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Abstract
Objectives  To develop a nomogram based on the radiomics features of tumour and perigastric adipose tissue adjacent to the 
tumor in dual-layer spectral detector computed tomography (DLCT) for lymph node metastasis (LNM) prediction in gastric 
cancer (GC).
Methods  A retrospective analysis was conducted on 175 patients with gastric adenocarcinoma. They were divided into 
training cohort (n = 125) and validation cohort (n = 50). The radiomics features from the tumour and perigastric fat based on 
DLCT spectral images were extracted to construct radiomics models for LNM prediction using Lasso-GLM method. Preop-
erative clinicopathological features, DLCT routine parameters, and the optimal radiomics models were analyzed to establish 
the clinical-DLCT model, clinical-DLCT-radiomics model and a nomogram. All models were internally validated using the 
Bootstrap method and evaluated using receiver operating characteristic (ROC) curve.
Results  The area under the ROC curve (AUC) values of optimal radiomics models based on tumour (Model 1) and peri-
gastric fat (Model 2) were 0.923 and 0.822 in training cohort, 0.821 and 0.767 in validation cohort. The clinical-DLCT 
model based on Nct and ECVID demonstrated an AUC value of 0.728 in training cohort and 0.657 in validation cohort. The 
clinical-DLCT-radiomics model and the nomogram were established by incorporating Nct, ECVID and the linear predictive 
values of Models 1 and 2, exhibiting superior predictive efficacy with an AUC value of 0.935 in training cohort and 0.876 
invalidation cohort.
Conclusions  The nomogram based on Nct, ECVID, and the radiomics features of tumour and perigastric fat in DLCT dem-
onstrates potential for predicting LNM in GC. This approach may contribute to the development of treatment strategies and 
improve the clinical outcomes for GC patients.

Keywords  Radiomics · Perigastric adipose tissue · Dual-layer spectral detector CT · Lymph node metastasis · 
Extracellular volume fraction · Gastric cancer
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Introduction

Gastric cancer (GC) is a highly lethal malignancy, ranking 
third in incidence and second in mortality in China [1]. GC 
patients often diagnosed at advanced stages characterised by 
high rates of lymph node metastasis (LNM), which serves 
as the primary mode of spread for this disease [2, 3]. Early 
gastric resection combined with lymph node dissection can 
significantly improve patient prognosis, while accurate pre-
operative evaluation of LNM plays a crucial role in iden-
tifying suitable candidates and selecting optimal treatment 
strategies, as well as for prognostic evaluation among GC 
patients [4].

Multi-detector computed tomography serves as the pri-
mary imaging modality for the preoperative assessment of 
GC [5]. However, this subjective imaging technique lacks 
sufficient accuracy in identifying LNM based solely on 
morphology and enhancement patterns, often making it 
challenging to detect small or occult lymph node micro-
metastases, resulting in an overall evaluation accuracy of 
only approximately 60% [6]. Dual-layer spectral detector 
computed tomography (DLCT) can not only provide clear 
subjective images but also relevant quantitative spectral 
parameters, thereby offering valuable quantitative refer-
ences for disease diagnosis and treatment evaluation [7]. 
Several studies have substantiated the clinical significance 
of the quantitative parameters in the preoperative assess-
ment of LNM in GC [7]. Furthermore, there are derived 
quantitative parameters based on ID image data, such as 
extracellular volume fraction (fECV), which also exhibit 
substantial diagnostic value for various malignant tumours 
[8, 9]. However, there are few studies on the fECV for LNM 
evaluation in GC.

The perigastric fat, as a part of visceral adipose tissue 
(VAT), can potentially facilitate tumour progression by 
secreting various adipokines and cytokines that impact 
tumour biology and contribute to cancer occurrence and 
development, ultimately leading to unfavourable progno-
sis [10]. Studies have demonstrated that fat cells can pro-
mote extensive metastasis of GC, including omental and 
peritoneal metastases [11]. Currently, relevant research has 
analyzed the quantity and composition of adipose tissues 
for predicting tumour aggressiveness and prognosis [12]. 
However, tissue biopsy are often used for lipid composition 
analysis, which are invasive and time-consuming proce-
dures. Therefore, there is an urgent need for a non-invasive 
approach capable of characterising fat composition features 
to indirectly evaluate tumours.

In the era of precision medicine, radiomics transforms 
high-resolution images into high-dimensional and minable 
data with multiple channels, enabling the extraction of quan-
titative feature information that reflects the heterogeneity of 

tumour characteristics [13, 14]. While current radiomics 
studies primarily utilise conventional mixed-energy images 
from routine CT scans for feature extraction, DLCT can 
provide different spectral images, thereby expanding the 
research content of radiomics and enhancing its application 
value in tumour evaluation [15]. Some studies have con-
firmed that the radiomics features of peritumoral adipose 
tissue can improve the value of tumor radiomics features 
alone in tumor evaluation [16, 17]. To date, there has been 
no report exist to explore the potential of radiomics features 
based on tumours and perigastric fat combined with quanti-
tative parameters of DLCT for LNM prediction in GC.

In this study, artificial intelligence analysis software will 
be employed to extract radiomics features of tumours and 
perigastric fat adjacent to the tumor in gastric adenocarci-
noma from multiple parameter images in DLCT and con-
struct radiomics models. Subsequently, a nomogram will 
be generated by integrating meaningful clinicopathological 
features, routine DLCT parameters, and radiomics models 
for the preoperative prediction of LNM in GC.

Materials and methods

Study population

This study was approved by the Ethics Committee, and 
each subject signed an “Informed Consent about Contrast-
Enhanced CT.” A retrospective review was conducted on 
a cohort of 216 patients with GC who underwent endos-
copy examination and DLCT prior to radical gastrectomy 
between June 2021 and December 2023. The inclusion 
criteria and exclusion criteria were listed in Supplemental 
Material A. Ultimately, a total of 175 eligible patients were 
enrolled in the study (Fig. 1). All patients were first split 
into training cohort and validation cohort with a ratio of 
7:3 by using the random series generated by the computer. 
The training cohort was utilised for both model training and 
internal validation.

The following variables were recorded: age, gender, 
serum tumour markers (CEA, CA199, and CA125), endo-
scopic tumour location, endoscopic differentiation grade, 
and endoscopic pathological type.

DLCT scanning method and parameters

The DLCT scanner (IQon Spectral CT, Philips Health Sys-
tems) was utilised to perform an unenhanced scan followed 
by three phases of enhanced scans. Patients were instructed 
to consume 800–1200  ml of warm water 20  min prior to 
the examination, and receive an intramuscular injection of 
20  mg of 654-2 for gastrointestinal peristalsis inhibition. 
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The ionic contrast medium (iohexol, Omnipaque 350) was 
administered intravenously at a dose of 1.5 mL/kg body 
weight at a rate of 3.0–3.5 mL/s, followed by 10 mL of 
saline at the same rate. The arterial phase, venous phase, 
and equilibrium phase images were acquired at 35s, 70s, 
and 180s post-contrast agent injection, respectively. Scan-
ning parameters included a tube voltage of 120 kV, auto-
matic mAs for tube current (reference value: 129mAs), 
pitch of 1.016, rotation time of 0.5s, scanning matrix size of 
512 × 512, scanning layer thickness and spacing both set at 
5 mm, and reconstruction layer thickness and spacing both 
set at 1 mm.

Image reconstruction and postprocessing

The arterial, venous, and equilibrium phase SBI images were 
imported into the Philips Image Workstation (IntelliSpace 
Portal version 9, Philips Healthcare) for analysis. Subse-
quently, 40 keV mono-energy images as well as iodine den-
sity ((ID) and effective atomic number (Zeff) images were 
acquired. Two radiologists with 5 and 10 years of experi-
ence independently delineated the regions of interest (ROI) 
on the cancer lesion in the venous phase images without 
access to clinical information or pathological results. The 
details of ROIs profiling and measurement of quantitative 

Fig. 1  Flowchart of patient enrollment
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Features with a correlation coefficient (ICC) greater than 
0.8 in the reliability test were subsequently included in fur-
ther selection processes. The “feature selection” module of 
AIMS was used to employ the least absolute shrinkage and 
selection operator (LASSO) regression analysis method, 
and then features from three single-parameter images in 
both arterial and venous phases were individually selected. 
Key features for predicting LNM of gastric adenocarcinoma 
were determined, and a 10-fold cross-validation approach 
was employed to select the most appropriate λ value. Finally, 
optimal features along with their corresponding coefficients 
were obtained.

Radiomics modelling

The image features of tumour and perigastric fat from sin-
gle-parameter images and multi-parameter images were 
used to construct generalised linear models (GLM) for 
predicting LNM of GC using the “modelling” module of 
AIMS. In total, eight models (mix-tumour model, 40 keV-
tumour model, ID-tumour model, combined-tumour model, 
mix-fat model, 40 keV-fat model, ID-fat model, and com-
bined-fat model) were developed. The area under the oper-
ating characteristic (ROC) curve (AUC) values of the eight 
models were compared to select the optimal models based 
on tumour and perigastric fat, respectively. The optimal 
models were further validated using the Bootstrap method 
with 1000 resamples. Finally, the linear predictive values 
of the optimal models were obtained. The workflow of the 
DLCT-based radiomics analysis was illustrated in Fig. 2.

Statistical analysis

Statistical analysis was conducted using SPSS 19.0, Med-
Calc 15.0, and R software packages (version 4.0.5, ​h​t​t​p​:​/​/​
w​w​w​.​R​p​r​o​j​e​c​t​.​o​r​g​​​​​)​. The normality of the distribution was 
assessed using the K-S test. Continuous variables with nor-
mal distribution were expressed as mean ± standard devia-
tion, while those without normal distribution were expressed 
as median (interquartile range). Categorical variables were 
presented as n (%). The differences in clinicopathological 
and routine DLCT parameters between the LNM and non-
LNM group were analyzed using the independent sample 
t-test or Wilcoxon test for continuous variables, and the Chi-
square test or Fisher’s exact test for categorical variables. 
Multivariate logistic regression backward stepwise analysis 
was employed to identify independent predictors of LNM in 
GC and to construct the clinical-DLCT model and the clini-
cal-DLCT-radiomics model. Parameters with p-value < 0.05 
were considered statistically significant in the multivariate 
analysis. The ROC curve analysis and Delong test were 
used to compare the predictive efficacy of each model. The 

parameters were listed in Supplemental Material B and 
shown in Figure S1A-S1D.

In addition, routine DLCT parameters including tumour 
thickness, T-stage assessment in CT images (T-ct), and 
lymph node status evaluation in CT images (Nct) were also 
obtained. Tumour thickness is defined as the perpendicular 
distance from the major axis at its largest level. T-ct was 
evaluated based on the TNM staging system criteria from 
UICC/AJCC 8th edition [18]. Nct positivity was determined 
by a minimum lymph node diameter was larger than 6 mm 
for perigastric LN and larger than 8 mm for extraperigastric 
LN observed on mixed-energy CT images [18]. Two abdom-
inal imaging experts with 5 and 10 years of experience inde-
pendently assessed these parameters without knowledge of 
pathological results. In cases where their evaluations were 
inconsistent, final assessments were made through joint dis-
cussion and negotiation.

Radiomics workflow

Image segmentation

The image segmentation and feature extraction process uti-
lised mixed-energy images, 40 keV mono-energy images, 
and ID images from both arterial and venous phases. Two 
radiologists with 6 and 8 years of experience in abdomi-
nal CT diagnosis who were blinded to the clinical and 
histopathological data except for the general location of 
the tumor performed the annotation of data on the mixed-
energy images using artificial intelligence-assisted diagno-
sis modelling software (AIMS). The details of segmentation 
were in Supplemental Material C. ROIs were obtained for 
both the tumour and perigastric fat in arterial and venous 
phase images, resulting in a total of 4 ROIs on each type of 
images and 12 ROIs in each patient for feature extraction 
(Figure S2).

A reliability test was performed to guarantee the repro-
ducibility and robustness of the radiomics features (Supple-
mental Material D).

Feature extraction and selection

Utilising the “feature extraction” module of AIMS, the 
images were reconstructed using a Laplacian-Gaussian 
(LoG) filter with sigma values of 4 and 5 mm, respectively. 
Subsequently, Wavelet transform and LoG transform were 
applied to extract features based on the original image char-
acteristics. The extracted features encompassed first-order 
statistics, shape descriptors, and texture measures, including 
GLCM, GLRLM, GLSZM, NGTDM, and GLDM. Follow-
ing extraction, all features were standardised using z-score 
normalization.
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Lasso regression analysis was employed for feature selec-
tion, as illustrated in Figure S3. The selected features were 
included to construct four radiomics models based on the 
three single-parameter images and multi-parameter images, 
respectively (Figure S4). Among the four models, the model 
incorporating multi-parameter image features (Model 1) 
demonstrated superior diagnostic efficiency in the training 
cohort (Fig. 3A). The internal and independent validation 
ROC curves were shown in Fig. 3B and C.

Radiomics models based on perigastric fat

A total of 1,850 features from the images of perigastric fat 
with an inter-observer ICC value > 0.8 were included in the 
analysis. Lasso regression analysis was employed for feature 
selection, as illustrated in Figure S5. The selected features 
were included to construct four radiomics models based 
on the three single-parameter images and multi-parameter 
images, respectively (Figure S6). Among the four models, 
the ID images feature model (Model 2) demonstrated supe-
rior diagnostic efficiency in the training cohort (Fig. 3D). 
The internal and independent validation ROC curves were 
shown in Fig. 3E and F.

R software was used to generate a nomogram. The calibra-
tion of the nomogram was evaluated by calibration curves 
using the Hosmer-Lemeshow test. The clinical applicability 
of each model was assessed using decision curve analysis 
(DCA). A p-value < 0.05 indicated statistically significance.

Results

Patient characteristics

A total of 175 patients with gastric adenocarcinoma were 
included in this study and divided into training cohort 
125 cases and validation cohort 50 cases, comprising 113 
patients with LNM and 62 patients without LNM. Among 
the participants, there were 126 males and 49 females, with 
ages ranging from 34 to 88 years (mean age: 68.51 ± 9.97 
years). The clinicopathological characteristics of the 
enrolled patients are presented in Table 1.

Radiomics model

Radiomics models based on tumor

A total of 2,292 features from the images of tumour with an 
inter-observer ICC value > 0.8 were included in the analysis. 

Fig. 2  Workflow of the DLCT-based radiomics analysis. Following 
segmentation of tumor and perigastric areas in the acquired images, 
radiomics features were extracted for each patient. The LASSO algo-
rithm was used to select pertinent radiomics features, which were 
subsequently subjected to linear fitting to construct radiomics models. 

Logistic regression analysis was employed to develop both clinical-
DLCT and clinical-DLCT-radiomics combined models. Model per-
formance was evaluated using ROC curves, calibration curves, and 
decision curve analysis (DCA)
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Table 1  Comparison of preoperative clinicopathological features and routine DLCT parameters between LNM and non-LNM groups
Training Cohort Validation Cohort

Feature LNM(-)
(n = 45)

LNM(+)
(n = 80)

t/Z/χ2 p LNM(-)
(n = 17)

LNM(+)
(n = 33)

t/Z/χ2 p

Age(year) 68.18 ± 8.71 68.69 ± 11.35 0.223a 0.824 71.24 ± 9.22 66.85 ± 13.30 1.215a 0.230
Gender 0.012c 0.913 1.532c 0.216
Male 32 (71.1%). 59 (73.8%). 10(58.82%) 25(75.76%)
female 13 (28.9%). 21 (26.3%). 7(41.18%) 8(24.24%)
Endoscopic pathological type 4.768c 0.18 0.003c 0.622
Tubular adenocarcinoma 32 (71.1%). 57 (71.3%). 12(70.59%) 22(66.67%)
Non-tubular adenocarcinoma 13 (28.9%). 23 (28.8%). 5(29.41%) 11(33.33%)
Endoscopic differentiated degree 4.414c 0.036* 1.156c 0.282
Low
differentiation

8 (17.8%) 31 (38.8%). 11(64.71%) 26(78.79%)

Moderate-high differentiation 37 (82.2%) 49 (61.3%). 6(35.29%) 7(21.21%)
Endoscopic tumor location 3.280c 0.353 5.558c 0.137
Cardia or fundus 10 (22.2%) 28 (35.0%). 3(17.65%) 15(45.45%)
Body of stomach 7 (15.6%) 17 (21.3%). 5(29.41%) 4(12.12%)
Antrum or pylorus 23 (51.1%). 24 (30.0%). 7(41.18%) 8(24.24%)
Overlapping sites 5 (11.1%) 11 (13.8%). 2(11.76%) 6(18.18%)
Serum tumor marker
CEA(ng/ml) 2.026c 0.155 1.418c 0.328
≤ 5 37(82.2%) 58(72.5%) 12(70.6%) 22(66.7%)
> 5 8(17.8%) 22(27.5%) 5(29.4%) 11(33.3%)
CA199(U/ml) 3.670c 0.055 0.595c 0.702
≤ 30 39(86.7%) 59(73.8%) 13(76.5%) 25(75.8%)
> 30 6(13.3%) 21(26.3%) 4(23.5%) 8(24.2%)
CA125(U/ml) 0.002c 0.963 1.495c 0.234
≤ 25 36(80%) 65(81.3%) 12(70.6%) 26(78.8%)
> 25 9(20%) 15(18.8%) 5(29.4%) 7(21.2%)
Nct 10.986c 0.001* 8.642c 0.003*
negative 30 (66.7%) 23 (28.8%). 12(70.59%) 9(27.27%)
positive 15 (33.3%). 57 (71.3%). 5(29.41%) 4(72.72%)
Tumor Thickness(mm) 16.60

(13.65, 19.60)
19.10
(15.75, 23.35)

2.602b 0.005* 19.27 ± 12.11 19.39 ± 13.30 -0.044a 0.965

APCT40kev(Hu) 163.6
(117.55, 213.55)

157.2
(118.40, 201.35)

0.368b 0.713 168.10
(147.40, 214.80)

159.20
(116.65, 223.28)

-1.137b 0.256

VPCT40kev(Hu) 200.90 ± 54.03 201.69 ± 53.59 0.068a 0.946 198.40
(157.80, 232.80)

186.90
(165.58, 237.78)

-0.020b 0.984

DPCT40kev(Hu) 177.32 ± 47.24 187.57 ± 40.57 1.102a 0.273 171.32 ± 43.81 182.94 ± 40.82 -0.930a 0.357
APZeff 8.11

(7.86, 8.35)
8.11
(7.86, 8.33)

0.313b 0.754 8.17
(8.04, 8.26)

8.08
(7.87, 8.44)

-1.168b 0.243

VPZeff 8.31
(8.10, 8.49)

8.34
(8.11, 8.54)

0.309b 0.757 8.24
(8.14, 8.47)

8.27
(8.14, 8.48)

-0.164b 0.870

DPZeff 8.16
(8.02, 8.33)

8.22
(8.16, 8.46)

1.510b 0.131 8.17 ± 0.25 8.23 ± 0.22 -0.972a 0.336

APNID 0.13
(0.10, 0.21)

0.12
(0.08, 0.17)

1.397b 0.163 0.15
(0.11, 0.16)

0.12
(0.10, 0.21)

-0.563b 0.573

VPNID 0.43
(0.35, 0.54)

0.43
(0.33, 0.55)

0.408b 0.683 0.42
(0.39, 0.50)

0.43
(0.37, 0.61)

-0.420b 0.675

DPNID 0.52
(0.48, 0.67)

0.60
(0.50, 0.71)

1.260b 0.208 0.50
(0.42, 0.65)

0.65
(0.51, 0.80)

-2.161b 0.031*

ECVID(%) 34.88
(32.04, 39.08)

40.36
(36.27, 46.57)

2.808b 0.002* 34.85 ± 8.95 43.27 ± 9.11 -3.113a 0.003*

T-ct 9.482c 0.009* 7.134c 0.013*
T1/T2 20 (44.4%). 7 (8.8%) 6(35.29%) 2(6.06%)
T3/T4 25 (55.6%). 73(91.3%). 11(64.71%) 31(93.94%)
Note: a stands for t value, b for Z value, and c for χ2 value
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were combined to construct the clinical-DLCT-radiomics 
model (Model 4). The ROC curves of training and valida-
tion cohort were shown in Fig. 4D and F. Subsequently, a 
nomogram was concurrently generated (Fig. 5A).

Assessment of model performance

As Table 2 shows, in the training cohort, the AUC of Model 
4 was higher than that of other models, and the differences 
between Model 4 and Model 2, 3 were statistically signifi-
cant (Z=-0.113 and − 0.207, p < 0.05), but no significant 
difference was observed between Model 4 and Model 1 
(Z=-0.012, p = 0.783). In the validation cohort, the AUC of 
the Model 4 was also higher than that of other models, and 
the differences between Model 4 and Model 3 was statisti-
cally significant (Z = 2.345, p < 0.05), but no significant dif-
ference was observed between Model 1 and other models 
(Z = 0.929 and 1.338, p = 0.353 and 0.181). The ROC curve 
analysis showed that when the threshold of model 4 was 
0.664, the Youden index of the model was the largest, and 

Clinical-DLCT model

In the preoperative clinicopathological features and routine 
DLCT parameters, the endoscopic differentiation degree, 
Nct, tumour thickness, T-ct, and ECVID exhibited statisti-
cally differences between the LNM and non-LNM group 
in the training cohort (all P < 0.05) (Table 1). Multivariate 
logistic regression analysis revealed that Nct and ECVID 
were independent predictors of LNM in GC with the OR 
values of 3.634 (95%CI: 1.428–9.251) and 1.102 (95%CI: 
1.005–1.208), respectively (p < 0.05). A clinical-DLCT 
model (Model 3) was established incorporating Nct and 
ECVID, with the ROC curves of training and validation 
cohort shown in Fig. 4A and C.

Clinical-DLCT-radiomics model and nomogram

The linear predictive values of the two optimal radiomics 
models for tumour and perigastric fat (Model 1 and Model 
2), along with the independent predictors (Nct and ECVID), 

Fig. 3  ROC curves of radiomics models in the training and validation 
cohort. (A, D) ROC curves of radiomics models based on the mixed-
energy images, 40 keV mono-energy images, ID images, and all image 
features of tumour and perigastric fat in the training cohort. Among 
them, the multi-parameters images models based on tumour (Model 1) 
and ID images models based on perigastric fat (Model 2) demonstrated 
superior diagnostic performance for LNM prediction. (B, E) Bootstrap 

internal validation ROC curves of Model 1 and Model 2 in the training 
cohort. (C, F) ROC curves of radiomics models based on the mixed-
energy images, 40 keV mono-energy images, ID images, and all image 
features of tumour and perigastric fat in the validation cohort. Among 
them, the multi-parameters images models based on tumour (Model 1) 
and ID images models based on perigastric fat (Model 2) demonstrated 
superior diagnostic performance for LNM prediction
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Discussion

In this study, the radiomics models based on multi-parame-
ter images of tumours and ID images of perigastric fat were 
constructed and demonstrated superior diagnostic perfor-
mance for LNM in GC. Then, a clinical-DLCT model was 
established using Nct and ECVID as independent predictors 
of LNM in GC. Finally, a clinical-DLCT-radiomics model 
and the corresponding nomogram were generated by inte-
grating the two best radiomics models, Nct, and ECVID. The 
predictive performance and clinical application value of the 
nomogram for LNM in GC surpassed that of other models.

Currently, numerous studies have utilised CT images 
of GC lesions to establish radiomics models for predicting 
LNM [19]. However, these studies rely solely on mixed-
energy images, limiting the image sources used for feature 
extraction and resulting in a lack of richness in obtained 
radiomics features. In this study, DLCT provided not only 
conventional mixed-energy images but also spectral images. 
Li et al. [20] extracted features from mono-energy images 
of dual-energy CT to establish a deep learning model that 
exhibits greater predictive value for LNM in GC compared 
to single-parameter image models. However, the mix-energy 

the sensitivity and specificity of the model reached the best 
balance. Notably, Model 4 displayed higher sensitivity, 
specificity, and accuracy in predicting LNM in GC with an 
cut-off value of 0.664 than the other three models both in the 
training and validation cohort.

The nomogram calibration curves demonstrated good 
agreement between observed and predicted outcomes in the 
two cohorts (Hosmer-Lemeshow test, p = 0.426 and 0.513) 
(Fig. 5B). DCA revealed that Model 4 exhibited superior 
net clinical benefit in predicting LNM in GC compared to 
the other three models in the training cohort (Fig. 5C). A 
typical case in which this nomogram was applied is shown 
in Figure S7.

A stratification analysis on the subgroups of tumor loca-
tion and pathological T stage (pT-stage) was performed to 
explore the robustness of the nomogram. Detailed descrip-
tion on stratified analysis is provided in Supplemental Mate-
rial E. The results showed that the diagnostic efficiency of 
nomogram was not affected by the tumor location and pT-
stage (DeLong test, all p > 0.05) (Figure S8), suggesting its 
robustness on different subgroups of GC.

Fig. 4  ROC curves of clinical-DLCT model and clinical-DLCT-
radiomics model in the training and validation cohort. (A, D) ROC 
curves of clinical-DLCT model (Model 3) and clinical-DLCT-
radiomics model (Model 4) in the training cohort. (B, E) Bootstrap 

internal validation ROC curves of Model 3 and Model 4 in the training 
cohort. (C, F) ROC curves of Model 3 and Model 4 in the validation 
cohort
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metabolic substrates [21–23]. The changes in the molecular 
profile of adipose tissue surrounding the tumor can influ-
ence the radiomics features of corresponding images, which 
may not be apparent through visual assessment alone [17]. 
Jayaprakasam et al. [17] analysed radiomics features of 
mesorectal fat in MRI images of rectal cancer, finding these 
features predictive of pathological complete response, local 
and distant recurrence, as well as T and N stages after treat-
ment, underscoring the importance of cancer-associated 
adipose tissue characteristics in assessing tumor heteroge-
neity and aggressiveness. In recent years, several studies 
have highlighted a strong correlation between visceral fat 
and LNM in GC [24]. Currently, there was few fat-based 

images and ID image features were not included in this 
study. Thus, our research constructed a multi-parameter 
radiomics model from combined features of mixed-energy 
images, 40 keV mono-energy images, and ID images of GC 
lesions. The model outperformed the single-parameter mod-
els by better capturing the heterogeneity and aggressiveness 
of GC lesions and offered a more optimised approach than 
traditional enhanced CT.

Cancer-associated adipose tissue can promote tumor cell 
growth, proliferation, invasion, and metastasis by alter-
ing lipid metabolism within cancer cells, releasing pro-
inflammatory cytokines and tumor adipokines, facilitating 
extracellular matrix remodelling, and providing various 

Fig. 5  (A) Nomogram constructed from Nct, ECVID and the linear 
predictive values of Model 1 and Model 2. (B) The calibration curve 
of the nomogram in the training and validation cohort. (C) The DCA 

of the four models in the training cohort: the threshold probability is 
shown on the X-axis, and the net benefit is shown on the Y-axis
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emerged as a non-invasive method for disease assessment 
based on imaging methods in recent years [28]. DLCT ID 
images directly show iodine distribution during the equilib-
rium phase, allowing fECV values to be calculated using 
single-phase images [29, 30]. Fukukura et al. [29] used 
equilibrium phase ID images to quantify fECV in pancreatic 
ductal adenocarcinoma, as an independent prognostic indi-
cator for survival in chemotherapy patients, with higher val-
ues indicating a poorer prognosis. In our study, we obtained 
ECVID using the same method and observed significantly 
higher values in GC lesions with LNM compared to those 
without. Consistent with previous research, this study found 
that increased ECVID values in cancerous lesions indicate 
heightened invasiveness, likely due to excessive extracel-
lular matrix deposition, inflammatory cell infiltration, fibro-
blast activation and enrichment, and vascular leakage from 
incomplete neovascularization within the basement mem-
brane [31, 32]. Therefore, this study integrated ECVID into 
Nct and radiomics features from tumor and perigastric fat to 
create a nomogram, demonstrating superior predictive per-
formance and clinical applicability.

In this study, potential sources of variability (such as 
the settings of spectral CT scan parameters, differences in 
patient characteristics, and variations in researchers’ exper-
tise) may significantly impact the results. To reduce these 
differences and improve the reproducibility and reliability 
of the research, we will first standardize the scanner settings 
in advance (such as resolution, contrast, and scan time) to 
ensure that all enrolled patients are scanned using the same 
settings. Second, we will use computer randomization 
for grouping enrolled patients to minimize differences in 
characteristics (such as age, gender, medical history, etc.) 
between the training and validation groups. Additionally, we 
will ensure that all researchers involved in data collection 

radiomics studies reported on LNM for GC. In this study, 
the radiomics features from perigastric fat adjacent to the 
tumor demonstrated significant predictive value for LNM in 
GC, with the model based on ID images showing superior 
predictive performance. That’s probably because ID images 
can directly reflect dynamic changes in iodine concentra-
tion, effectively capturing microenvironmental changes in 
perigastric fat among GC patients with LNM.

However, we also found that the diagnostic performance 
of tumor-based radiomics model was higher than that of fat-
based radiomics model, which may be due to the fact that 
the changes of adipose tissue may be affected by many other 
factors (such as nutritional status, systemic metabolism, 
etc.), and thus may not fully reflect the cellular heterogene-
ity and biological behavior of tumors. However, when the 
radiomics features of tumor and fat are integrated, higher 
predictive and application value for LNM of GC can be 
obtained. More and more studies have shown that molecular 
signaling between tumor cells and adipocytes in the tumor, 
around the tumor, and even distant sites plays a key role in 
promoting tumor growth and metastasis [25]. Therefore, the 
combination of radiomics features of the two can more com-
prehensively reflect the changes in tumor heterogeneity and 
invasiveness caused by the interaction of the two factors. Li 
Yang et al. [26] established a radiomics model combining 
tumoral and peritumoral radiomics features derived from 
DECT, showing higher diagnostic efficacy for serosal inva-
sion in gastric adenocarcinoma than the tumor-based model 
alone. This conclusion is similar to that of the present study.

Numerous studies have demonstrated the extracellular 
stroma of tumour can comprehensively reflect the tumour 
microenvironment and serves as a reliable indicator for 
predicting invasiveness and prognosis [27]. The quantifica-
tion of extracellular matrix is expressed as fECV, which has 

Table 2  Comparison of AUC, sensitivity, specificity and accuracy among the four models in the training and validation cohort
Model AUC

(95%CI)
Sensitivity
(95%CI)

Specificity
(95%CI)

Accuracy Cut-off value

Training Cohort Model1 0.923
(0.861 ~ 0.985)

0.885
(0.821 ~ 0.949)

0.848
(0.775 ~ 0.921)

0.872 0.635

Model2 0.822
(0.728 ~ 0.917)

0.750
(0.662 ~ 0.838)

0.833
(0.758 ~ 0.908)

0.777 0.674

Model3 0.728
(0.614 ~ 0.842)

0.885
(0.821 ~ 0.949)

0.515
(0.414 ~ 0.616)

0.755 0.470

Model4 0.935
(0.877 ~ 0.992)

0.901
(0.841 ~ 0.961)

0.878
(0.812 ~ 0.944)

0.894 0.664

Validation Cohort Model1 0.821
(0.690 ~ 0.952)

0.743
(0.655 ~ 0.831)

0.867
(0.798 ~ 0.936)

0.780 0.635

Model2 0.767
(0.609 ~ 0.925)

0.771
(0.686 ~ 0.856)

0.667
(0.572 ~ 0.762)

0.736 0.674

Model3 0.657
(0.494 ~ 0.820)

0.600
(0.501 ~ 0.699)

0.733
(0.644 ~ 0.822)

0.660 0.470

Model4 0.876
(0.781 ~ 0.972)

0.800
(0.719 ~ 0.881)

0.833
(0.758 ~ 0.908)

0.811 0.664
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other third party material in this article are included in the article’s Cre-
ative Commons licence, unless indicated otherwise in a credit line to 
the material. If material is not included in the article’s Creative Com-
mons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit ​
h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​r​g​​/​l​i​​c​e​n​​s​e​s​/​​b​y​​-​n​c​-​n​d​/​4​.​0​/.
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receive the same training and follow standard operating 
procedures to reduce human error. Finally, we will consider 
potential confounding variables in data analysis and use 
multivariable regression statistical methods to control the 
impact of these variables.

There are limitations to our study: (1) The sample size is 
insufficient to establish a test cohort. However, we enhanced 
the reliability of our conclusions by employing the Bootstrap 
method with 1000 resampling iterations to validate each 
model; (2) This study was conducted at a single centre, and 
it is necessary to incorporate multi-centre cases for valida-
tion to enhance the robustness of our findings and expand on 
the clinical applicability of the findings; (3) Although previ-
ous studies have used a distance of 5 mm outside the serosa 
as a criterion for defining perigastric fat of GC [26], there 
is no established method for accurately measuring imaging 
features of perigastric fat, limiting its clinical applicability. 
Future investigations should compare different distances to 
define perigastric fat more precisely.

In conclusion, the nomogram integrating Nct, ECVID and 
radiomics models based on the tumour and perigastric fat of 
gastric adenocarcinoma on DLCT, demonstrated significant 
predictive value and offered substantial clinical utility in the 
preoperative assessment of LNM in GC.
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