.0 (http://www.cbs.
dtu.dk/services/SignalP/) and the WoLF PSORT (http://wolfpsort.org/) programs. Multiple sequence
alignment of CPR amino acid sequences was performed with DNAMAN software package (Version

http://cn.expasy.org/tools/pi_tool.html
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://wolfpsort.org/
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6.0, Lynnon Biosoft, Vaudreuil, Quebec, Canada) [36]. MEGA 7.0 software (MEGA, PA, USA) [37] was
employed to construct a corresponding phylogenetic tree using the neighbor-joining method with 1000
bootstrap replicates.

4.5. SlCPR Expression Analysis

Relative expression levels of SlCPR were quantified by RT-qPCR, using obtained
cDNA and SlCPR specific primers (SlCPR-qF: 5′-TTACATAAGGGTGGAGATAGG-3′; SlCPR-qR:
5′-TGGTCAGTGTTGATGAGAGAG-3′). The PCR product (185 bp in length) corresponded to the
nucleotide position 913 to 1097 of the SlCPR coding region. Two reference genes, β-actin (GenBank
Acc. No. DQ494753) and Elongation factor-1 (EF1) (GenBank Acc. No. DQ192234) were used for
normalizing the target gene expression. We confirm that β-actin and EF1 were the relatively stable genes
for various target genes. The primers of the β-actin (β-actinF: 5′-TGAGACCTTCAACTCCCCCG-3′;
β-actinR: 5′-GCGACCAGCCAAGTCCAGAC-3′) and EF1 (EF1F: 5′-CTCCTACATCAAGAAGATC-3′;
EF1R: 5′-CTTGAGGATACCAGTTTC-3′) have been used before [25,38]. Each RT-qPCR was performed
in a 20-µL reaction volume that contained 10 ng of cDNA template, 10 µL SYBR Green I Master
Mix (Roche Diagnostics Corp., Indianapolis, IN, USA) and 0.2 µM of each primer. Reactions were
performed with a MJ Research OpticonTM 2 instrument (Bio-Rad, Inc., Hercules, CA, USA) using the
following parameters: (i) One cycle at 95 ◦C for 30 s and (ii) 40 cycles at 95 ◦C for 10 s and 60 ◦C for 25
s. The relative expression levels of SlCPR were calculated by the 2−∆∆Ct method [39] and normalized
to the two reference genes (β-actin and EF1). All RT-qPCR experiments were performed with three
independent biological replicates.

4.6. Analysis of SlCPR Expression in Larvae Exposed to Phoxim

Phoxim (99.0%, Shanghai Jiang Lai Biotechnology Co., Ltd., Shanghai, China) was diluted in
acetone (99.5%, Guangzhou Chemical Reagent Factory, China) to obtain a 100 µg/mL stock solution.
Then, the stock solution was diluted with sterilized water to prepare different concentrations for the
tests. Concentrations of phoxim causing 15% and 50% lethality of fifth-instar larvae (LC15: 4 µg/mL;
LC50: 20 µg/mL) were used in this study. The LC15 and LC50 values were obtained from a trial
experiment with different phoxim doses. The mortality values were 6.7%, 11.1%, 45.6%, 73.3%, 81.1%,
and 96.7% at 1, 4, 16, 64, 256, and 1024 µg/mL phoxim, respectively (Figure S1). The LC15 and LC50

values were determined using probit analysis (POLO-PC software). To test toxicity of phoxim on
S. litura, fifth-instar (day 1) larvae were used in a standard leaf disc bioassay method [1]. Leaves (7 cm
in diameter) of Chinese cabbage (Brassica campestris L. ssp. pekinensis) were immersed in the prepared
phoxim solution (LC15 or LC50 dosages) for 10 s and allowed to air-dry for 1.5 h. Control leaves were
immersed in sterilized water. A total of 30 fifth-instar larvae were placed on each treated leaf (three
larvae per leaf) which were placed in a sterile glass Petri dish (9 cm in diameter). After 24 h incubation
in the insectary, the midgut or fat bodies from three of surviving larvae were pooled as one sample
for RNA exaction, respectively. Three independent replicates were used for each treatment (three
biological replicates). SlCPR expression analysis by RT-qPCR was conducted as described above.

4.7. Silencing of SlCPR by RNAi

DNA for in vitro transcription reactions was amplified by PCRs using cDNAs of SlCPR
and GFP (green fluorescent protein; accession number ACY56286) as a control. The PCRs were
performed with the following primers: (i) CPR-RNAi-F (5′-ATGGTTGCTGATCCCGAAGAA-3′)
and T7CPR-RNAi-F (5′-aatacgactcactatagggATGGTTGCTGATCCCGAAGAA-3′), (ii) CPR-RNAi-R
(5′-AGGCCAAACACGGCATAATTT-3′) and T7CPR-RNAi-R (5′-aatacgactcactataggg AGGCCAAACA
CGGCATAATTT-3′), (iii) T7GFPdsRNAF (5′-AATACGACTCACTATAGGGAAGGGCGAGGAGCTGT
TCACCG-3′) and GFPdsRNAR (5′CAGCAGGACCATGTGATCGCGC-3′), and (iv) GFPdsRNAF (5′-
AAGGGCGAGGAGCTGTTCACCG-3′) and T7GFPdsRNAR (5′-AATACGACTCACTATAGGGCAGC
AGGACCATGTGATCGCGC-3′) [25]. The SlCPR PCR product corresponded to the nucleotide position
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361 to 551 of the SlCPR coding region. The PCR products were then purified with a PCR purification
kit (Qiagen, Venlo, The Netherlands) and used as templates to synthesize double-stranded RNA
(dsRNA) with the T7 RiboMAX™ Express RNAi System (Promega, Madison, WI, USA). The dsRNA
was adjusted with DEPC-treated (RNase-free) water to a final concentration of 1.5 µg·µL−1 and kept at
–80 ◦C for further use. Subsequently, 2 µL (3.0 µg) of dsRNA were injected into the side of the thorax
of fifth-instar (day 2) larvae of S. litura using a manual microinjector (model No. MS05, Chengdu
Centome Company Ltd., Chengdu, China). Thirty fifth-instar larvae microinjected with dsCPR or
dsGFP were incubated in the insectary for 24, 48, and 72 h, respectively. RNA was then isolated
from the midgut and fat bodies, respectively. Tissue from three larvae were used for each RNA
extraction. SlCPR expression levels in the midgut and fat bodies were determined by RT-qPCR. Three
independent replicates were conducted for all treatments.

4.8. Bioassays with Phoxim after RNAi

To explore a possible role of SlCPR in the insect’s susceptibility to phoxim, dsCPR or dsGFP was
microinjected into 30 fifth-instar (day 1) larvae of S. litura, respectively. Leaves of Chinese cabbage
were immersed in phoxim solution (LC15 or LC50 doses) and then air-dried. After dsRNA delivery,
S. litura were placed on each prepared leaf and incubated in the insectary at the same condition as
described above. Mortality rates of S. litura were recorded after 48 h. All tests were performed in three
independent replicates.

4.9. Data Analysis

Data were expressed as means ± standard error (SE). Statistical analysis was carried out with the
SPSS 13.0 Software Package (SPSS Inc., Chicago, IL, USA). One-way ANOVA followed by the Duncan’s
multiple range test was employed to analyze differences among different development stages and
tissues. The Student’s t-test was used to analyze data from SlCPR-silenced larvae and toxicity tests
with phoxim. Statistical differences were considered as significant at p < 0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/15/
3839/s1.
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