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ABSTRACT: We present the AMBER ff15ipq force field for proteins, the second-generation
force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly
polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a
complete rederivation including more than 300 unique atomic charges, 900 unique torsion
terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges
were derived in the context of the SPC/Eb water model, which yields more-accurate rotational
diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR)
relaxation parameters from molecular dynamics simulations. The atomic radii improve the
accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields,
rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii.
In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives
reasonable agreement with NMR relaxation rates, and maintains the expected conformational
propensities of structured proteins/peptides, as well as disordered peptidesall on the microsecond (μs) time scale, which is a
critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated
methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the
AmberTools16 distribution.

1. INTRODUCTION

Akin to developments spurred by the rapid expansion of
computer power around 2000, the burgeoning capacity
provided by programmable graphics processing units (GPUs)
has extended the utility of molecular simulations as a practical
tool for assessing biophysical processes.1,2 Notably, GPU-
accelerated computing has enabled routine simulations on the
microsecond (μs) time scale, a critical regime on which
biological processes including protein recognition, ligand
binding, and protein conformational changes occur.3 Access
to these longer time scales may reveal flaws in the simulation
models that were not previously apparent, driving refinements
and leading toward improved predictive power of these models.
Historically, efforts in force field development have been

largely focused on selecting only a subset of the parameters in a
complex model for reoptimization, e.g., reoptimizing certain
torsion parameters while keeping the set of atomic charges fixed
to improve the accuracy in modeling particular behaviors, while
retaining what is already successful. However, such efforts are
limited by the accuracy of the unoptimized parameters. Many
recent force field updates have focused on refinements of
torsion parameters.4−14 However, these refinements may be

compensating for deficiencies in the modeling of electrostatic
and nonbonded interactions that limit the maximum attainable
accuracy of the model. In addition, contemporary force fields
have a tendency to borrow from a similar set of values for bond
lengths, angles, and atomic radii that were fit many years ago,
leading to interdependencies that may be difficult to untangle
when optimizing only a portion of the parameters.
More recently, semiautomated schemes have been developed

to simultaneously optimize hundreds of parameters, thereby
enabling the rapid development of new force fields. In
particular, the Force Balance and Implicitly Polarized Charge
(IPolQ) methods15−17 have yielded the AMBER ff15fb and
ff14ipq force fields,17 respectively. These methods rely largely
on automated tools for parameter optimization, but still require
some amount of manual intervention in the form of fitting set
composition or user-specified settings of the fitting algorithm.
The engine behind the IPolQ workflow is the mdgx module of
the AMBER software package.18 This module combines its
molecular dynamics (MD) facility with linear algebra routines
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for solving least-squares problems, manages extensive book-
keeping to organize parameters, provides user control over the
fitting process, and interprets statistics to aid in further
refinements. The mdgx module contains charge and torsion
fitting routines that were built throughout the development of
AMBER ff14ipq, the first complete protein force field based on
the IPolQ scheme.17

Here, we have developed the new AMBER ff15ipq force field
using the IPolQ workflow. The original motivation for the
development of ff15ipq was to tackle concerns that its
predecessor, ff14ipq, overestimates the stability of salt-bridge
interactionsa limitation shared with many other contempo-
rary force fields.19 However, in contrast to recently developed
variants of force fields that address such concerns,12,20,21 ff15ipq
is far from a limited adjustment of its predecessor. Rather,
ff15ipq is a complete rederivation, comprising new atomic
charges, a greatly expanded torsion parameter set with several
new atom types to decouple distinct amino acids, and new
backbone angle bending terms. In addition, whereas ff14ipq
employed the TIP4P-Ew model for the solvent in the IPolQ
scheme,22 ff15ipq uses SPC/Eb, a recently developed three-
point water model that yields more-accurate rotational diffusion
for proteins in solution.23 The use of a three-point water model
instead of a four-point water model, leaving out a virtual site,
affords a modest improvement in the speed of CPU-based
simulations and a larger acceleration in computing under the
AMBER GPU engine.24 In addition, the more-accurate
rotational diffusion afforded by SPC/Eb opens new avenues
for validating ff15ipq through direct calculation of NMR
relaxation parameters. With the aid of GPUs and the AMBER
GPU engine, we have extensively validated the force field by
running MD simulations of peptide and protein systems on the
μs time scale, yielding over 200 μs of aggregate simulation time.
We expect ff15ipq, or a close relative, to be valuable for a

long time, even as we explore more expensive alternatives by
adding virtual sites to both the protein and the standard water
model. In addition, we are working to apply the mdgx workflow
to other classes of biopolymers such as carbohydrates and
nucleic acids, and to small organic molecules. We hope that the
sweeping reoptimization made possible by mdgx and tools
similar to it will inspire initiatives with other force fields and
create complete chemical representations with predictive power
in biomolecular simulations. Of future interest will be
comparisons to contemporary force fields that have been
developed in the traditional manner such as AMBER ff14SB,
OPLS-AA/M, and CHARMM36,4,11,13 as well as those
developed using alternative sweeping reoptimization schemes,
such as AMBER ff15fb.15

2. THEORY
2.1. The IPolQ Method of Force Field Parameter-

ization. The Implicitly Polarized Charge (IPolQ) method is a
protocol for parametrizing fixed-charge force fields for solution-
phase simulations that is comprised of two main components,
implemented in the mdgx program of AmberTools.18 The first
component is a protocol for deriving nonpolarizable atomic
charges that implicitly represent the energy of polarization by
the presence of a solvent such as water.16 The IPolQ charge
derivation draws on approximations of dipole interactions in an
external electrostatic field to arrive at the optimal non-
polarizable representation of a solute’s atomic charges in the
presence of a solvent such as water: precisely halfway between
the charges that would reproduce the solute’s electrostatic field

in the gas phase and those that would reproduce the solute’s
electrostatic field after solvent-induced polarization.25 This
averaging comes about from the fact that the energy of a set of
polarizable dipoles in an external field is identical to the energy
of a set of fixed dipoles whose polarizations are halfway
between the field-polarized dipoles and their gas-phase
counterparts. IPolQ fits such fixed charges by applying the
Restrained Electrostatic Potential (REsP) method,26 using a
pair of representations of the solute’s electrostatic field
corresponding to the vacuum and solution phases. While the
former representation is straightforward to obtain from QM
calculations, the latter is computationally unfeasible using a
pure QM representation. Instead, the IPolQ method represents
the polarizing Solvent Reaction Field Potential (SRFP) in its
QM calculation using a field of point charges, derived from an
MD simulation in which water, represented by the model with
which the solute will ultimately be simulated, moves in
equilibrium around the fixed solute.16 Atomic charges are
subsequently fit to reproduce the QM electrostatic potential at
a set of grid points surrounding the molecule. As described
previously,16 grid points are selected within the first and second
solvation shells, with the inner boundary defined by excluding
points for which the energy of the Lennard-Jones interaction
between the solute and a probe representing the water model
exceeds a selected maximum cutoff. While, in this work, we
have applied equal weights to all of the selected grid points,
others have found that more consistent charges may be
obtained by applying a weighting function to de-emphasize
points close to or distant from the solute.27 Such improvements
will be investigated as the IPolQ method is applied to other
classes of molecules beyond peptides and proteins.
The second component of the IPolQ method is an extension

for the fitting of bonded parameters that accounts for the
discrepancy between the desired solution-phase conformational
preferences and vacuum-phase QM calculations. This is
accomplished by fitting a pair of solute charge sets: one
appropriate for the vacuum phase (Qvac), and the other for the
solution phase (Qsolv). In the presence of the Qvac charge set,
the force field’s bonded parameters are fit to reproduce the
relative vacuum-phase QM energies of a diverse set of solute
conformations. In subsequent simulations in the solution phase,
these same bonded parameters are paired with the polarized
Qsolv charge set with the intention that the difference in the
charge sets would account for the difference in solute
conformational preferences between the vacuum and solution
phases.17

2.2. Choice of Water Model for Rederivation of IPolQ
Atomic Charges. In contrast to the standard REsP method of
fitting atomic charges for AMBER force fields,26 the IPolQ
method explicitly considers the influence of the water model on
the solute’s charge distribution.16 While the atomic charges of
the ff14ipq force field were fit using the TIP4P-Ew water
model,22 we have elected to fit the charges of ff15ipq using the
SPC/Eb water model.

23 This recently developed water model
offers two advantages: in addition to the reduction in
computational cost that is obtained by switching from a four-
point water model to a three-point water model, this water
model has been parametrized to yield accurate rotational
diffusion of solvated proteins.
A key advantage to performing simulations with accurate

rotational diffusion is the ability to directly calculate the NMR
relaxation parameters 15N R1 and R2 and

15N−1H heteronuclear
NOE. These parameters provide information about fast
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dynamics (picosecond (ps) or nanosecond (ns) scale) of
individual backbone N−H bond vectors within a protein,
potentially offering a powerful means with which to validate
MD simulations.28 In principle, these NMR relaxation
parameters may be calculated directly from an MD trajectory
from the autocorrelation functions of the backbone N−H
vectors. In practice, however, the poor reproduction of protein
rotational diffusion in MD simulations using popular water
models such as TIP3P limits the utility of such calculations.23,29

This limitation has historically been addressed using
approaches such as model-free analysis that attempt to separate
the global rotational diffusion of the protein from its residue-
specific internal dynamics, comparing only the internal
dynamics between experiment and simulation. However,
these approaches require extensive fitting of models to the
experimental data, and further require that the global and local
dynamics occur on separable time scales, limiting their
applicability to highly flexible systems such as disordered
peptides and proteins. Therefore, it would be preferable for
MD simulations to yield accurate rotational diffusion, such that
the simulated and experimental relaxation parameters can be
compared directly.
Our decision to fit the charges of ff15ipq to the SPC/Eb

water model was based on preliminary tests in which we ran a
series of 24 simulations of the proteins GB3, ubiquitin, and
binase using two different force fields (AMBER ff99SB-ILDN
and CHARMM22*)5,12 paired with four different water models
(TIP3P, TIP4P-Ew, TIP4P-D, and SPC/Eb)

22,23,30,31 (see
Figure S1 in the Supporting Information). Consistent with
prior published work,23,29 TIP3P and TIP4P-Ew yielded
rotational diffusion significantly faster than experiment, and
SPC/Eb yielded the most accurate result.
2.3. Extensions Supporting Restrained Angle Fitting.

Earlier versions of mdgx were capable of fitting angle stiffnesses
alongside torsions, but recent advances proposed by
Vanommeslaeghe et al. permit the calculation of both the
optimal stiffness constant and equilibrium value from the same
linear least-squares problem.32 The strategy generalizes work by
Hopkins and Roitberg,33 representing the parabolic angle as the
sum of two parabolic basis functions and solving for both
scaling coefficients to interpolate the optimal parameters. Basis
functions were chosen such that their minima lay at ±0.2
radians from the equilibria of the original angles, which had
been inherited from the AMBER ff94 force field.34 As explained
by Vanommeslaeghe et al., the optimized angle’s stiffness is
given by the sum of coefficients solved for each basis function,
and its equilibrium is given by the average of the two basis
functions’ minima weighted by their coefficients. Restraints on
the optimized angle parameters follow from these definitions: a
restraint equation setting the sum of the two coefficients Ci,1
and Ci,2 to a target value Ki, such as the stiffness of the original
angle in the input force field, will harmonically penalize
solutions which depart from the original stiffness value:

α α α α+ =N C C N K[ ]i i i i iscl cpl ,1 ,2 scl cpl

A similar restraint on the ratio of the two coefficients can be
used to penalize solutions that depart from the original
equilibrium value Ti, if the minima of the basis functions scaled
by Ci,1 and Ci,2 are Bi,1 and Bi,2, respectively:

α − + − =N C T B C T B[ ( ) ( )] 0.0i i i i i i iscl ,1 ,1 ,2 ,2

As explained in the previous study,17 these restraint
equations will have a more pronounced effect if the dataset
contains only 10 data points rather than 1000 data points.
Therefore, both sides of each restraint equation were scaled by
a user-defined constant (αscl) times the number of instances in
which each optimizable angle appeared in the dataset Ni,
analogous to the scaling constant applied to torsion restraints.
The scaling constants may appear to have no effect on the
solution to the equations when either these constants are
present on both sides of the equation or one side of the
equation is zero. However, since the least-squares fit finds an
approximate solution to each equation, the scaling constants
do, in fact, influence the relative importance of each restraint. In
addition, because of the fact that these restraints penalize
numerical deviations from the target values but angle stiffnesses
and equilibria are expressed in different units by numbers of
different scale, a separate scaling factor (αcpl) was introduced to
control the way in which restraints on the equilibria scale,
relative to restraints on the stiffness. For example, an αcpl of
∼57 applied to restraints on equilibria would penalize 1°
deviations from the original value by the same amount as a 1
kcal/(mol rad2) deviation from the original stiffness constant.
After some experimentation, however, we found that, in our
very large and heterogeneous datasets, much smaller values of
αcpl (0.5−1.0) result in the best fits to the data while
partitioning the changes between equilibria and stiffness
constants.

2.4. Addition of New Atom Types. Alongside the fitting
of torsions and angles, several new atom types were added to
ff15ipq in order to more accurately capture residue-specific
conformational preferences. Most protein force fields use Gly
and Ala as templates to develop backbone torsion parameters
that are then inherited by other residues. The AMBER IPolQ
force fields adopt an unconventional, concerted approach in
which Φ, Ψ, Φ′, Ψ′, and all other torsions are simultaneously fit
to the conformational preferences of all residues in which they
appear. While the resulting backbone torsions therefore
consider the conformational preferences of residues other
than Gly and Ala, their overall accuracy may decrease as
different residues pull the parameters in different directions.
Within the context of the IPolQ fitting method, a set of
backbone torsion parameters that more accurately capture the
conformational preferences of different residues may be
obtained by introducing new atom types, creating decoupled
classes of backbone torsions, which are applied to subsets of
residues.
During the development of ff14ipq, three such classes were

introduced: one for Gly, one for Pro, and one for all other
residues. In order to decouple the Φ and Ψ torsions of Gly,
which lacks Cβ and therefore has no Φ′ and Ψ′ torsions, a
unique Cα atom type was assigned.17 Similarly, the backbone
torsions of Pro were decoupled by assigning a unique atom
type for the backbone N. This additional atom type not only
created unique Φ, Ψ, and Ψ′ terms for Pro, but also a set of
separate Ψ and Ψ′ torsions for residues preceding Pro, thereby
enabling the force field to capture the unique conformational
preferences of these contexts.35 The remaining residues were
further divided into three subclasses based on their Cβ types,
which determine the applied Φ′ and Ψ′ torsions. The Cβ types
of ff14ipq yielded four subclasses: (i) flexible positively charged
residues (Arg, Lys), (ii) residues whose Cβ atoms are bonded
to two heavy atoms and whose side-chains are not aromatic
(Asn, Asp, Cys, Gln, Glu, Leu, Met, Ser), (iii) residues whose
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Cβ atoms are bonded to three heavy atoms (Ile, Thr, Val), and
(iv) all other residues (Ala, His, Phe, Trp, Tyr). Notably, this
last subclass yielded Φ′ and Ψ′ torsions shared between Ala and
the bulky aromatic residues. This unusual coupling was a
consequence of the force field’s lineage from ff12SB, where
refitting of X1 torsions alongside fixed Φ, Ψ, Φ′, and Ψ′ did not
require a unique Cβ type for the aromatic residues, which
already have unique Cγ types that yield unique X1.

4

In order to further improve the accuracy of residue-specific
conformational preferences in ff15ipq, several new atom types
were added to further decouple the backbone torsion
parameters of different residues, leading to a total of five
backbone classes. In order to restrict each class of backbone
torsions to a single set of scaled 1−4 electrostatic terms,
negatively charged (Asp, Glu) and positively charged (Arg, Lys)
residues have been given unique Cα types, decoupling their Φ,
Ψ, Φ′, and Ψ′ from those of the neutral residues. While the
backbone N of Pro was decoupled in ff14ipq, it retained a
shared Ψ′ torsion; to break this dependency, Pro has now been
assigned a new Cα atom type. Finally, the coupling between Ala
and the bulky aromatic residues has been removed by assigning
His, Phe, Trp, and Tyr a unique Cβ type, decoupling their Φ′
and Ψ′ terms from Ala. This decoupling divides the neutral
residues into four subclasses: (i) Ala, (ii) residues whose Cβ
atoms are bonded to two heavy atoms (Asn, Cys, Gln, Leu,
Met, Ser), (iii) residues whose Cβ atoms are bonded to three
heavy atoms (Ile, Thr, Val), and (iv) bulky aromatic residues
(His, Phe, Trp, Tyr). The backbone torsion classes of the 28
residue forms supported by ff15ipq are listed in Table S1 in the
Supporting Information.

3. METHODS
3.1. Calculation of the Probability of Binding (Pbound)

for Salt-Bridge Formation. To compare the accuracy of
ff15ipq in modeling the stability of protein salt bridges to its
predecessor ff14ipq and contemporary force fields, we
simulated the association of three pairs of oppositely charged
amino acid side-chain analogues: guanidinium cation/acetate
anion (Arg/Asp), butylammonium cation/acetate anion (Lys/
Asp), and imidazolium cation/acetate anion (His(+)/Asp). For
comparison, such simulations were carried out using the
polarizable force fields CHARMM Drude-2013 and AMOE-
BA,36,37 in addition to other fixed-charge force fields that we
had previously tested using these three model systems.19

Simulations with ff15ipq, ff14ipq, and AMOEBA were carried
out using the AMBER 15 software package,18 while those with
CHARMM Drude-2013 were run with NAMD 2.10.0,38,39

following a protocol analogous to that used for the previously
evaluated fixed-charge force fields (full details are provided in
the Supporting Information).19 Systems were constructed to be
consistent with the experimental conditions under which the
association constants (KA) of guanidinium acetate and
butylammonium acetate have been measured,40 i.e., each
system consisted of 100 molecules of cation (guanidinium,
butylammonium, or imidazolium), 2 molecules of acetate, and
98 chloride counterions solvated by ∼18 000 water molecules.
For the fixed-charge force fields, parameters of the side-chain
analogues were based on those of the complete amino acids.
For the CHARMM Drude-2013 polarizable force field,
parameters of guanidinium, imidazolium, and acetate were
those distributed alongside the force field.36 Since methyl-
ammonium rather than butylammonium was used as the
analogue of Lys during the development of Drude-2013,36 the

butylammonium acetate system was not tested with this force
field. For the AMOEBA force field, parameters of guanidinium,
imidazolium, and acetate were generated using the Poltype
derivation protocol (details are provided in the Supporting
Information).41 As it was with CHARMM Drude-2013, the
butylammonium acetate system was not tested with AMOEBA.
For all of the simulations mentioned above, the probability

that an acetate molecule was bound to one or more cation
molecules was calculated by assigning each pair to either the
bound or the unbound state. For each force field and pair of
side-chain analogues, definitions of the unbound and bound
states were based on the potential of mean force (PMF) as a
function of the minimum distance between nitrogen atom(s) of
the cation and the oxygen atoms of acetate. In particular, the
cutoff between the bound and unbound states was defined as
the point of inflection between the free energy minimum of the
bound state (∼2.5−3 Å) and the free-energy maximum, which
corresponds to the desolvation barrier (∼3−3.5 Å). Pairs whose
minimum N−O distances were below this cutoff were assigned
to the bound state, while those beyond were assigned to the
unbound state. In addition to species in which a single acetate
molecule was bound to a single cation molecule, forming a 1:1
complex (e.g., the guanidinium/acetate complex), species in
which acetate was bound to two or more cation molecules (e.g.,
the 2:1 diguanidinium/acetate complex) were observed and
counted separately. Standard errors were calculated using a
block averaging method.42

3.2. Rederivation of IPolQ Atomic Charges with the
SPC/Eb Water Model. The atomic charges of ff15ipq were fit
using the IPolQ module of mdgx, as described previously for
ff14ipq.17 During charge fitting, each amino acid was
represented by a blocked dipeptide including acetyl (Ace)
and N-methylamide (Nme) caps; terminal forms were
represented by omitting one of the blocking groups, while
the disulfide form of cysteine (Cyx) was represented by a pair
of dipeptides linked by a disulfide bond. To expand on the set
of amino acids and protonation states that were supported by
ff15ipq, atomic charges were also derived for the following: the
N- and C-terminal forms of protonated aspartate (Ash) and
glutamate (Glh), the C-terminal form of neutral lysine (Lyn),
the terminal and nonterminal forms of deprotonated cysteine
(Cym), and the noncanonical amino acid norleucine (Nle).
Each solute of interest was solvated in a cubic box of SPC/Eb

water with a clearance of 10 Å between the solute and the edge
of the box, and subjected to a high-temperature MD simulation
at 450 K, from which were collected a set of 20 conformations.
Each conformation was subsequently re-equilibrated at 298 K
before being input to the IPolQ module of mdgx. This module
was used to run an MD simulation with the solute fixed, during
which the coordinates of surrounding solvent molecules were
collected and used to generate a collection of point charges
representing the solvent reaction field potential. This collection
consists of an inner cloud of point charges taken directly from
the coordinates of solvent molecules within 5 Å of the solute,
and three outer shells of point charges fit to reproduce
contributions to the solvent reaction field potential from the
infinite periodic system beyond 5 Å.
A pair of QM calculations for the solute were then run at the

MP2/cc-pVTZ level of theory:43−46 one in vacuum and the
other including the solvent reaction field potential. as modeled
by the collection of point charges. These calculations were run
using the ORCA 3.0.3 software package for each conformation
of each residue,47 requiring over 3000 density calculations. The
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resulting densities were then input to mdgx’s FitQ module,
yielding a pair of charge sets: one valid for simulation under
vacuum (Qvac) and the other for simulation in solution (Qsolv).
3.3. Generation and Extension of the Angle and

Torsion Fitting Dataset. The bonded parameters of ff15ipq
were fit to reproduce the relative vacuum-phase QM MP2/cc-
pVTZ potential energies of a set of diverse conformations of
short peptides using an iterative cycle of refinement, similar to
that used for its predecessor, ff14ipq.17 This cycle involved the
following steps: (i) MD simulations were carried out to
generate a set of peptide conformations, (ii) these con-
formations were subjected to energy minimization in vacuum
using the molecular mechanics (MM) energy function with Qvac
and the current generation of bonded parameters, (iii) QM
energies of the energy-minimized conformations were calcu-
lated, (iv) the conformations and energies were used to fit an
improved set of bonded parameters, and (v) steps (i) through
(iv) were repeated to fit the next generation of bonded
parameters. In this way, subsequent generations of the force
field “learned” from the biases of their ancestors, provided those
biases were captured in the QM energies of the additional
conformations that resulted from step (i) of the iterative cycle.
During the development of ff14ipq, selected conformations

from an initial fitting set of ∼28 000 were subjected to energy
minimization with each new generation of bonded parameters
to yield new conformations, accumulating a total of 65 000
structures and single-point energies.17 The first generation of
ff15ipq fitting data was created by pairing ff14ipq with
generalized Born implicit solvent MD simulations48 of amino-
acid dipeptides at 450 K, followed by vacuum energy
minimization of many snapshots from each simulation. While
we have not tested how well ff14ipq behaves with implicit
solvent, the purpose was to capture any spurious conforma-
tional preferences that might remain in the original force field.
In addition, we included ∼1400 conformations of the Ace-Ala-
Pro-Ala-Nme tetrapeptide, while the second generation added
numerous tripeptides containing Gly, and conformations of the
disulfide-bridged Cys·Cys system (among the largest of all the
systems used in QM single-point-energy calculations). These
refinements added ∼15 000 new conformations to the ff15ipq
fitting set.
The next three generations of refinement were designed to

cover sampling of the multiple classes of backbone parameters
applied to different residues, as described in section 2.4. In
order to ensure sampling of diverse backbone conformations,
conformations were generated by progressively restraining Φ
and Ψ at 20° intervals, using a 16 kcal/mol·rad2 harmonic
restraint over the course of the MD simulation, yielding 324
conformations of each. Since the unique backbone nitrogen
type of Pro creates unique Ψ and Ψ′ terms for preceding
residues, the third generation of conformations consisted of 51
Pro-containing tripeptides for which the non-Pro residue’s Φ
and Ψ were restrained. At this point in development, it was
decided to branch the positively- and negatively charged
residues into unique backbone classes, and as such the fourth
and fifth generations of refinement consisted of 57 tripeptides
containing the charged residues Asp, Glu, Cym (deprotonated
Cys), Arg, Lys, and Hip (doubly protonated His), in which Φ
and Ψ of the charged residues were restrained. In order to
cover the unique backbone parameters applied to the terminal
forms of each residue, additional conformations were added for
a set of 78 terminal NXaa-Nme and Ace-CXaa monopeptides.
For these terminal systems, scans of either the unique Ψ of the

N-terminal forms or the unique Φ of the C-terminal forms
were performed at 2° intervals, yielding 180 conformations of
each. Since the unique backbone nitrogen types of the N-
termini and Pro in tandem yield an additional set of Ψ terms
for NXaa-Pro, scans of Ψ were run for an additional set of
NXaa-Pro-Nme dipeptides. Finally, in order to cover the
unique backbone Ψ and Ψ′ terms of the amide blocking group
(Nhe), scans of Φ and Ψ were run for 17 Ace-Xaa-Nhe
dipeptides, yielding 324 conformations of each. During these
three generations of refinement, ∼60 000 conformations were
added to the ff15ipq fitting set.
After the fifth generation of refinement, support for the

fitting of angle equilibria and force constants alongside torsions
was implemented in mdgx, and subsequent generations
emphasized comprehensive sampling of backbone angles. The
sixth, seventh, and eighth generations of refinement consisted
of perturbations of the angles around N, Cα, and C. Starting
from an initial conformation, a selected angle of interest was
subjected to a random perturbation within a range of ±20° of
its original equilibrium value (as inherited from the ff94 force
field and retained in contemporaries such as ff14SB). Target
values for the other angles around the same central atom were
then chosen by taking their initial values and adjusting them
such that the total sum of angles around the central atom was
appropriate for the known geometry; target sums of 360° for
planar geometry around N and C and 660° for tetrahedral
geometry around Cα were used. During subsequent MM
minimization, the target values for these angles were restrained
using 256 kcal/mol rad2 harmonic restraints. During the eighth
and final generation of refinement, angle perturbations were
resampled in the context of new scans of Φ and Ψ backbone
torsions at 10° intervals for each Ace-Xaa-Nme dipeptide,
yielding 1296 conformations of each, alongside additional
sampling of terminal monopeptides. During these three
generations, ∼125 000 conformations were added, yielding a
final fitting set of ff15ipq consisting of >250 000 single-point
QM energies, which is over four times larger than that used for
ff14ipq.

3.4. Fitting of Torsion and Angle Terms. As done
previously for ff14ipq, the torsion parameters of ff15ipq were fit
using a linear least-squares fit implemented in the Param
module of mdgx;17 extensions to the module for angle fitting
are described in section 2.2. This module selects a set of
torsional barrier heights, angle equilibria, and angle stiffnesses
that best reproduce the relative conformational energies of the
systems included in the fitting set. During the fitting process,
the Fourier series lengths and phase angles of the torsional
terms were not optimized, and phase angles were set to either
0° or 180° to enable the development of parameters that are
transferable to alternative chiralities. All backbone Φ, Ψ, Φ′, Ψ′,
and side-chain X torsions of nonterminal forms of the amino
acid residues were allocated four terms in their Fourier series.
Torsions unique to the terminal forms of residues and residues
preceding Pro were restricted to only three terms since these
terms were less exhaustively sampled in the fitting set. This
restriction was applied to limit the risk of overfitting. While all
torsion parameters of residues in the fitting set were fit, only
angles in which the central atom was the N, Cα, or C of a
nonterminal residue were fit. For Pro, only the angles around
Cα were fit, since the unique backbone N type of Pro
introduces a large number of parameters that are dependent on
the preceding residue. In order to avoid overfitting torsional
barrier heights, torsions were restrained toward 0° with a force
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constant of 2 × 10−4 kcal/mol. Similarly, angles were restrained
to their original values, inherited from ff94, with the equilibria
and stiffness force constants set to 5 × 10−5 kcal/mol and 2 ×
10−4 kcal/mol, respectively.
3.5. Umbrella Sampling of Tetrapeptides. To character-

ize the backbone conformational preferences of ff15ipq in
explicit SPC/Eb water, we carried out umbrella sampling
simulations of blocked tetrapeptides Ace-Ala-Xaa-Ala-Nme,
calculating the potential of mean force as a function of the
backbone Φ and Ψ torsions of the central residue Xaa. In order
to identify differences in the conformational preferences
between ff15ipq, its predecessor ff14ipq, and contemporary
force fields, simulations of Ace-Ala-Ala-Ala-Nme were carried
out using the AMBER force fields ff15ipq, ff14ipq,17 and
ff14SB;4 the OPLS force field OPLS-AA/M;13 and the
CHARMM force fields CHARMM36 and Drude-2013.11,36

Analogous simulations were carried out to compare the
conformational preferences of other central amino acid residues
using the AMBER ff15ipq, ff14ipq, ff14SB, and CHARMM36
force fields. The backbone Φ and Ψ torsions of the central
residue were restrained in a series of 1296 windows spaced at
10° intervals, using a harmonic penalty function with a force
constant of 8 kcal/mol rad2. Each window was seeded from a
continuous, incrementally restrained simulation, and sampled
for 2.0 ns, following a 0.2 ns equilibration. From each set of
1296 windows were reconstructed the unbiased potentials of
mean force using the weighted histogram analysis method
(WHAM).49,50

3.6. Simulations of Benchmark Systems. To validate
ff15ipq as a general force field for peptides and proteins,
extensive MD simulations on the μs time scale were carried out
for a variety of benchmark systems consisting of both
structured and disordered peptides and proteins. For each

system, the amino-acid sequence or PDB code, sources of initial
coordinates, and temperatures maintained throughout the
simulations are listed in Table 1. Further details of the
benchmark systems are provided below.

3.6.1. Structured Peptides and Proteins. As done for
ff14ipq,17 we validated ff15ipq by simulating penta-alanine
(Ala5), the α-helical K19 peptide, the GB1 β-hairpin from the
C-terminal fragment of Protein G, the designed β-hairpin
chignolin, Trp-cage, GB3, and lysozyme. We also carried out
simulations of the α-helical (AAQAA)3 peptide, the Cln025
mutant of the chignolin β-hairpin, the double-norleucine
variant of the villin headpiece subdomain, bovine pancreatic
trypsin inhibitor (BPTI), ubiquitin, and binase.

3.6.2. Disordered Peptides. In order to evaluate the ability of
ff15ipq to model disordered proteins, we simulated two classic
systems for studying the binding processes of disordered
peptides that fold only upon binding their partner proteins: (a)
the N-terminal p53 peptide and MDM2 oncoprotein, and (b)
the S-peptide and S-protein cleavage products of the RNase A
protein. Both of these peptides fold into α-helical conforma-
tions only upon binding their partner proteins. Simulations
were performed with these peptides both in isolation and in
complex with their protein binding partners.
Simulations of benchmark systems were carried out using the

GPU implementation of the pmemd module in the AMBER 15
software package.24,65 Each system was solvated in a truncated
octahedral box of SPC/Eb explicit water with a 12 Å buffer for
the disordered peptide/protein systems and 10 Å buffer for all
other systems. Prior to production simulation, each system was
subjected to energy minimization, followed by a three-stage
equilibration. In the first stage, a 20 ps simulation of the energy-
minimized system was carried out at constant temperature
while restraining the solute heavy atoms to their initial positions

Table 1. Peptide and Protein Validation Systems

system sequence/PDB residues temperature (K) duration (μs)

Ala5
+AAAAAØ 5 298 6

K19 Ace-GGG-(KAAAA)3-K-Nhe (from ref 51) 19 275, 285, ..., 315, 325 4
(AAQAA)3 Ace-(AAQAA)3-Nhe (from ref 52) 15 280, 290, ..., 320, 330 4
GB1 hairpin +GEWTYDDATKTFTVTE− (from ref 53) 16 275, 285, ..., 315, 325 4

chignolin +GYDPETGTWG−, 1UAO (from ref 54) 10 298 4

Cln025 +YYDPETGTWY−, 2RVD (from ref 55) 10 280, 290, ..., 360, 370 4

Trp-cage 1L2Y (from ref 56) 20 275, 285, ..., 315, 325 4
binase 1BUJ (from ref 57) 109 298 10
BPTI 5PTI (from ref 58) 58 298 10
GB3 1P7E (from ref 59) 56 298 10
lysozyme 4LZT (from ref 60) 129 300 2
ubiquitin 1UBQ (from ref 61) 76 298 10
villin headpiecea 2F4K (from ref 62) 35 303 10
P53b 1YCR (from ref 63) 13 298 10
P53/MDM2b 1YCR (from ref 63) 13/85 298 10
S-peptidec 1RNU (from ref 64) 22 298 10
S-peptide/S-proteinc 1RNU (from ref 64) 22/104 298 10

aHP35 double-norleucine mutant mutant (Lys24Nle, Asn27His, and Lys29Nle). bThe p53 peptide used contained residues 17−29 of the full-length
protein and included an N-terminal acetyl (Ace) and C-terminal amide (Nhe) blocking group. MDM2 included residues 25−109 of the full-length
protein, omitting a mobile N-terminal region unresolved in the crystal structure. The N- and C-termini of MDM2 were blocked with acetyl (Ace)
and N-methylamide (Nme) blocking groups, respectively. cIn order to accurately match the amino acid sequences used in NMR experiments,106,107

residues not resolved in the crystal structure were built using Avogadro.108 Residues STSAA were appended to the C-terminus of the S-peptide, and
SSS to the N-terminus of the S-protein. In addition, GA residues were appended to the N-terminus of the S-peptide, representing a cloning artifact
present in the NMR experiments. These residues were not restrained during equilibration of the system. Given that the NMR experiments on the S-
peptide/S-protein complex were conducted at pH 3.7, which is close to the average pKa values of Asp (∼3.7) and Glu (∼4.1), we elected to run our
simulations with negatively charged Asp and neutral Glu.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00567
J. Chem. Theory Comput. 2016, 12, 3926−3947

3931

http://dx.doi.org/10.1021/acs.jctc.6b00567


using a harmonic potential with a force constant of 1 kcal/mol
Å2. In the second stage, a 1 ns simulation was carried out at
constant pressure with the same harmonic position restraints.
Finally, an additional 1 ns unrestrained simulation was carried
out at constant temperature and pressure. Temperatures were
maintained at selected values (between 270 K and 370 K),
using a Langevin thermostat (frictional constant of 1 ps−1),
while pressure was maintained at 1 atm using a Monte Carlo
barostat (200 fs between attempts to change the system
volume).66 van der Waals and short-range electrostatic
interactions were truncated at 10 Å; long-range electrostatic
interactions were calculated using the particle mesh Ewald
method.67 To enable at least a 2 fs time step, bonds to
hydrogen were constrained to their equilibrium values using the
SHAKE and SETTLE algorithms.68,69 For the K19, (AAQAA)3,
GB1 hairpin, chignolin, and Cln025 systems, hydrogen mass
repartitioning was used to enable the use of longer timesteps.70

In particular, the masses of solute hydrogen atoms were
increased by a factor of 3, and that of their attached heavy
atoms decreased by a corresponding amount such that the total
mass remained constant; the masses of water molecules were
not repartitioned. This mass repartitioning scheme enables a 4
fs time step for simulations at ≤300 K; for simulations at >300
K, shorter timesteps were used and set to be equal to 1200 K fs,
divided by the set temperature. Conformations were saved
every ps for analysis by the AmberTools cpptraj program.71

Diagnostics included DSSP,72 rotational diffusion,29 and NMR
relaxation calculated by the iRED method.73

4. RESULTS

4.1. Strengths of Protein Salt Bridges. To evaluate the
accuracy of ff15ipq in modeling the strengths of protein salt
bridges, we simulated the association of three pairs of
oppositely charged amino acid side-chain analogues: guanidi-
nium cation/acetate anion (Arg/Asp), butylammonium cation/
acetate anion (Lys/Asp), and imidazolium cation/acetate anion
(His(+)/Asp). For each salt bridge, the resulting probability of
an anion binding to one or more cation molecules (Pbound) was
compared to experiment (if available), as well as those of six
other fixed-charge force fields, including ff14ipq, ff14SB, ff03,

CHARMM22*, CHARMM36, and OPLS_2005, and two
polarizable force fields (CHARMM Drude-2013 and AMOE-
BA).
The original motivation for the development of ff15ipq was

to correct for the overstabilization of protein salt bridges by its
predecessor, ff14ipq. During the development of ff14ipq, the
Lennard-Jones radii of several polar heavy atoms were refit to
reproduce the experimental solvation free energies of side-chain
analogues.16 Although the resulting set of radii were initially
intended to be applied globally, several of the larger radii
resulted in increased 1−4 repulsion during torsion fitting,
which made the torsion parameters more difficult to fit. To
overcome this difficulty, mixed Lennard-Jones combining rules
(called LJEDIT within AMBER software or NBFIX within
CHARMM) were applied to these polar groups, assigning
different radii for their solute−solvent interactions from those
used for their solute−solute interactions. For example, for the
carboxylate oxygen atoms of the side-chains of Asp and Glu
larger Lennard-Jones radii for interactions with water were used
than for interactions with solute atoms.17 An undesirable effect
of this strategy, however, was the overstabilization of salt
bridges−to the point that in our simulations each acetate
molecule was bound to three or more cation molecules (e.g.,
guanidinium) for most of the simulation (see Figure 1, as well
as Figure S2 in the Supporting Information). Essentially, the
larger radii used for solute−solvent interactions forced the
carboxylate group out of solution and into interactions with
available solute atoms.
For ff15ipq, we addressed the problem of overstabilized salt

bridges by discarding the mixed Lennard-Jones radii of ff14ipq
and instead applied empirical corrections to the radii of polar
hydrogen atoms bonded to nitrogen (atom type “H”) in both
the protein backbone and side-chains (note that the original σ
value of 1.07 Å for this atom type may equivalently be
expressed as an R* of 0.6000, and the details of its fitting appear
to have been lost to history).34,74 These corrections were
determined from simulations of the three oppositely charged
side-chain analogue systems with H σ ranging from the ff94
value of 1.07 Å up to 1.5 Å, calculating the probability of salt
bridge formation (Pbound), and comparing this probability to

Figure 1. Probability of binding (Pbound) between acetate and one or more molecules of three cationic side-chain analogues using seven fixed-charge
and two polarizable biomolecular force fields, each paired with either the water model with which it was derived or that with which it is most-
commonly used. The Pbound values corresponding to the experimentally determined KA values of guanidinium acetate and butylammonium acetate
are depicted as horizontal gray bars;40,76 no experimental value is available for the imidazolium acetate system. Error bars represent 95% confidence
intervals calculated using a block averaging method.42 Results for the CHARMM36, CHARMM22*, OPLS_2005, AMBER ff14SB, and AMBER ff03
force fields are taken from previous simulation studies.19
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that from experiments. Based on the results (Figure S2), we
selected a σ value of 1.3 Å for nitrogen-attached hydrogens in
both the protein backbone and side-chains. For guanidinium
acetate, we found that a further increase in σ to 1.5 Å for the
side chain of Arg was necessary to achieve satisfactory
agreement with the experimental value of this system. All
other Lennard-Jones radii retained their original ff94 values.
As shown in Figure 1, ff15ipq yields Pbound values that are

among the most reasonable, relative to the other fixed-charge
force fields that were tested (ff03, ff14SB, ff14ipq, OPLS_2005,
CHARMM22*, and CHARMM36). For guanidinium acetate,
our results with ff15ipq are roughly consistent with
CHARMM22* and ff03, which we had previously found to
provide the most accurate modeling of this system (note that
the corresponding figure of our previous work omitted
complexes including multiple cation molecules bound to a
single anion molecule and therefore under-represented the
extent to which the force fields overstabilize salt bridges).19 For
butylammonium acetate, ff15ipq yields a Pbound value that is
slightly higher than that of AMBER ff03, but similar to those of
CHARMM22* and ff14SB. For imidazolium acetate, ff15ipq
yields a Pbound that is higher than those of CHARMM22* and
ff03, but similar to that of ff14SB. Of particular note is that
CHARMM22* was also parametrized to reproduce the
experimental association of guanidinium acetate, but via
adjustments to the atomic charges of only the side-chains of
Arg, Asp, and Glu;12 as a result, these adjusted parameters are
inconsistent with the rest of the force field, whose charges had
been fit years earlier, using a different method.75 Along the
same lines, a recently developed variant of the AMBER ff99SB-
ILDN force field has involved the application of mixed
Lennard-Jones combining rules exclusively to interactions
between the side chains of Arg, Asp, and Glu.20,21 In contrast
to the posthoc adjustments of these two other force fields, our
approach involves first adjusting the Lennard-Jones radii,
followed by refitting of atomic charges and bonded parameters.
This approachwhich has been an onerous one in the past
has been significantly streamlined by the mdgx software.
We note that all of the fixed-charge force fields are

outperformed by the more expensive, polarizable CHARMM
Drude-2013 and AMOEBA force fields. While it is likely that
much of their superior performance results from the more
complex charge model for the solutes, it is also possible that the
solute−solvent interactionswhich compete with solute−
solute interactionsare more accurately represented by the
use of polarizable water models. In particular, fixed-charge
water models similar to the SPC/Eb model used here have

recently been found to generally underestimate the strength of
solute−solvent interactions,31 and it is possible that this
limitation of the water models restricts the accuracy with
which the solute models may represent salt bridges.

4.2. Optimization of Torsion and Angle Parameters. A
key metric for assessing the accuracy of the torsion and angle
parameters of ff15ipq was the ability to reproduce the target
QM potential energy surface. Figure 2 shows the distribution
and root-mean-square error (RMSE) of ff15ipq energies, with
respect to their target QM potential energies for the 20
canonical amino acids. The RMSE values for all neutral residues
are <1.3 kcal/mol, while those of the negatively charged
residues Asp and Glu are <1.9 kcal/mol, and those of the
positively charged residues Arg and Lys are <2.4 kcal/mol. As
shown in the Supporting Information (Figure S3), the neutral
forms Asp, Gln, and Lys (Ash, Glh, and Lyn, respectively) have
RMSE values that are consistent with the other neutral residues,
suggesting that the increased RMSE values of Lys and Arg,
relative to uncharged residues, are related to their net charge,
rather than to their additional flexible X torsions. Optimization
of the backbone angle parameters introduced a 5%−15%
improvement in RMSE and enabled expansion of the fitting set
by more than 4-fold without sacrificing the ability to reproduce
those parts of the QM potential energy surface represented in
the original dataset (see the section entitled “Timeline of
Development” in the Supporting Information).

4.3. Conformational Preferences of Individual Resi-
dues and Very Short Peptides. To assess the accuracy of
ff15ipq in modeling the backbone conformational preferences
of proteins within computationally tractable systems, we carried
out a series of simulations of short peptides that may be
affordably simulated to convergence. Initially, we focused on
simulations of the Ace-Ala-Ala-Ala-Nme tetrapeptide, for which
we calculated the PMF as a function of the backbone Φ and Ψ
torsions of the central residue. Figure 3 shows the results for
ff15ipq, its predecessor ff14ipq, and several contemporary force
fields. Relative to ff14ipq, ff15ipq has larger free energy barriers
(by ∼1 kcal mol−1) between the α well (Φ ≈ −70°, Ψ ≈ −20°)
and γ′ well (Φ ≈ −80°, Ψ ≈ 60°) and between the β well (Φ ≈
−150°, Ψ ≈ 150°) and PPII well (Φ ≈ −70°, Ψ ≈ 140°). In
addition, ff15ipq has a more clearly defined ξ well (Φ ≈ −140°,
Ψ ≈ 50°). On the left half of the Ramachandran plot, the depth
of the Lα well (Φ ≈ 60°, Ψ ≈ 40°) has decreased slightly, and
that of the γ well (Φ ≈ 70°, Ψ ≈ −40°) has decreased by ∼1
kcal/mol, while the PII′ well (Φ ≈ 60°, Ψ ≈ −130°) has been
retained. Relative to the ff14SB and CHARMM36 force fields,
ff15ipq shows similar α and PPII well depths, although ff14SB

Figure 2. Distributions of residuals of relative molecular mechanical energies, with respect to their QM target potential energies, for 18 Ace-Xaa-
Nme dipeptides and the Ace-Ala-Ala-Ala-Nme and Ace-Gly-Gly-Gly-Nme tetrapeptides. The 25th, 50th, and 75th percentiles are represented by
horizontal lines, and root-mean-square values are represented by white circles. Each dataset is colored based on its corresponding backbone torsion
class.
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and CHARMM36 do not exhibit γ′ or ξ wells and the precise
positions of the various wells differ between the force fields.
Larger differences are observed relative to the OPLS-AA/M
and polarizable CHARMM Drude-2013 force fields, which have
shallower and deeper β wells, respectively.
Next, we extended our validation of ff15ipq by examining

residue-specific backbone conformational preferences. In
particular, we carried out simulations of Ace-Ala-Xaa-Ala-Nme
tetrapeptides containing each of the 20 canonical residues at the
central position, including the 25 protonation states of these

residues that are supported by the force field. For comparison,
analogous simulations were carried out using the ff14ipq,
ff14SB, and CHARMM36 force fields. The resulting Φ/Ψ
backbone torsional preferences of the central residues were
then compared to those of Ala-Xaa-Ala obtained from the
Neighbor-Dependent Ramachandran Distribution (NDRD)
dataset, derived from conformations observed in the loop
regions of proteins (non-α-helix/β-sheet secondary struc-
tures).77 The NDRD dataset is drawn from a collection of
∼3000 high-resolution crystal structures in the Protein Data
Bank,78 and accounts for the influence of preceding and
following residues on the Φ/Ψ backbone torsional preferences
of the central residue. Given the considerable differences in the
contexts of our simulations and the NDRD experimental data
set, i.e., solution vs crystal environment, we focused solely on
qualitative differences between the simulated and experimental
conformational preferences of each peptide. In particular, we
compared the conformational preferences of peptides contain-
ing a nonalanine central residue, relative to that of the reference
Ace-Ala-Ala-Ala-Nme peptide.
Generally, both ff15ipq and ff14ipq show greater variation

between amino acids than ff14SB and CHARMM36, which
apply the same backbone torsions to all residues (Figure S4 in
the Supporting Information). Several differences between
ff15ipq and ff14ipq are apparent. For the neutral residues
whose Cβ atoms are bound to two heavy atoms, the clearest
difference is the decreased favorability of the −180° < Ψ <
−90° region for Asn, Gln, Leu, and Met; ff15ipq is more
consistent with NDRD distributions in which such conforma-
tions are rare, because of the broader sampling of such
uncommon backbone conformations in the ff15ipq fitting set.
An exception is Ser, which retains this region and exhibits
overall broader sampling, in contrast to the NDRD distribution,
in which conformations are restricted largely to the canonical
wells. For the neutral residues whose Cβ atoms are bound to
three heavy atoms (Ile, Thr, and Val), the NDRD dataset shows
increased conformational preferences in the β region and in the
region adjacent to the α well, centered at Φ ≈ −120°, Ψ ≈
−60°. These preferences are captured by both ff14ipq and
ff15ipq, but the lower region is erroneously disfavored by both
ff14SB and CHARMM36. While ff15ipq is improved relative to
ff14ipq by disfavoring the Lα well of Thr, the near-absence of
sampling of this well in the NDRD distribution suggests that it
may still be too favorable, relative to the experiment.
Differences between ff15ipq and ff14ipq for the bulky aromatic
residues are less pronounced; the conformational preferences of
these residues may be more dependent on sterics as modeled
by the Lennard-Jones parameters, which have not been
changed in ff15ipq from those of ff14ipq. The greatest
differences between ff15ipq and ff14ipq are observed for the
negatively charged residues Asp and Glu, which have been
granted their own Φ, Ψ, Φ′, and Φ′ torsions in ff15ipq. These
residues largely restrict sampling to the of PPII, γ′, and α wells,
lacking clearly defined β wells and any wells on the right side of
the Ramachandran plot. The differences for the positively
charged residues Arg and Lys are much smaller, likely because
these residues were already assigned unique Φ′ and Ψ′ torsions
in ff14ipq.
To complement the above qualitative comparisons, we

obtained quantitative measures of the accuracy of ff15ipq’s
backbone conformational preferences by calculating J-coupling
constants for the Ala5 peptide and comparing these values to
experiment. This peptide was the focus of a study by Best et

Figure 3. Potentials of mean force for the central residue of blocked
alanine tetrapeptides, as a function of backbone Φ and Ψ torsions of
the central residue using five fixed-charge force fields and one
polarizable force field. Each force field was paired with either the water
model with which it was derived or that with which it is most
commonly used.
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al.79 in which multiple force fields were compared, in terms of
their ability to reproduce experimental J-coupling constants
using the Karplus equation and three different sets of Karplus
coefficients: the original coefficients, as used by Graf et al.,80−83

and two sets of DFT-based coefficients (DFT-1 and DFT-2) by
Case et al.84 In this study, a suggested criterion for a high-
quality force field is that the χ2 value between calculated and
experimental J-coupling constants should be ≤2.25 for all three
sets of Karplus coefficients. Three useful points of reference are
the recently developed ff14SB, CHARMM36, and ff03w force
fields, which were empirically corrected to improve reproduc-
tion of experimental Ala5 J-coupling constants.

4,9,11 The ff14SB
force field yielded χ2 values of 0.9 and 1.2 with the original and
DFT-2 coefficients, respectively, but a higher χ2 of 2.7 with the
DFT-1 coefficients; CHARMM36 and ff03w were tested only
with the DFT-2 coefficients, yielding χ2 values of 1.16 and 0.9,
respectively.
As shown in Table 2, ff15ipq yields values of χ2 = 0.53 with

the original coefficients, χ2 = 1.08 with the DFT-2 coefficients,
and χ2 = 0.67 with an additional set of Karplus coefficients from
Lindorff-Larsen et al.85 However, similar to ff14SB, we obtained
a higher χ2 value of 2.91 with the DFT-1 coefficients; in our
case, the higher χ2 value is driven primarily by a single outlier
that deviates greatly from the experiment, 3JHNCβ. Based on
results from preliminary versions of ff15ipq (see the “Timeline
of Development” section in the Supporting Information), it
appears that lower χ2 values with the original Karplus
coefficients may come at the expense of higher χ2 values with
the DFT-1 coefficients. Notably, ff15ipqwhich employs a
general parametrization to reproduce QM potential energies
performs at least as well as ff14SB, CHARMM36, and ff03w,
which have been parametrized specifically to reproduce Ala5 J-
coupling constants.4,11 All four force fields yield results that are
much improved, relative to force fields developed only a few
years ago.79

Note that the calculated J-couplings are dependent on the
ratios of various backbone conformations, between which
transitions may be relatively rare. In our studies of Ala5, we
found that 1.5 μs of aggregate simulation time, which we had

previously used in our validation of ff14ipq,17 did not yield
sufficiently precise calculations of the J-couplings. Although the
J-couplings may appear to be converged based on their
relatively small statistical variances (evaluated using block
averaging), these variances may be misleading. For example, we
observed what appeared to be small, but statistically significant
differences in the J-couplings between simulations run with and
without hydrogen mass repartitioning after 1.5 μs of simulation,
but these differences ultimately disappeared after 6 μs (see the
“Timeline of Development” section in the Supporting
Information). The extensive sampling needed to obtain
converged J-couplings illustrates the challenge of mapping the
conformations of just a few residues using brute-force MD
simulation.

4.4. α-Helices: K19 and (AAQAA)3 Peptides. To assess
the propensity of ff15ipq to form α-helices, we studied the
temperature-dependent behavior of two model α-helical
peptides: K19 and (AAQAA)3.

51,52 Both peptides are variants
of the motif (Ala-Ala-Xaa-Ala-Ala)n, in which Xaa is Lys in K19
and Gln in (AAQAA)3; their sequences are listed in Table 1.
For each peptide, we carried out six 4-μs simulations at
different temperatures and monitored the formation of various
types of secondary structure. As shown in Figure 4, both
peptides undergo multiple folding and unfolding events,
although our simulations are not sufficiently long to obtain
converged estimates of the probability of adopting α-helical
conformations. Qualitatively, K19 adopts α-helical conforma-
tions for a greater proportion of the simulation than
(AAQAA)3, which is consistent with the experimental
observation that K19 and (AAQAA)3 are ∼40% and ∼20%
α-helical, respectively, at 300 K.51,52 Both peptides transiently
form β-sheet contacts, which do not appear to be stable for
more than 100 ns, indicating that ff15ipq correctly identifies the
favored secondary structures of these peptides.
While the two peptides differ in length, the observed

difference in α-helical stability is likely due to parameters of Gln
and Lys residues at the central positions of the peptides. In our
umbrella sampling simulations of tetrapeptides, which are too
small to form an α-helix (Figure S4), we observed a broader,

Table 2. Ala5 J-Coupling Constants

Simulation

J-coupling residue orig DFT-1 DFT-2 KLL experiment
1JN,Cα 2 11.38 11.38 11.38 11.38 11.36
1JN,Cα 3 11.06 11.06 11.06 11.06 11.26
2JN,Cα 2 8.64 8.64 8.64 8.64 9.20
2JN,Cα 3 8.50 8.50 8.50 8.50 8.55
3JC,C 2 0.67 0.48 0.57 0.67 0.19
3JHα,C 2 1.57 1.31 1.47 1.38 1.85
3JHα,C 3 1.83 1.60 1.77 1.67 1.86
3JHN,C 2 1.26 1.27 0.88 1.46 1.10
3JHN,C 3 1.19 1.20 0.88 1.37 1.15
3JHN,Cβ 2 2.10 4.06 3.24 2.17 2.30
3JHN,Cβ 3 1.99 3.79 3.02 2.04 2.24
3JHN,Hα 2 5.35 4.78 5.50 4.92 5.59
3JHN,Hα 3 5.73 5.29 5.92 5.36 5.74
3JHN,Cα 2 0.63 0.63 0.63 0.63 0.67
3JHN,Cα 3 0.62 0.62 0.62 0.62 0.68

χ2 a 0.53 ± 0.02 2.91 ± 0.06 1.08 ± 0.03 0.67 ± 0.02
aUncertainties on χ2 values represent one standard error of the mean, calculated using a block averaging method.42 Uncertainties on individual J-
coupling constants are omitted for the sake of clarity.
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deeper α well for Lys than for Gln, suggesting that the observed
difference in α-helical stability between the two peptides has
already been “built-in” to ff15ipq at the residue level. In
addition, the two residues have different backbone charges: Gln
shares its N, H, C, and O charges with the other neutral
residues, and Lys shares its charges with the positively charged
residues. While the backbone H charges for neutral and
positively charged residues are similar, the backbone O of the
positively charged residues is ∼0.05 e more negative than that
of the neutral residues, which may result in more stable
hydrogen bonding.
4.5. β-Sheets: GB1 Hairpin, Chignolin, and Cln025

Peptides. In order to assess the stability of β-sheet structures
in ff15ipq, we simulated three model β-hairpin systems: the
GB1 hairpin, the designed peptide chignolin, and its hyper-
stable variant Cln025.53−55 We simulated the GB1 hairpin at 6
temperatures, ranging from 275 to 325 K, and we simulated
Cln025 at 10 temperatures, ranging from 280 K to 370 K; we
simulated chignolin only at 298 K. Figure 5 shows the
secondary structures observed during 4-μs simulations of these
systems. As with our simulations of the α-helical peptides, our

β-hairpin simulations are not sufficiently long to precisely
quantify secondary structure stability, although qualitative
trends may be identified. As shown in Figure 5A, the GB1
hairpin is metastable over the tested temperature range of 275−
325 K, and in two of our simulations unfolds and refolds. Our
simulations at ≥285 K are in qualitative agreement with the
experiment, which have indicated that the GB1 hairpin is ∼85%
folded at 275 K, ∼ 50% folded at 295 K, and ∼20% folded at
325 K.86 However, an anomaly is observed in our 275 K
simulation, in which the GB1 hairpin unfolds after ∼200 ns and
does not refold. This unfolding event may simply be an artifact
of our limited sampling that would disappear if the simulations
were to run to convergence. Alternatively, it may reflect
limitations of the SPC/Eb water model at temperatures distant
from those at which it was parametrized; while the temper-
ature-dependent behavior of SPC/Eb has not been charac-
terized, to our knowledge, three-point water models including
the parent SPC/E water model are known to poorly reproduce
the temperature dependence of properties such as den-
sity.15,87,88

Figure 4. Secondary structure of model α-helical peptides (A) K19 and (B) (AAQAA)3 at various simulated temperatures over the course of 4-μs
simulations.
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In contrast, our simulations of chignolin and Cln025 suggest
that these β-hairpin systems may be more stable than observed
experimentally. As shown in Figure 5B, chignolin maintains its
β-hairpin configuration throughout our 4-μs simulation at 298
K, including two hydrogen bonds in an antiparallel sheet
configuration, while, experimentally, the peptide is only ∼60%
folded at this temperature.54 Chignolin’s hyper-stable variant
Cln025 has an experimental melting temperature of 343 K.55 As
shown in Figure 5C, in our simulations at temperatures ranging
from 280 K to 370 K, we observe unfolding and refolding
events at several temperatures, although the overall folded
population is larger than that measured experimentally. In
particular, Cln025 is >80% folded in our simulation at 370 K,
while, experimentally, the peptide is only ∼25% folded at this
temperature.55

As with α-helices, we expect ff15ipq to yield residue-specific
propensities in β-sheet stability, although the large difference in

sequence between the two tested types of model β-hairpins
makes comparing them difficult. The aforementioned lack of a
clear β well in Asp may destabilize the GB1 hairpin, which
contains two adjacent Asp residues, one of which forms part of
the antiparallel β-sheet and the other, the turn. The observed
stabilities of chignolin and Cln025 generally preclude the
notion that ff15ipq is biased against the β-sheet structure.
Further studies including additional hairpin sequences and
parallel β-sheet structures will be necessary to quantify and
mitigate residue-specific biases for future IPolQ force fields.

4.6. The Trp-Cage Mini-Protein and Globular Proteins
BPTI, Villin, GB3, Ubiquitin, Binase, and Lysozyme. In
order to assess the stability of proteins with ff15ipq, we
simulated the Trp-cage miniprotein and a series of six globular
proteins: BPTI, villin, GB3, ubiquitin, binase, and lysozyme.
Extensive experimental data are available for all of these model
systems, providing excellent opportunities for validation of our

Figure 5. Secondary structures of model β-hairpin peptides ((A) GB1 hairpin, (B) chignolin, and (C) Cln025) at various simulated temperatures
over the course of 4-μs simulations.
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simulations. We carried out 24 μs of aggregate equilibrium
simulations of Trp-cage at temperatures ranging from 275 K to
325 K and simulations 2−10 μs in duration of the six globular
proteins at temperatures between 298 K and 303 K. Details of
our simulations are listed in Table 1.
The designed miniprotein Trp-cage is central to a long-

running computational success story for AMBER force fields.
Folding simulations of this miniprotein using the AMBER
ff99SB force field have successfully recovered the folded
structure, yielded multiple folding and unfolding events, and
provided a melting temperature (Tm) of 318 K, which is in
reasonable agreement with the experimental Tm value of ∼315
K.56,89,90 As shown in Figure 6, Trp-cage remained stable in our
simulations between 275 K and 295 K, with an average
backbone RMSD from the experimental NMR structure of <1
Å, and unfolded between 305 K and 325 K. While our
simulations are not extensive enough to obtain precise
estimates of the Tm, these results suggest that the Tm value is
somewhere between 295 K and 305 K, which is slightly lower
than the experiment. Each unfolding event is marked by an

initial shift of the backbone Φ/Ψ of Pro 12 from the α well to
the PPII well, followed by the loss of the N-terminal α-helical
component of the polypeptide. Notably, in our simulation that
was run at 325 K, the protein refolded for ∼500 ns, indicating
that the folded state is a stable free-energy minimum. Thus,
despite the extensive reoptimization of the parameter set, the
important success of the AMBER force fields in modeling the
stability of Trp-cage has been maintained.
Note that the Pro-rich sequence of Trp-cage allows the

opportunity to validate the unique pre-Pro Ψ and Ψ′ terms of
ff15ipq, because it contains Gly, Arg, and Pro residues that
precede Pro. Whenever Trp-cage was folded in our simulations,
Gly 11 remained stably in its PPII′ well, while Arg 16 was
sampled broadly across the β and PPII regions without a clear
barrier between them. These results are in good agreement with
the experimental NMR ensemble, within which the Φ and Ψ
backbone torsions of Arg 16 are distributed in a line across
these two regions,56 and with the pre-Pro distributions
observed for these residues in the NDRD dataset.77 Also
consistent with both the NMR ensemble and NDRD dataset

Figure 6. Stability of Trp-cage over the temperature range of 275−325 K over the course of 4-μs simulations, as monitored by the backbone root-
mean-square deviation (RMSD), relative to the experimental NMR structure.

Figure 7. Stability of folded proteins over the course of 10-μs simulations as monitored by the backbone RMSD, relative to the experimental
structures. For binase, the mean RMSD relative to the ensemble of 20 NMR structures is shown, along with the range between the minimum and
maximum values (light blue shaded region).
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are the observed distributions of Pro 17 and Pro 18, which
strictly maintained their positions in the PPII well, even as the
protein unfolded.
As shown in Figure 7, the overall structures of all six globular

proteinsBPTI, villin, GB3, ubiquitin, binase, and lysozyme
remained stable over their entire simulations. The BPTI protein
remained closest to its crystal structure, yielding an average
backbone RMSD of 0.7 Å, which may be a result of its three
disulfide bonds among a total of 58 residues. All α-helical and
β-sheet regions of this protein were retained for the entire
simulation. The only notable deviation from the crystal
structure of BPTI was observed for Ala 16 and Arg 17, which
form the end of the loop preceding the first β-sheet. These two
residues, which occupy the α and ξ wells, respectively, in the
crystal structure, made temporary excursions of several hundred
nanoseconds to alternative conformations before returning to
the crystal conformation (Figures S5 and S6 in the Supporting
Information). The villin headpiece subdomain also remained
close to its crystal structure, yielding an average backbone
RMSD of 1.1 Å. In order to test our parameters for the
noncanonical amino acid norleucine (Nle), which was included
alongside the canonical residues during development of ff15ipq,
we have simulated the fast-folding double-Nle mutant of
villin.62 The Nle residues, both of which are located in the third
α-helix, strictly sampled the α-helical well, suggesting that our
parameters for Nle are appropriate. The only significant
deviation from the crystal structure of this mutant of villin is
a ∼0.5 μs excursion made by residues 10−12, which form the
end of helix 1 and the loop linking helices 1 and 2, to an
alternative conformation different from that observed in the
crystal structure (Figures S7 and S8 in the Supporting
Information).
Our simulation of GB3 yielded an average backbone RMSD

of 1.0 Å from the NMR structure. Three of the residues exhibit
significant deviations from the crystal structure: Leu 12, Asp 40,
and Thr 55 (Figures S9 and S10 in the Supporting
Information). The conformation of Leu 12, which is located
in the turn linking the first and second β-strand, falls precisely
between the β and PPII wells in the NMR structure, while both
wells were almost equally sampled in our simulation. As a result
of this increased conformational flexibility at Leu 12, adjacent
residues also occasionally sampled conformations outside their
NMR structure. The presence of a free-energy barrier between
the β and PPII wells is a necessity for maintaining stable
conformations within these wells; it is likely that the forces
contributing to the stabilization of Leu 12’s unusual
conformation in the NMR structure are simply not captured
by the functional form of ff15ipq. Consistent with this
hypothesis, almost-identical deviations were observed for the
ff14SB force field that shares this functional form.4 The
conformation of Asp 40, which is located in the loop between
the α-helix and third β-strand, occupies the ξ well in the crystal
structure while other conformations, predominantly β, were
sampled in our simulations. Indeed, based on this result and
others presented below, the negatively charged residues of
ff15ipq completely lack an ξ well. As with Leu 12, the increased
conformational flexibility of Asp 40 led to broader sampling by
adjacent residues. It is worth noting that GB3 contains two
negatively charged residues, Glu 15 and Asp 22, which
remained stable in β-sheets, indicating that the limited sampling
of this region observed in our umbrella sampling simulations
may be overcome within the context of a folded protein.
Finally, a notable deviation from the NMR structure occurs for

Thr 55 during the last microsecond of our simulation when the
antiparallel β-sheet hydrogen bonds between this residue and
Val 42 are broken, although the remainder of the β-sheet
remains in place. While this deviation may be a transient event,
it could also be a consequence of the conformational deviations
of the nearby Asp 40.
Similar to GB3, ubiquitin in our simulations exhibited a low

overall average backbone RMSD of 1.2 Å from the crystal
structure, but significant deviations in certain regions. In
particular, transient deviations from the crystal structure were
observed for residues 8−11, which form the turn connecting
the first and second β-strands (see Figures S12 and S13 in the
Supporting Information). While these residues sampled
conformations that were different from the crystal structure,
their turn conformation was retained throughout 80% of the
simulation, and experimental NMR relaxation data suggests that
the region is truly flexible.91 A more significant deviation was
observed for Asp 52 and Gly 53, which are located in a loop
region; in the crystal structure, these residues both occupy the
α well, whereas, in our simulation, Asp 52 and Gly 53 shift to
the PPII and γ wells, respectively. Unlike the deviations
observed in GB3, this shift does not lead to broader sampling
by adjacent residues or appear to otherwise destabilize the
protein, suggesting that the observed alternative conformation
may simply be erroneously modeled by ff15ipq to be lower in
energy than the conformation found in the crystal structure.
Finally, after ∼8.5 μs of simulation, Glu 34, which is the last
helical residue in the central α-helix, shifts to the PPII and β
regions, leading to shifts in residues 33−36. Combined with the
observations made for Asp 52, this shift suggests that, for
negatively charged residues, ff15ipq may overstabilize PPII
conformations, relative to α.
Among the simulated globular proteins, the greatest

deviations from the initial structure were observed for binase
with an average backbone RMSD of 3.4 Å from the NMR
ensemble of 20 models.57 The same average RMSD was also
obtained, with respect to the crystal structure of wild-type
binase, which differs in the amino acid sequence at six positions
(PDB code: 1GOU).92 These larger differences are primarily
caused by variability in loop regions, as noted for the
experimental structures,57,92 and the core structure of binase
remained relatively close to the experimental structures with an
average backbone RMSD of 1.9 Å. The first loop, which
consists of residues 34−39, adopted multiple conformations in
our simulation, which is consistent with the NMR ensemble
(Figures S15 and S16 in the Supporting Information).
Moreover, this loop adopts the conformation observed in the
crystal structure for 75% of the simulation. The second loop
consists of residues 56−62, which also sampled broadly in our
simulations, consistent with diverse conformations in the NMR
ensemble and poorly defined electron density in the crystal
structure.92 Notably, in both our simulation and the NMR
ensemble, flexibility in this region extends to Gly 67. This
difference may relate to the difference in sequence between the
NMR and crystal structure proteins, in which Ser 66 is replaced
by Gly and Gly 67 by Ser. The third loop, comprised of
residues 76−83, is also broadly sampled in our simulation, and
is the source of greatest difference, relative to the experimental
structures. The final loop is comprised of residues 99−104 and,
in our simulation, we observe several residues sampling two
different conformations, consistent with the observation of two
states in crystal structures determined under different
conditions.92
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The largest protein system, lysosome, was simulated for 2 μs,
over which it exhibited an average backbone RMSD of 1.2 Å,
with respect to the crystal structure. As shown in Figures S17
and S18 in the Supporting Information, the largest deviations
were found in the loop comprised of residues 100−104.
Residues 101−104 adopted an alternative conformation, with
the flanking residue Val 99 no longer part of the preceding α
helix and Gly 104 part of the following helix. Similar to our
observations for ubiquitin, this difference appears to be related
to the shift of a negatively charged residue, Asp 101, from the α
well to the PPII well.
Four of the six globular proteinsBPTI, GB3, ubiquitin, and

lysozymehave also been used for validation of previously
developed force fields, including ff14ipq, ff14SB, and
CHARMM36.4,11,17 Similar to these force fields, ff15ipq yielded
low average backbone RMSD values for these proteins, relative
to their initial structures (i.e., ≤1.2 Å). A key point to be
considered while comparing our results to those of previous
force fields is that advancements in GPU computing over the
last several years2 have enabled us to validate ff15ipq using
simulations up to 10 μs, which is up to 10 times longer than
those used for the other force fields. In particular, ff14SB was
validated using sets of four 1-μs simulations,4 while
CHARMM36 was validated using 200 ns simulations.11 Many
of the key deviations that we observe do not occur for several
microseconds; for example, we observe changes in the C-
terminus of GB3 after 9 μs, and in the loops of ubiquitin after
8.5 μs. These deviations are informative and will guide
development of successors to ff15ipq, illustrating the utility of
long-time scale simulations for force field development.
A particularly appealing feature of the SPC/Eb water model

with which we have developed ff15ipq is its ability to more
accurately reproduce the rotational diffusion of solvated
proteins relative to water models, such as TIP3P and TIP4P-
Ew.23 In order to measure how accurately the combination of
ff15ipq and SPC/Eb are able to reproduce rotational diffusion,
we branched off sets of ten 200-ns simulations in the
microcanonical ensemble (NVE) from our 10-μs simulations
in the canonical ensemble (NVT) for GB3, ubiquitin, and
binase, thereby avoiding perturbation of the dynamics by the
use of a thermostat. As shown in Table 3, ubiquitin, GB3, and
binase diffused ∼14%, ∼15%, and ∼22% more slowly than that
measured experimentally by NMR, respectively. Note that the
experimental values were corrected for differences in temper-
ature, isotopic labeling, and solvent D2O content, potentially
introducing error into the comparison of simulated and

experimental values.29 Interestingly, while the errors that we
obtained were consistent with our test simulations with the
AMBER ff99SB-ILDN force field and SPC/Eb (see Figure S1),
we found CHARMM22* and SPC/Eb to yield lower errors of
7%, 6%, and 16%, illustrating the coupling of solute and solvent
parameters on the motions of proteins through solution. Since
the SPC/Eb water model had been empirically optimized for
proteins with the AMBER ff99SB force field, this is no fault of
ff15ipq (or CHARMM22*, for that matter), but suggests that
improved performance might be obtained by optimizing the
protein and solvent models in tandem. Finally, it is worth
noting that our use of the Langevin thermostat in the NVT
simulations results in ∼42%−52% longer rotational diffusion
times, relative to those of the NVE simulations, demonstrating,
for the first time (to our knowledge), that the use of a
thermostat can significantly perturb dynamical properties for
proteins and not just for small molecules and polymer chains.93

A major advantage of performing simulations with accurate
rotational diffusion is that one can directly calculate NMR
relaxation parameters 15N R1 and R2, and the 15N−1H
heteronuclear NOE, which report on the dynamics of individual
residues, and compare these values with experiment. Therefore,
we calculated relaxation parameters for GB3 and ubiquitin, for
which experimental data are available at five and four magnetic
field strengths, respectively (see Figures S11 and S14,
respectively, in the Supporting Information). Overall, our
calculated R2 values are in excellent agreement with the
experiment, with average mean absolute percent error (MAPE)
values of 8% for GB3 and 9% for ubiquitin. Our R1 values are
also in good agreement, with average MAPE values of 10% and
12%, with a consistent offset observed across all residues.
However, our heteronuclear NOE values are somewhat poorer
agreement, with average MAPE values of 22% and 30% for the
two systems.
Residues for which our calculated R1 and R2 differ by >20%

from the experimental values may be due to limitations of our
force field. Notably, we find that several such residues are those
for which we also observed deviation in sampled backbone
conformations, relative to the experimental structures. For
GB3, Leu 12 and Asp 40 yielded above-average errors in R1
(25%), while Gly 41 had a larger error in both R1 and R2 (47%
and 33%). Similarly for ubiquitin, Lys 11 and Asp 52 yielded
above average errors in R1 (20%). Also in ubiquitin, Asn 25
yielded an error of 22% in R2; however, this residue is found
experimentally to undergo chemical exchange,91 fluctuating at
time scales beyond those captured by our simulations. Among
residues with errors below 20%, one particular trend is
apparent: Ile 7, Thr 16, Thr 49, and Thr 51 of GB3 and Thr
12 and Ile 36 of ubiquitin all yielded errors in R2 of ≥15%,
despite having tightly restricted Φ/Ψ sampling consistent with
their experimental structures. This trend suggests that ff15ipq
may have some discrepancy with the three branched residues
that is not apparent when examining only backbone Φ/Ψ
preferences, and this will be the subject of further study.

4.7. Disordered Peptides: p53 Peptide, S-Peptide. In
order to test the suitability of ff15ipq for simulating disordered
proteins, we focused on two model peptides: the N-terminal,
13-residue peptide fragment of the tumor suppressor p53, and
the 22-residue S-peptide fragment of RNase A. Both of these
disordered peptides (p53 peptide and S-peptide) only adopt α-
helical conformations when bound to their structured partner
proteins (MDM2 and S-protein, respectively).94,95 For each of
these peptides, we carried out two 10-μs simulations: one of the

Table 3. Rotational Diffusion of Globular Proteins Simulated
with ff15ipqa

Simulated τc (ns)

system
experimental τc

(ns)b
one 10-μs NVT
simulationc

ten 200-ns NVE
simulationsd

GB3 3.03 4.94 ± 0.02 3.47 ± 0.05
ubiquitin 4.07 6.67 ± 0.04 4.62 ± 0.08
binase 5.95 11.06 ± 0.07 7.26 ± 0.18

aUncertainties represent one standard error of the mean. bExper-
imental rotational diffusion measured using NMR relaxation59,91,109

and corrected for differences in temperature and D2O content between
simulation and experiment.29 cUncertainties represent one standard
error of the mean calculated from 50 consecutive 200-ns blocks from a
single 10-μs simulation. dUncertainties represent one standard error of
the mean calculated from ten independent 200-ns simulations.
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isolated peptide and the other of the native peptide−protein
complex.
As shown in Figure 8, both peptides in their isolated states

adopted conformations distant from their partner-bound
conformations, sampling a diverse set of conformations with
average backbone RMSDs of 5 Å from their corresponding
bound conformations in the crystal structures of the peptide−
protein complexes and maintaining only ∼25% of their native
intrapeptide contacts. Furthermore, the p53 peptide only
transiently adopted α-helical conformations that resembled its
partner-bound conformations (backbone RMSD value of <3 Å)
with these conformations unfolding within ∼200 ns (see Figure
S19 in the Supporting Information). In contrast, the S-peptide
did not even transiently sample α-helical conformations
resembling its bound state; instead, the peptide formed β-
hairpins that persisted for periods as long as 4 μs (see Figure
S22 in the Supporting Information).
In our simulation of the p53/MDM2 complex, the peptide

remained stably bound to its partner protein for the entire 10
μs of simulation, with an average backbone RMSD of 1 Å from
its bound conformation in the crystal structure (Figure 8).
Curiously, while most of the intramolecular native contacts of
the p53 peptide and MDM2 were retained (∼95% and ∼85%,
respectively), only ∼60% of the intermolecular p53/MDM2
native contacts persisted. Examination of the structure showed
that many of these contacts lay just below the threshold
distance of 5.5 Å between their heavy atoms in the crystal
structure. Thus, these contacts were no longer “formed” when
slightly different conformations were adopted in our
simulations. Throughout our simulation, the p53 peptide

retained the α-helical structure of residues 19−25 (recall
Figure S19). In contrast, our simulation of the S-peptide/S-
protein complex sampled conformations more distant from its
crystal structure, with average backbone RMSD values of 3 Å
for both S-peptide and S-protein. Although the S-peptide
partially lost its α-helical structure near the N-terminus from
∼1.5 μs to ∼5 μs in our simulation (see Figure 8 and Figure
S22), the structure reformed and persisted for the remainder of
the simulation during which both the S-peptide and S-protein
retained most of their intramolecular native contacts (∼90%
and ∼80%, respectively). Similar to the p53/MDM2 complex,
the S-peptide/S-protein complex retained ∼60% of its
peptide−protein contacts throughout our simulation.
Our simulations of these flexible, disordered peptides provide

an additional opportunity to validate the backbone conforma-
tional preferences of ff15ipq. From our four simulations, we
have calculated the backbone Φ/Ψ sampling of the p53 peptide
(Figure 9) and S-peptide (Figure S23 in the Supporting
Information). For comparison, we have provided the
distributions for the peptide sequences obtained from the
NDRD dataset, which accounts for the influence of adjacent
residues on each distribution.77 In our simulation of the p53/
MDM2 complex, residues 18−27 of p53 occupied exclusively
the wells observed in the crystal structure, aligning with the
observed low RMSD and high percentage of native contacts.
Our simulation of the isolated p53 peptide exhibits similarities
with the NDRD distribution for most residues, but several
inconsistencies are informative: in particular, the neutral
residues exhibit reasonable overall agreement and the bulky
aromatic residues Phe 19 and Trp 23 closely resemble the

Figure 8. Stability of p53 and S-peptide alone and in complex with binding partners MDM2 and S-protein over the course of 10-μs simulations as
measured by backbone RMSD relative to (A, B) the crystal structures and (C, D) the percent of native contacts formed.
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NDRD distributions, while Leu 22 and Leu 25 sampled of the
β-region more extensively than suggested by the NDRD. The
negatively charged residues Glu 17 and Glu 28 sampled
consistently with the NDRD, while Asp 21 missed sampling in
the ξ region. The sole positively charged residue, Lys 24,
sampled the β-well more extensively than suggested by the
NDRD.
In our simulation of the S-peptide/S-protein complex, the

crystal conformations were retained for most of the simulation
(see Figure S23). As described above, several residues near the
N-terminus left the α-helical well, and the adjacent Thr 3,
which is not helical in the crystal structure, eventually joined
the helix as it reforms. The clearest difference from the crystal
structure is found for Asp 14; this residue occupies the ξ well in
the crystal structure, which is not present for Asp in ff15ipq,
causing it to adopt a PPII conformation. Within the S-protein,
residue Gln 60 is notable for its uncommon “plateau”
conformation (Φ ≈ −100°, Ψ ≈ −130°),64,96 which was
retained throughout our simulation (Figure S25 in the
Supporting Information). In our simulation of the isolated,
unbound S-peptide, the formation of long-lived β-hairpin

structures prevented us from obtaining converged conforma-
tional preferences for comparison with the NDRD distribu-
tions, despite the long duration of the simulations (10 μs).
Taken together, the above results indicate that ff15ipq can

reliably predict disorder as well as order for peptides that fold
upon binding their partner proteins. These encouraging results
are worth pointing out since ff15ipq was not specifically
parametrized for disordered peptides/proteins, as is the case for
contemporary force fields such as ff03w and its subsequent
variants.9,97 As shown in Figure 1, both ff03 (whose atomic
charges and radii are shared by ff03w) and ff15ipq are able to
reliably model propensities of salt-bridge formation, which can
be critical for such systems that are rich in polar and/or charged
residues. Thus, ff15ipq is a reasonable alternative to ff03w for
the simulation of disordered peptides/proteins.

5. DISCUSSION
Since the establishment of the “one atom, one site” model of
all-atom fixed-charge force fields over 20 years ago, several
major lineages of protein force fields and countless branches
have been developed through cycles of validation and

Figure 9. Backbone conformational sampling of the disordered p53 peptide observed in 10-μs simulations (A) in complex with the MDM2 protein
and (B) alone. For comparison, panel (C) shows distributions for the p53 sequence obtained from the Neighbor-Dependent Ramachandran
Distribution (NDRD) dataset,77 derived from conformations observed in the loops of crystal structures.77
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refinement. In this work, we present the ff15ipq force field, the
latest in the AMBER IPolQ lineage, and validate its accuracy by
>200 μs of aggregate MD simulation. The distinguishing
features of ff15ipq are (i) a charge set that accounts directly for
water induced polarization, (ii) the incorporation of two related
charge sets for creating new force fields based purely on ab
initio calculations, (iii) the scope of the parameter optimization,
including backbone angles alongside torsions, and (iv) the
degree of automation and transferability of the methods to
other regions of chemical space. Our simulations suggest that
ff15ipq yields reasonable salt-bridge propensities, maintains
secondary structures and globular protein folds on the μs time
scale, predicts order as well as disorder in protein structures,
and yields strong agreement with NMR J-couplings and
relaxation rates. However, even with this extensive amount of
validation, several unconverged results remain and will be
explored further using enhanced sampling techniques such as
replica exchange98,99 or recent variants100,101 of the weighted
ensemble path sampling strategy.102 A timeline of the
development is available in the Supporting Information. Here,
we will discuss the origins of ff15ipq and its current trajectory.
A major motivation for creating ff15ipq was to address

concerns about the overstabilization of salt-bridge interactions
by ff14ipq, which is a limitation that is shared by other
contemporary force fields.19 We addressed these concerns by
abandoning the mixed Lennard-Jones radii of ff14ipq and
instead increasing the radii of polar hydrogen atoms bonded to
nitrogens in both the protein backbone and side-chains to yield
more accurate salt-bridge propensities. The atomic charges of
the force field were then rederived by applying the automated
machinery, which had created ff14ipq, exchanging the TIP4P-
Ew water model for SPC/Eb. Finally, all torsion and selected
backbone angle parameters were refit to a QM dataset over four
times as large as that used for ff14ipq. In doing so, we found
that angle optimization was essential for recovering reliable
results with our more-extensive dataset (see the “Timeline of
Development” section in the Supporting Information).
While the angle optimization feature and other particulars of

the torsion fitting are subjects of ongoing development in our
force field engine mdgx, our results with ff15ipq indicate that
the workflow illustrated in Figure 10 is a viable approach to
creating new force fields. Each step entails additional layers of
details in order to address practical considerations such as
infinite electrostatics or the forms of molecular mechanics basis
functions and the shape of the target energy surface. We have
addressed each of these issues in the Theory and Methods
sections as well as in prior publications,16,17 but the synthesis of
all these details reflects the physical arguments behind the
IPolQ charge derivation.
This approach should be viewed in context with the

contemporary Force Balance approach, which also performs
sweeping optimization of hundreds of parameters simulta-
neously.15 Unlike our MM-minimized conformations, Force
Balance typically considers conformations QM-minimized at
the same level of theory at which the target QM energies are
calculated, although this is not a strict requirement. Going
beyond the capabilities of mdgx, Force Balance includes
numerous nonlinear optimization methods and offers the
capability to incorporate results from sources beyond QM
single-point energies, including in vitro experiments, directly
into the parameter optimization. In the future, such diverse
targets might be paired with the IPolQ method, for example, by
using the vacuum charge set (Qvac) for comparison with

vacuum-phase QM data, but using the polarized charge set
(Qsolv) in simulations for comparison to experimental results in
solution.
It is rather remarkable that a viable protein force field can be

produced within months, almost entirely from QM data. Also
noteworthy is the fact that features such as angle optimization
and generational refinement, which had incremental but
definite effects on the accuracy of data fitting, could be so
influential in the final result. One way of considering the
remaining error in our MM model is to partition it between two
sources: bonded and nonbonded interactions. The improve-
ments in ff15ipq that were obtained relative to ff14ipq, whose
nonbonded parameters are of similar accuracy, resulted from
optimization of angles and the branching of bonded
parameters. While the inclusion of anharmonicity in bond
and angle stretching or a spline-based treatment of torsion cross
terms (CMAP) may reduce errors further,6,103 greater improve-
ments might be accomplished in the nonbonded interactions.
For this reason, the next planned advance of the AMBER

IPolQ force field lineage is to improve the accuracy of
electrostatic interactions by making liberal use of virtual charge
sites. The “one atom, one site” paradigm used for ff15ipq,
which was established several decades ago, appears sufficiently
accurate for most purposes, economical by construction, and
thoroughly optimized in existing MD engines. Models with
significant numbers of virtual charge sites are presently in the
process of becoming established. These models offer improved
accuracy for various chemistries with clear physical motivations,
accompanied by a more modest increase in computational cost
than that afforded by polarizable functional forms.104,105 Future
AMBER IPolQ development at the one-site-per-atom level will
continue to explore the applicability of our methodology to the
chemical space of other biologically important molecules,
including nucleic acids, carbohydrates, and small molecules.
Further ahead along the path lie multisite IPolQ models, which
will push the mimicry of QM potential energy surfaceswithin
the confines of a nonpolarizable modelto new levels.

Figure 10. IPolQ force field development workflow. Starting from an
existing model, selected global changes are optionally first applied to
obtain an initial model for optimization. The IPolQ charge deviation
protocol is then used to fit a pair of atomic charge sets for the vacuum
(Qvac) and solution (Qsolv) phases. The vacuum-phase charges are used
to fit parameters for bonded terms to vacuum-phase QM targets, and
these parameters are subsequently paired with the solution-phase
charges to yield a complete force field for solution-phase simulations.
The force field is then validated through extensive MD simulation,
informing future development.
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