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Abstract: Quantitative Phase Imaging (QPI) provides unique means for the imaging of biological
or technical microstructures, merging beneficial features identified with microscopy, interferometry,
holography, and numerical computations. This roadmap article reviews several digital holography-
based QPI approaches developed by prominent research groups. It also briefly discusses the present
and future perspectives of 2D and 3D QPI research based on digital holographic microscopy, holo-
graphic tomography, and their applications.

Keywords: quantitative phase imaging; digital holographic microscopy; holographic tomography;
3D distribution of refractive index; biomedical analysis at cellular level

1. Introduction

Quantitative Phase Imaging (QPI) refers to a number of label-free microscopy tech-
niques that provide contrast by quantifying the phase changes in the wavefront when
light propagates through a transparent specimen [1,2]. QPI provides unique means for
imaging biological or technical microstructures, merging beneficial features identified
with microscopy, interferometry, holography, and numerical computations. In biomedical
applications, QPI (using refractive index as the endogenous contrast agent) numerically
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converts recorded interference pattern into a nanoscale-precise subcellular-specific map of
optical delay introduced by the examined specimen [3–5].

The various technical approaches available to achieve QPI can be categorized into
two groups: first, QPI solutions based on digital holographic microscopy (DHM) [3],
holographic tomography (HT) [6,7], spatial interference interferometry (SLIM) [8], gradient
light interference microscopy (GLIM) [9], quadriwave lateral shearing interferometry
(QLSI) [10], Hilbert phase microscopy (HPM) [11], and Hilbert–Huang phase microscopy
(H2PM)[12], and secondly, QPI-based on iterative multi-frame phase retrieval i.e., Fourier
ptychography [13,14] or transport of intensity [15].

As mentioned above, QPI is a very broad topic. The most popular and widely commer-
cialized QPI techniques are those based on digital holography, namely: DHM (also referred
in literature as quantitative phase microscopy, 2D QPI) and HT (also referred in literature
as: optical diffraction tomography (ODT), tomographic diffractive microscopy (TDM),
synthetic aperture microscopy (SAM), phase nanoscopy, tomographic phase microscopy
(TPM), refractive index tomography (RIT), optical diffraction microscopy (ODM), and
3D quantitative phase imaging (3D QPI)). In this roadmap article, we focus mainly on
providing insight and discussing the present and future trends of these two holography
based QPI techniques. However, several approaches and concepts presented below can
easily be extended to other QPI techniques. However, as in any overview article of this
nature, it is not possible to represent all the possible approaches, applications and trends
in the field of QPI. We apologize in advance if we have not included any relevant work
in QPI.

This roadmap begins with the applications of digital holography to microscopy in
biology by C. Depeursinge and P. Marquet (Section 2). It provides an overview and
discusses the benefits of DHM. They briefly describe the label-free live cell imaging with
digital holography and discuss coherent noise issues and the biological interpretation of
quantitative phase signals. Next, C. Depeursinge and P. Magistretti (Section 3) introduce
three-dimensional (3D) holographic microscopic techniques, provided by holographic
tomography, and present their biological applications. N. Hai and J. Rosen (Section 4)
discuss the implementation of QPI by self-reference on-axis holography, and they also
compare the performance of multiple-shot approach with iterative, single-shot method. QPI
applications in material science, especially tracking the ultra-fast material transformation
with permittivity transients, is provided by S. Juodkazis, et al. in Section 5.

Three-dimensional QPI, and its extensions in estimating the refractive index profiles,
are elaborated by M. Lee and Y. Park (Section 6). This section also discusses challenges
referring to the image quality, imaging throughput, and data size, as well as interpretation
of 3D data. V. Balasubramani and C. J Cheng (Section 7) introduce an integrated dual-
mode tomography approach, which addresses the missing cone problem and provides
an enlarged spatial frequency coverage, resulting in high-quality image reconstruction. J.
Kalkman (Section 8) describes the challenges connected with the implementation of ultra-
scale (i.e., with optimized throughput) and high-contrast 3D QPI, which are needed to open
up new biomedical applications. M. Kujawinska, et al. (Section 9) discuss the importance
of metrology aspects in 3D QPI, including the proper determination of accuracy, precision
of instruments, and uncertainty of the measurements, as well as the need of standardized
3D phantom. C. Allier (Section 10) discusses the evolution from computational to neural
microscopy and the importance of deep learning solutions, which can replace conventional
algorithms in 2D and 3D phase microscopy. This section also shows the design of the
neural microscopy framework for QPI. Finally, Section 11 summarizes the presented work
and draws conclusions.

The authors believe that this roadmap article will be of interest to the young scientists
and researchers who are working in the field or plan to explore and further develop
different aspects of the quantitative phase imaging techniques and their applications.

This section was prepared by Malgorzata Kujawinska and Vinoth Balasubramani.
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2. Application of Holography to Microscopy in Biology: Label-Free Live Cell Imaging
with Digital Holographic Microscopy
2.1. Status

Optical microscopes are one of the most productive scientific instruments. Neverthe-
less, the limits on resolution, formulated by the well-known Abbe law, as well as the lack
of quantitative data, have appeared as severe limitations. Holography [16], as a means to
reconstruct the specimen with its 3D shape, together with its dielectric properties, was a
breakthrough. In microscopy, the theoretical basis was given by E. Wolf [17]. The adap-
tation of digital holography to microscopy soon revolutionized the domain. In the 1990s,
the team directed by one of us chose to develop the application of Digital Holography
(DH) to micro-endoscopy and microscopy. The first quantitative phase image of a living
neuron was obtained by Etienne Cuche in 1999 [18] as well as Pierre Marquet [19]. The
determination of the precise topology (with nanometer accuracy), together with Refractive
Index (RI) and polarizability [20–22], were henceforth possible by DHM. Finally, a major
asset of holography is that complex waves, scattered by the specimen, could be determined
from a single hologram acquired in a snapshot, thereby avoiding motion blur and chaotic
movement effects.

The principle of DHM applied to biological objects is given in Figure 1. On the right
part of the sketch, one can recognize the optical scheme of a traditional microscope in
transmission. On the left, an optical path is added in order to interfere with the beam
diffracted by the specimen. The camera then captures a hologram that forms the image of
the specimen after reconstruction by digital means. For more details, refer to [23].
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Figure 1. (a) example of optical setup for transmission Digital Holographic Microscopy DHM. (b)
Optical setup for Tomographic Diffractive Microscopy: Laser source with controllable coherence
length. NF neutral filter, λ/2 plate, PBS polarizing beam splitter, BS beam splitter, BE beam ex-
pander, SM steering mirror and M mirror, BF back focal plane, S specimen, C cell, O object wave, R
reference wave.

QPI has developed dramatically over the last 20 years, thanks in particular to both
the availability of inexpensive digital image sensors with a high pixel number of small
size (between ~1 µm and ~10 µm) and the increase in computing power allowing us
to process digital images of several megapixels. The approaches based on DH occupy
an important place in QPI, particularly because they are generally robust and simple to
implement. Moreover, the numerical reconstruction of the digitally recorded holograms
makes it possible to obtain the whole complex diffracted wavefront, i.e., both its amplitude
and phase, thus offering the possibility of propagating it to different planes. Such numerical
propagation provides many advantages, including the ability to perform autofocusing,
extended depth of focus, and to correct any kind of aberration, especially those introduced
by a microscope objective. Thus, high-resolution extended-depth-of-field quantitative
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phase images, well suited for live cell imaging, can be obtained with DHM. Knowing that
most biological cells are transparent, the phase information of the scattered wavefront
represents an intrinsic contrast to visualize them non-invasively without any staining. As
far as weakly diffracting specimens are concerned, such as living cells, the phase retardation
of the transmitted light wave, namely quantitative phase signal (QPS), is given by the
following equation,

QPS =
2π

λ
(nc − nm)d (1)

where nm is the RI of the surrounding medium, nc, and d, the RI averaged over the cor-
responding optical path length and the thickness of the observed specimen, respectively.
QPS, stemming from the difference between nc and nm, has allowed the development of
several very appealing applications, including cell culture inspection [24], automated cell
counting, recognition, and classification for diagnostic purposes [25], with the use of ma-
chine learning approaches [26]. In addition, promising applications aiming at identifying
neoplastic lesions from histologic samples [27], assessing cellular responses induced by new
drugs [28], and performing label-free high content screening [29] were successfully carried
out. Furthermore, it is well known, [30] that a cell’s dry mass (DM) can be extracted from
QPS, and its monitoring is especially permitted to characterize cell behavior in response
to stress [31], cell cycle [32], and mass transport in cultured neuronal networks [33]. The
ability of numerical propagation to apply extended depth of focus has made efficient semen
analyses possible, which represents appealing developments in fertility medicine [34].

2.2. Current and Future Challenges

Despite these very attractive applications, the QPS is often affected by coherent noise
(1) and is not very specific to interpret in terms of cellular processes (2). This limits the
capacity of QPS to study significant questions in cell biology.

2.3. Advances in Science and Technology to Meet Challenges

Noise issue: It is well known that the light source coherence, useful to generate
high-quality interference patterns, that encode the phase in an extremely accurate manner,
generates coherent noise (CN) that significantly degrades the quantitative phase image
quality. Some strategies, based on either numerical approaches [35] or optical instrumenta-
tion developments [36,37], have started to be able to significantly decrease CN (Figure 2).
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Figure 2. 3D representation of color-coded optical path difference (OPD) of a living neuronal network.
The right part of the image is quasi speckle-free thanks to a polychromatic DHM approach [37],
allowing to study neuronal processes and network connectivity.

Biological interpretation of QPS: QPS is very valuable since it contains information
about both cell content and morphology through the parameters nc and d, respectively,
(see Equation (1)), which enables the monitoring of certain important processes, including
the cell cycle [38]. Unfortunately, this dual information is mixed together, which can often
make the QPS interpretation elusive. One way to overcome these limitations is to have
a good knowledge of the cell system studied in order to make assumptions about the
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behavior of d or nc. For example, under an assumption of nc invariance, studies of red
blood cell (RBC) membrane fluctuations, conducted at a nanometric scale with DHM,
or of cell deformation induced by shear forces, lead to the detection of highly relevant
biomechanical parameters as possible biomarkers of diseases [39,40]. Several attempts
have been proposed to obtain d and/or nc separately [40–44]. The methodology presented
in [44], based on a perturbation of the extracellular RI, has the main advantage of providing,
without making any assumption about the shape of the cell or exerting any constraint
on it, simultaneous measurements of the spatial average cell RI nc, thickness d, and the
absolute cell volume Vc, with accuracies of 0.0006, 100 nm, and 50 µm3, respectively. Vc is
an essential cellular parameter, finely regulated, which, however, remains poorly studied
because of the difficulty to measure it. Measuring nc and d separately represents a key step,
leading to the calculation of various relevant cellular biophysical parameters, including,
in addition to Vc, the osmotic membrane water permeability, the RI of transmembrane
water and solute flux [21], DM concentration, as well as the mean corpuscular volume and
hemoglobin concentration of RBCs [45]. This perturbation approach [43] only allows the
measurement of relatively slow volume changes (0.1 Hz) and provides coarse information
on the local changes in cell morphometry. Within this framework, holographic tomography
approaches [7] present the great advantage of providing the full 3D distribution of the
intracellular RI nc(r). Some approaches of tomographic phase microscopy, as presented in
this section, enable ways to significantly increase the resolution. Such 3D nc(r) distribution
offers the very attractive possibility to visualize some specific organelles inside the cell,
including the nucleus, mitochondria, and lipid droplets. However, the different experimen-
tal tomographic set-ups remain demanding from an optomechanical point of view, and
the reconstruction algorithms are complex and time consuming for obtaining nc(r) with a
good accuracy [46].

2.4. Concluding Remarks

QPI techniques, in general, and DHM, in particular, allow a non-invasive visualization
of living cells without the use of contrast agents. However, to address important questions
related to cell biology and diseases, future developments are needed to exploit the richness
of the QPS in order to measure important biophysical cell parameters, such as absolute
cell volume.

This section was prepared by Pierre Marquet and Christian Depeursinge.

3. Principle and Application of Tomographic Phase Microscopy in Biology
3.1. Tomographic Phase Microscopy

In general, a wavefront determination obtained from a single hologram does not
suffice to obtain full 3D imaging of an object because the aperture of the hologram is
limited by both the magnification optics and, potentially, by the limited resolution of the
camera. This is true for all imaging modalities, based on holography or not. The main
benefit of holography is that it provides an easy way to combine the complex wavefields
by simple addition of complex numbers: digital holography provides, by reconstruction,
a complete characterization of the wavefront propagating in the dielectric medium. The
wave is described by a complex number involving its amplitude and phase. It is governed
by a linear equation: the Helmholtz equation. The solution of the propagation equation
can be sought in Fourier space. Then, the Fourier components of the diffraction potential
can be deduced from the distribution of the complex field, provided by holographic
reconstruction, on the Ewald sphere and for a particular direction of the incident wave.
In order to have all the Fourier components of the diffraction potential and, therefore,
the exact distribution, in 3D space, of the index of refraction, the specimen should be
irradiated from different angles of incidence and the complex values collected on the
corresponding Ewald spheres. In the end, these complex values can be simply added in
this context. The microscope objectives (MO) aberrations can also be analyzed in detail and
introduced in the numerical model of wave propagation [47]. Complex deconvolution is a
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direct benefit of these developments. In the frequency domain, it is feasible to compensate
for chromatic aberrations to achieve perfect superposition of wavefronts reconstructed
from digital holograms at different wavelengths. Similarly, the adjustment of fields in 3D
space and, subsequently, in the wavevector space can be achieved precisely. The concept of
synthetic aperture has been developed [48–50] in our group, and it has been developed both
in the time and in the spatial domain: it derives directly from the considerations developed
in relation to Abbe’s theory of the resolution limit caused by the necessarily limited
aperture of the physical microscope. This limitation can be overcome if one can extend,
in Fourier space, the determination of the Fourier components of the diffusion potential.
This is possible either by taking the data at various wavelengths of the irradiating field
(time/frequency domain) or at various incidence angles of the irradiating wave (spatial/K-
space domain). This procedure makes it possible to artificially increase the aperture of
the microscope; for this reason, we speak of synthetic aperture. The first variant of this
approach consists in changing the wavelength and varying, accordingly, the amplitude
of the wavevector in K-space. Multiple wavelengths have been used to reconstruct 3D
structures [51–53]. The wavelength scan is quite small, accordingly limiting the resolution.
A somewhat similar approach is to use a partially coherent source to form a hologram
in the plane where the mutual coherence between object and reference wave is non-zero:
this concept introduces coherence gating in the spatial domain, which proved to perform
well [54–56]. The second variant of this approach consists of varying the angle of K-vector
and the illumination waves—variable direction—and can be used in conjunction with the
previous technique where the wavelength is changed (variable K-vector amplitude). This
second approach meets, more exactly, the concept found in the literature as TDM, HT, or
TPM [57–59]. Diffracted waves can be collected and reconstructed from the holograms at
various incidences. A simple way to reconstruct the scattered wave is based on holography:
the phase and amplitude of the diffracted wave is directly reconstructed from the hologram
and is used to compute the scattering potential at every point of the specimen, according
to Wolf (1969). TDM can be performed by applying two different techniques for varying
the angle of incidence of light waves illuminating the sample. On one hand, the specimen
is rotated by 2π around the optical axis, while on the other hand, the incidence angle is
varied by laterally scanning (perpendicular to the optical axis) the illumination point in
the back focal plane of the condenser. In 2006, we described the first approach where the
specimen has been rotated: a pollen grain [60] and an amoeba. Further works [61,62] have
demonstrated the feasibility of the approach based on the rotation of the incident beam.
Tomographic phase microscopy of cells, with fully coherent illumination (C-ODT), has
been published by Y. Cotte et al. [4] in 2013. Since, several papers have been published
which describe an ODT using Partially Coherent Illumination (PC-ODT) [63]. Similarly,
another approach using Partially Coherent Illumination, so called Wolf Phase Tomography
(WPT) [64], has been proposed. Despite several positive opinions recently expressed about
partial coherence tomography, Abbe limitations are still valid.

3.2. Future Challenges

A way to overcome the problem of the limitation of resolution, imposed by Abbe law,
may be offered by coherent illumination diffraction tomography: C-ODT. A major advan-
tage of coherent image formation is to provide a robust way of deconvolving microscope
images. In 2010, Cotte et al. [65] demonstrated that image resolution could be improved
beyond the Rayleigh limit by deconvolution of the complex field. An improvement by
a factor greater than 1.6 was claimed. This factor can certainly be improved further by
the detailed study of the Complex Optical Transfer Function (COTF), comprising both
Amplitude and Phase Transfer Function (AOTF and POTF) of the microscopic objective
collecting the diffracted wave. A second significative improvement brought by C-ODT is
the extension of the accessible domain in K-space for the scattered data: the combination
of the K-vector of the irradiating beam and the K-vector of the scattered beam provides a
precise determination of the scattering potential, of Fourier terms, in a domain approaching
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2Π [4]. Furthermore, part of the problem posed by the missing cone can be solved by a
proper combination of the irradiating and scattered light with high NA condenser and MO.

3.3. Holography Applied to Microscopy in Biology and Medicine

It has been shown that TPM provides super-resolved RI images of cells and tissues.
Examples are given in Figure 3. Details of a dendritic spine are shown in Figure 4. The
quantitative determination of cell biophysical parameters has opened new paths in biology
and medicine: RI variations, combined with the variation of volumes and morphology,
have allowed a precise characterization of cell phenotypes. Further details of holography
applied to microscopy in biology and medicine can be found in [66,67]
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4. Quantitative Phase Imaging by Self-Reference on-Axis Holography
4.1. Status

QPI is the term given to a cluster of methods that quantify the phase shift that
occurs when light waves pass through a more optically dense or thicker object than
its background. [1,68]. This powerful tool enables 3D non-destructive imaging, with
nanoscale sensitivity, and label-free reconstruction of the morphology of phase objects that
are otherwise invisible. Recording the phase information is usually done using interference
between a wave that interacts with the sample and a reference wave that does not carry
any sample information [69,70]. In this section, we describe the combination between the
concept of self-reference on-axis holography and QPI. Extraction of the phase map of the
sample is done digitally by one of two approaches; superposition of multiple phase-shifted
holograms for the acquisition of the phase [71,72] or using the qualitative description of
the phase, captured in a single hologram, for iterative phase retrieval algorithm [73]. The
two approaches can be implemented on the same optical apparatus, and the better-suited
working mode can be chosen according to the desired imaging requirements.
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4.2. Current and Future Challenges

In order to implement a self-reference on-axis holographic device, operating with a
coherent light source for accurate phase imaging, we use an experimental configuration
of a telecentric spatial filtering system [Figure 5a]. A controllable phase-pinhole plate is
positioned at the spectrum plane between the two lenses. Assuming a phase-only object is
positioned at the input plane of the imaging system, the intensity captured by the image
sensor is,

I(r; ξ) = |F−1{ F {exp[iϕ(r/MT)]}(1−δ(ρ)[1−exp(iξ)])}|2
∼=|exp(iξ)+Σn an ϕn(r/MT)|2,

(2)

where F denotes a two-dimensional Fourier transform, ϕ is the object phase, ξ is the
pinhole phase, r and ρ are the object and the spectrum coordinates, respectively, and MT is
the system’s lateral magnification. In order to recover the phase of the examined object
accurately, the series in Equation (2) is extracted by capturing three [71] (or two [72])
different phase-shifted images. These images are superposed, and the examined object’s
phase is obtained by adding the bias term, as shown in Figure 5b.
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Alternatively, Equation (2) can be used to retrieve the phase of the sample by an
iterative algorithm that is initialized by a phase-contrast image of the examined object
obtained for ξ = π/2, as shown in Figure 5c [73]. Clearly, the iterative approach is more
attractive due to its rapid acquisition based on a single capture. However, this method is
found to be limited to a phase distribution below 2π, and it is also less accurate than the
multiple-acquisition approach [71,72].

4.3. Advances in Science and Technology to Meet Challenges

Figure 6a,b demonstrate that initializing the modified phase retrieval algorithm with
a phase-contrast measurement enables the QPI. An additional advantage of the iterative
approach is the ability to record sufficient data for complete recovery of the object’s phase
distribution at a temporal rate of the sensor. However, this method cannot work properly
for objects having optical thickness (OT) larger than the illumination wavelength. The
triple and double-shot method, on the contrary, do not suffer from this limitation as the
phase of the sample is measured more than once. Thus, the phase of optically thick objects
can be accurately recovered [Figure 6c,d].

To assess the performance of the two QPI modalities, we measured the phase of
binary phase-only resolution targets of varying thicknesses from 50 to 300 nm. Table 1
summarizes the estimated thicknesses of the targets, based on 100 measured phase maps
for each thickness. From this comparison, it is clear that the multiple-shot approach is
more accurate and has a lower degree of uncertainty compared with the iterative, single-
shot method. The two QPI modalities presented here can be integrated within a single
optical apparatus to achieve a robust phase microscope for a broad range of imaging tasks.
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Diffraction-limited resolution, fast acquisition, reduced ambient noise, and a full field of
view can be easily achieved by the use of the appropriate framework.
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Table 1. Mean measured thickness of a binary phase object using the different QPI methods.

Iterative Phase-Shifting Expected Thickness
2 Exposures 3 Exposures

45.3 ± 5.6 nm 45.4 ± 3.7 nm 48 ± 6.1 nm 50 nm
119 ± 8.1 nm 99.8 ± 10.5 nm 94.7 ± 11.3 nm 100 nm
211 ± 7.6 nm 200 ± 7.7 nm 199 ± 6.4 nm 200 nm
310 ± 9.5 nm 298 ± 6.3 nm 300 ± 3.3 nm 300 nm

4.4. Concluding Remarks

Adapting a self-reference scheme into coherent holography for QPI tasks is shown to
be practical. In addition to the improved accuracy, compared with conventional interfer-
ometry [71], the system’s dual operation provides the basis for future studies based on the
two different approaches. Holographic phase recovery and iterative phase retrieval can
now be merged in a single optical apparatus.

This section was prepared by Nathaniel Hai and Joseph Rosen.

5. Tracking Ultra-Fast Material Transformation with Permittivity Transient
5.1. Status

A material’s optical response is defined by its permittivity or the square of the complex
refractive index

√
ε = n + ik. If the evolution of n and k is experimentally determined

with high temporal (an optical cycle λ/c) and spatial (diffraction limit ~λ/2) resolution,
the optical response of the material is known and can be predicted. This would help to
reveal details of phase transitions [74,75] (solid-liquid, solid-solid), critical volumes for a
new phase or void formation, and to unravel one of the unsolved problems in physics:
the glass transition and formation of glasses [75] (including metallic glasses and even
mono-atomic glasses [76]). In the case of phase transitions triggered by absorption of
ultra-short sub-1 ps laser pulses, different hypotheses exist and must be experimentally
validated. The absorbed energy, inside a volume with cross-sections of the skin depth
(lskin = 1/α, where absorption coefficient α = 4πk/λ) at the peak intensity inside the focal
volume is, by definition, energy/volume = pressure. Once pressure is larger than the bulk
modulus of the surrounding host, a void can be opened [74]. It generates high pressure
forms of materials in the surrounding volume, helped by ultra-fast thermal quenching [75].
It is also argued that similar structural modifications can be induced by cavitation in the
molten phase [77]. High time/space resolution is required to reveal details of the formation
of new materials and their phases using optical pump-probe experiments. To determine
a pair of unknowns (n,k), two independent and simultaneous measurements (probe) in
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the same volume are required. The Fresnel reflectance Rs,p for the s-/p-polarizations and θ
angle of incidence are given as [78]:

Rs(θ) =
[
{a(θ)− cos(θ)}2 + b(θ)2

]
/
[
{a(θ) + cos(θ)}2 + b(θ)2

]
(3)

Rp(θ) = Rs(θ)
{[
{a(θ)− sin(θ)tan(θ)}2 + b(θ)2

]
/
[
{a(θ) + sin(θ)tan(θ)}2 + b(θ)2

]}
(4)

where a(θ) = 1/2

[√{
n2 − k2 − sin(θ)2

}2
+ 4n2k2 +

{
n2 − k2 − sin(θ)2

}]
and b(θ) =

1/2

[√{
n2 − k2 − sin(θ)2

}2
+ 4n2k2 −

{
n2 − k2 − sin(θ)2

}]
. By measuring R at two an-

gles θ, it is possible to calculate (n,k). Since energy conservation for reflectance R, transmit-
tance T, and absorbance A are linked by A + R + T = 1, the transmittance can also be used
to determine (n,k).

5.2. Current and Future Challenges

Challenges are mounting to determine (n,k) from small focal regions and to resolve
their fast changes in time. Holographic imaging of the light-matter interaction region is
used for the amplitude and phase determination from transmission along pump-probe
propagation [79–81] or by probing perpendicular to the pump beam [82]. In both cases,
the exact determination of (n,k) is not possible due to one probe beam. In the case of high
intensity TW/cm2 − PW/cm2 ultra-short sub-1 ps pulses, material is transferred into
a plasma state fast, within a few optical cycles. Dielectric breakdown is defined when
the Re(ε) = 0, i.e., n2 − k2 = 0 or n = k. The evolution of n and k is most dramatic for
dielectrics/crystals, which are transferred from a solid state to metallic plasma, hence, a
transient state of the Die-Met matter is created and is defined by the instantaneous ε [83].
Space-time resolves determination of permittivity, hence (n,k), empowers experimentalists
to follow phase transitions by probing with a light pulse. Due to the fully deterministic
nature of femtosecond pulsed laser induced single pulse breakdown/ablation, it would
become possible to induce the Die-Met state of matter for all optical control of phase
transitions and optical control of the probe beam/pulse. Such new transient metamaterials
can extend the application potential of engineered metamaterials based on metal-insulator-
metal (MIM) sub-wavelength structures/patterns. For example, an optically induced
metal-to-isolator transition (MIT) in VO2 is used for optical tunability of metamaterials [84].
Due to the small size/scale of metamaterials, changes to optical properties can be fast, even
when driven by local temperature changes/relaxation [85]. Optically induced Die-Met
state at the focus (by pump) creates an area/volume where refractive index n decreases
and becomes smaller than that sample’s n0, as shown in Figure 7. Consequently, a probe
reflected from the air-dielectric interface will not experience a π-phase shift as for the
case of light propagation from low-to-high n medium. Such large π-phase shifts can be
used to characterize phase transitions by reflected probe beams from surfaces and inside
volumes where Die-Met transition is induced. The optical method used to observe the
phase transition and ionization events often involve bulky interferometry and is based on
determination of a cumulative phase change (seen by probe) ∆ϕ = ω

c
∫
(n− n0)dx, where

integration is made through the pump-modified region in the x-direction [86]. Generation
of free electrons reduces the refractive index, e.g., index of air is defined by electron
density ne as n(I) =

√
1− ne(I)/ncr, where ncr is the critical plasma density and I is the

instantaneous intensity of the laser pulse.
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Figure 7. The pump (λ1) two-probes (λ2) method allows the recovery of permittivity transient,
separation of the phase delay, and absorbance contributions at the wavelength of probe (λ2). Light-
matter interaction from the focal region is fully defined by the instantaneous permittivity (square of
the complex refractive index [n(t) + ik(t)]2). The configuration can be applied to both transmission
and reflection modes.

Since n is related to the phase, the orientation changes of n can be expressed as ∆n,
which is the birefringence. One can envisage that 3D spatial analysis of birefringence
related to the orientation distribution of mass density, material porosity, composition,
etc., can be made possible from measurement of phase changes. Such 3D tomography of
refractive index, and its local changes on micro- and nano-scales, is a sought after technique.
The orientation dependence of birefringence ∆n can be, in principle, separated from that
of dichroism ∆α, which is due to anisotropy of absorbance, as recently demonstrated [87].
Simultaneous acquisition of images at four linear polarizations is what is required for
detection of anisotropy in refractive index or/and absorption. Recently, such cameras
have become commercially available for visible spectral range and are expected to advance
microscopy and aerial imaging, including hyperspectral imaging.

5.3. Advances in Science and Technology to Meet Challenges

New imaging techniques based on multidimensional characterization of events chang-
ing in 3D volume, time, and spectrum are emerging and can solve previously encoun-
tered obstacles of characterization of micro-volumes via pump-probe interferometric tech-
niques [82,86]. With the recent developments in imaging technologies to observe fast
transient events in five dimensions [88] and rapidly converging (<5 iterations) phase re-
trieval approaches [89] using a single camera shot, we believe that it will be possible to
obtain additional information about the rapid events occurring in a small volume in space,
without the use of bulky time resolved interferometry.

5.4. Concluding Remarks

Observation and understanding of phase transition events, during light-matter interac-
tions in confined volume, is important for the development of advanced lithography tools.
Conventional interferometry has been widely used for quantifying the above events, which
we believe are limited by the information bandwidth and are bulky and difficult to imple-
ment. In the coming years, we believe that the current methods will be replaced by single
shot, elegant, computational optical methods with higher information bandwidth [88,89].

This section was prepared by Saulius Juodkazis, Soon Hock Ng, and Vijayaku-
mar Anand.

6. Three-Dimensional Quantitative Phase Imaging
6.1. Status

Various 3D microscopy techniques have been utilized for the study of cells and
tissues. Of these, QPI has demonstrated potential as a label-free and high-throughput
imaging method [5]. Because 3D QPI utilizes the RI for endogenous image contrast,
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it does not require labeling procedures and benefits from rapid, long-term assessment
of biological specimens in their native states. From the multiple measurements of two-
dimensional holograms, a 3D RI tomogram is reconstructed by inversely solving the
Helmholtz equation. Two decades after the invention of holography [90], a theoretical
framework [17], referred to, in short, as ODT or HT, was established by E. Wolf and then
experimentally demonstrated by others [91,92]. Applications of HT in biomedical research
expanded in the 2000s. Early HT systems were operated by tilting the incident angles of a
plane wave using motorized [59] or galvanometric [4,61] mirrors. Spatial light modulators,
such as a liquid-crystal phase modulator, were used in HT [93,94].

6.2. Current and Future Challenges
6.2.1. Image Quality

The image quality of 3D QPI is determined by spatial resolution and by RI accuracy
and precision. Lateral spatial resolution is primarily determined by the wavelength of a
light source and the numerical apertures of both the condenser and objective lens. The
axial spatial resolution of 3D QPI is inferior to its lateral resolution because of uncollected
side- or backscattering signals. This issue, known as the missing cone problem, generates
artifacts in 3D images along the axial direction via the underestimation of RI values. This
limited axial resolution becomes important when measuring optically thin samples such as
red blood cells [95] and bacteria [96].

RI accuracy and precision are important, particularly when quantitative analysis of
cellular or subcellular components is necessary. RI accuracy deteriorates when the RI
contrast between a sample and surrounding medium is high, as reconstruction algorithms
rely on the weak scattering assumption and RI values that gradually vary in space [97].
When the RI contrast is high, multiple light scattering becomes significant and leads
to an underestimation of RI values. RI precision is determined by the level of speckle
noise, the ability to precisely control the angle of an illumination beam without wavefront
distortions, the good optical transfer function of an imaging system, and the performance
of an image sensor.

6.2.2. Imaging Throughput and Data Size

Although the imaging speed of 3D QPI is sufficiently high for capturing live cell
dynamics, its imaging throughput requires improvements. A field of view is approximately
limited to 100 × 100 µm2. This is because of the limited space-bandwidth product of
QPI [18] and the considerable computation necessary during the reconstruction process. To
image a larger area, tiled images can be measured and stitched [98]. However, sequential
imaging and stitching are time-consuming, and handling large-sized image data consumes
considerable computational power.

6.2.3. Interpreting 3D Data

Although 3D RI images readily provide structural information for visualizing sub-
cellular components, the lack of molecular specificity in RI complicates straightforward
interpretation in biology. In many studies, both RI maps and fluorescence images have
been acquired and used together for correlative analysis [99,100]. However, this requires
using exogenous labeling agents, which diminishes the benefits of using QPI.

Given that RI value is linearly proportional to a protein concentration [101], 3D QPI
has been used for quantitative analysis of cellular dry mass. However, this feature has
not been fully exploited because of the difficulties in segmenting cellular membranes or
subcellular organelles, as they share ranges of RI values and are not readily distinguishable.

6.3. Advances in Science and Technology to Meet Challenges

Recent interdisciplinary advances have enabled these challenges to be addressed.
These include theoretical advances, new optical instrumentation, and significant improve-
ments in computational methods. To enhance image quality, several studies have developed
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efficient reconstruction algorithms to consider multiple light scattering. These include beam
propagation [102], multi-slice Born approximation [103], and gradient computations based
on the Lippmann–Schwinger equation [104]. Imaging throughput has been improved by
reducing the loss of spatial bandwidth [105,106] and by utilizing Fourier ptychography
with LED arrays [107,108]. Advances in optical systems have also contributed to 3D QPI.
The introduction of a digital micromirror device to 3D QPI enables stable but rapid control
of the illumination beam [109,110], simple setups [106,108,111].

Revolutionary advances in AI have addressed several challenges of 3D QPI. Deep
learning approaches have been used in image acquisition and reconstruction, including
denoising and deblurring [112]. Reconstructed images have also been analyzed, with the
aid of AI, for biological studies, including cell type classifications (Figure 8a) [113] and
segmentation [114]. Recently, obtaining molecular information from unlabeled live cells has
been realized by training a network architecture with RI and fluorescence image pairs in
order to extract molecular information from unlabeled RI tomogram data (Figure 8b) [115].
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6.4. Concluding Remarks

During the last decade, 3D QPI research has focused on developments in optical
methodology and reconstruction algorithms. We are currently witnessing the transition of
3D QPI techniques from optical tables to wet benches in biological labs and the use of these
techniques as critical imaging methods for various applications. For example, cytotoxicity
assays [116], lipid quantification [117], and phase separations [118] are active and rapidly
growing fields of interest.

Multidisciplinary attempts have resolved many technical challenges and have enabled
3D QPI to be more accessible to researchers. However, several challenges remain before 3D
QPI can be fully exploited for use in biomedicine. The technique awaits more interesting
developments. For example, simultaneous optical imaging and manipulation of live cells
would open new research directions [119,120]. Using genetically expressed RI contrast
agents [121] may also be exciting. Its expanding cooperation with various research areas
will make 3D QPI a complementary imaging tool for regular biological studies.

This section was prepared by Moosung Kee and YongKeun Park.

7. 3D QPI: Integrated Dual-Mode Tomography
7.1. Status

The methodological practice of DHM is utilized to obtain two-dimensional (2D) phase
profiles, which are then mapped onto the 3D Ewald’s sphere; this is then extended to
3D QPI by adapting the back projections principle, which is similar to the computational
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model practiced in a conventional x-ray-computed tomography technique [122,123]. This
holography-based 3D QPI method is referred to by various terminologies as discussed in
the introduction. The HT technique has the potential ability to reconstruct the quantitative
(3D) RI distribution of biological specimens in their native conditions. The RI values
are a crucial parameter to determine biophysical properties and cell metabolic changes;
these are directly correlated with dry mass, wet mass, protein concentration, elasticity, cell
division, infection, etc. [30,60,124]. The HT technique has another attraction for biological
researchers because of its label-free measurement approach.

7.2. Current and Future Challenges

In general, the HT technique can be implemented either by adapting the synthetic
aperture-based beam rotation (BR) approach or by the sample rotation (SR) approach [46].
The spatial frequencies imposed by the finite numerical aperture of the objective lens are
collected, and combining the acquired frequency bands corresponding to different angles to
extend the spatial frequency coverage. In the BR approach, a conventional galvanomirror
device was adapted to control the illumination beam; later alternative devices such as
digital micromirror devices (DMDs) and spatial light modulators (SLM) have evolved for
use as the beam steering device in the HT system [101,110,125]. In the BR approach, one
can improve the lateral spatial resolution of the imaging system, and in this technique,
the spatial frequency collection constraint is commonly referred to as the missing cone
problem [7]. Another possibility to achieve HT is by the SR approach; under the static
illumination beam, the axial resolution can be improved by capturing a series of sample’s
information at different rotation angles by rotating the sample [122]. In the SR approach,
microcapillary or micropipette are some such tools controlled mechanically for the sample
rotation. The usage of mechanical rotation tools limits the sample rotation angle and
results in the missing frequency coverage. The limited missing frequency constraint in SR
approach is referred to as the missing apple core (MAC) problem [126]; the mechanical
rotation makes the system susceptible to aberrations [127]. In the SR approach, the MAC
problem can be overcome by achieving full-angle (360◦) sample rotation, and this technique
has been demonstrated by adapting holographic optical tweezers [128] as a potential tool
for the sample rotation [129]; consequently, an isotropic frequency coverage is achieved.
Several computational methods have been demonstrated to enhance the missing core data
problem in each of the approaches [7]. However, there are still limitations in experimenting
on the combined architecture to get the advantages from both BR and SR approaches, and
this is due to the limitations imposed by each of the techniques.

7.3. Advances in Science and Technology to Meet Challenges

It is important to have an integrated dual-mode tomography system, capable of
collecting the spatial frequencies of both the BR and SR approaches in a single system
which is much needed to overcome the weaknesses of both of these approaches. An
attempt has been made to combine BR and SR approaches with mechanically controlled
sample architecture. However, this implementation is not feasible for the biosamples
because of several limitations imposed by the experimental architecture. Later, in the
technical advancements, an integrated dual-mode tomography (IDT) system is developed
by combining holographic optical tweezers (HOT) [57–59] with synthetic aperture-based
DHM. The IDT system that has been developed is capable of collecting and combining the
spatial frequencies of full-angle sample rotation, shown in Figure 9i(a), with those of BR
approach, shown in Figure 9i(b). Consequently, an enlarged spatial frequency coverage is
achieved, as shown in Figure 9i(c), and has resulted in high-quality image reconstruction.
The IDT technique is validated using the live candida rugosa (commonly called yeast) as a
testing sample, and the obtained results, corresponding to SR, BR, and IDT approaches, are
compared in Figure 9ii. The sub-cellular structural views are illustrated in Figure 9iii.
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Figure 9. (i): Comparison of coherent transfer functions (CTF) of (a) BR, (b) SR, and (c) IDT. (ii): Com-
parison of slices of 3D refractive index distribution of candida rugosa and the experimentally obtained
CTFs corresponds to (a) SR approach, (b) BR approach, and (c) IDT approach. (iii): 3D illustration of
candida rugosa at sub-cellular structural views; the different colors represent the different organelles
of the cell. Scale bars: 2 µm. Adapted from [130].

7.4. Concluding Remarks

This integrated dual-mode tomography approach is highly useful to analyze a single
live cell with higher resolution at its native cell culture environment. The IDT system
offered the extended spatial frequency coverage by collecting and combining the spatial
frequencies of the full-angle sample rotation method, along with those of the beam rotation
method for free-floating live cell imaging and analysis. Consequently, the IDT imaging
system can reconstruct the 3D RI distribution with an accuracy of 0.003, and a novel uniden-
tified flying object (UFO), such as shaped coherent transfer function, was obtained. The
experimental resolution was estimated, and the axial resolution and lateral resolution were
approximated as 310 nm and 150 nm, respectively [130]. The IDT imaging system does not
require any complicated image-processing procedures for the 3D image reconstruction. It
is strongly believed that the IDT technique has prospective applications in the biomedical
field, where single or multiple live cell analysis is much needed, for the analysis, as well
as noninvasive biological studies. Different shaped samples are also possible to study in
the IDT imaging system by adapting a suitable trapping technique [120]. The IDT system
has more flexibility in controlling the free-floating sample, and it is possible to extend the
spatial frequency coverage along the axial direction. The continuous development and
progressive solutions by the researchers in computational, experimental, and artificial intel-
ligence algorithms has brought enhanced measurement accuracy to technique, increased
certainty of analysis [112–115,131–133], as well as access to new multimodal techniques
and functionalities [134–140].

This section was prepared by Vinoth Balasubramani and Chau-Jern Cheng.

8. Ultra-Scale High-Contrast Holographic Tomography
8.1. Status

Originally, phase imaging was developed to obtain high contrast images of thin 2D
biological samples [141]. For these samples, intensity variations are minimal, and imaging
the sample structure is only possible through the phase. The most-used form of QPI is
based on digital holography [142] using phase stepping or off-axis illumination. Combining
quantitative phase measurements from different directions through computed tomography
resulted in the extension of QPI to three dimensions, most commonly known as ODT or HT.

As described in Section 7, in HT, diffraction patterns are obtained in two ways: either
by the SR or by the BR approach. The SR geometry has the advantage of a simple system
design and close to isotropic resolution. However, it has limited compatibility with in-
vivo imaging and is fundamentally limited in coverage of the frequency support of the
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object limiting the maximum attainable resolution. Varying the illumination direction is
more amenable for high throughput in-vivo imaging and does capture up to the maximum
frequency range. However, the BR configuration has limited resolution in the depth direction,
due to the ‘missing cone’ (limited angle of projections) in the frequency support of the object.

Initially, HT was applied for high resolution imaging of cells and small multicellular
organisms. More recently, HT has been applied to millimeter-sized transparent materials,
such as lenses [143]. Using optical tissue clearing, HT has become possible with larger pieces
of tissue, such as cleared zebrafish [144], as shown in Figure 10a. In all these applications,
HT has shown its unique capability for obtaining high resolution images in 3D.

8.2. Current and Future Challenges
8.2.1. Ultra-Scale HT

One of the challenges of HT is to obtain high resolution images over a large field of
view, i.e., multi-scale imaging. In HT, this is achieved by recording holograms using objec-
tive lenses with low magnification and high NA. To achieve hardware-limited performance,
imaging has to be performed close to the space-bandwidth limit of the detector. For off-axis
holography, this can be achieved by eliminating the zero order, autocorrelation, and conjugate
image [145]. Further progress in multi-scale HT is aimed at resolution enhancement through
filling the frequency support of the object more efficiently, e.g., by combining sample rotation
and illumination scanning [146,147] or counteracting the missing cone artifact [148].

Although multi-scale HT is useful for obtaining high quality 3D images, it suffers from
long acquisition times and does not allow for in-vivo or dynamic imaging. To address this
challenge the goal is to develop ultra-scale HT, i.e., HT with optimized throughput (defined
as the ratio of volume per second over resolution). The realization of ultra-scale HT would
allow the application of HT to entirely new areas, such as in-vivo whole organism imaging
at cellular resolution and large scale tissue histology.

The realization of ultra-scale HT requires improved system design that allows for
rapid control over illumination direction and the use of (multiple) high speed cameras
to rapidly cover the entire frequency support. Efforts in this direction have been made,
but they are currently limited in speed and angular coverage [109]. Similar to multi-scale
HT, ultra-scale HT requires that the available bandwidth, fundamentally limited by the
hardware, is used as efficiently as possible. Further enhancement of the throughput can
only be achieved by estimating frequencies beyond the available bandwidth, e.g., using
super-resolution techniques.
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8.2.2. High contrast HT

The challenge with HT as a label-free technique is to obtain sufficient contrast in
images of low contrast tissues. Since, for large scale HT optical clearing, it is of paramount
importance to remove absorption, scattering, and tissue refraction, this also leads to
lowering of the intrinsic phase contrast and, hence, to a low dynamic range.

One way to improve contrast in HT has focused on optimizing the signal to noise
ratio (SNR) of the intrinsic phase signal, e.g., through the use of more optical power [150].
However, this requires cameras that can measure high optical powers with high linearity.
Another way is through reducing the effects of noise by using low dark-count cameras
or reducing speckle noise by off-axis sample placement, combined with digital refocus-
ing [151]. Yet another tactic is to create contrast by imaging the intensity modulation caused
by phase differences between polarization states. This polarization contrast HT has shown
high contrast imaging of birefringent muscle structures in zebrafish [151] and imaging of
optical retardation and birefringent tensor elements [152].

Another way of improving HT contrast is by utilizing the amplitude information
of the scattered field. Potentially, this could yield information about the 3D distribution
of endogenous or exogenous (labeled) absorbing markers. In the context of polarization
contrast HT the amplitude information can be used for imaging diattenuation, which has
already been shown to yield information about the brain tissue structure [153], as shown in
Figure 10b.

Future developments in contrast enhanced HT are to exploit the time varying refractive
index fluctuations for the assessment of the dynamic behavior from the level of within the
cell to the entire small organism [154]. However, enabling temporal tissue contrast requires
the realization of ultra-scale HT. Similarly, measurement of the dynamic tissue response
to mechanical deformation can yield improved contrast. Similar to other elastography
modalities (e.g., ultrasound or optical coherence tomography), this could provide spatially
resolved mappings of the stiffness and/or the dynamic load response of tissue.

8.3. Advances in Science and Technology to Meet Challenges

The challenge to achieve ultra-scale and high-contrast HT can be met through advances
in system hardware and computational tools.

Given the good availability of high power coherent sources, there is a clear demand
for large well depth cameras to enhance the SNR [150] and make high-contrast in-vivo
imaging possible. On the other hand, advances in acquisition speed improvement need to
be matched by rapid illumination direction modulation.

Conventional phase-sensitive HT reconstruction algorithms have to be improved
to remove image artifacts caused by tissue refraction, optical aberrations, and multiple
scattering. This optical full-wavefield inversion would create higher resolution images and
thereby boost the effective image throughput.

To create improved contrast, multiple physical properties (absorption, phase, birefrin-
gence) need to be incorporated in the reconstruction algorithm by developing multi-physics
tomographic reconstruction algorithms.

8.4. Concluding Remarks

QPI methods have the unique advantages of high resolution label-free 3D imaging.
The challenge is to push the boundaries, in image contrast and throughput, to open up new
application areas, such as live whole organism imaging and large volume cleared tissue
imaging, and make visible what has not been seen before.

This section was prepared by Jeroen Kalkman.

9. Metrology Aspects in 3D QPI
9.1. Status

The key advantage of the 3D QPI is its capability to retrieve, non-destructively and
label-free, 3D distribution of RI in transparent and weakly scattering samples. This quantity
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is relevant in many applications, but most notably, RI distribution is currently of high
interest in biomedicine [5,7,58], as it is related to the dry mass density distribution, which
provides insight in the cells’ and tissues’ morphology and their changes. The 3D QPI
is explored with a variety of methods, with the limited-angle ODT leading the way in
terms of accuracy of the reconstructions and commercialization efforts in the area of
biomedicine. With the rise in popularity of the 3D QPI techniques, including multiscale and
multimodal approaches [98,151,152], as well as the use of machine learning to facilitate both
reconstruction process and data analysis [67,155,156], it is of utmost importance to measure
and consider the uncertainty of the underlying data. It is clear that cross-referencing the
results between different techniques, optomechatronic systems, and laboratories, as well as
the future databases, has immense value and can only be achieved with proper metrology.

Major sources of errors in 3D QPI can usually be attributed to projection acquisition
(sampling, sensitivity, and noise), system parameters (transformations between sample,
projection, and reconstruction space) and reconstruction process (method, approximations).
In reality, quality assessment based on these error components is impractical due to their
complex interplay and contribution to the measurement result.

In more mature industrial and medical 3D imaging techniques even dimensional
traceability of the measurements is an active area of research [157,158]. Recent advance-
ments in 3D printing have enabled a range of geometrical and anthropomorphic phantoms
focused on recreating challenging aspects of real volumetric experiments [159], yet there is
no universal solution for metrology in 3D QPI.

9.2. Current and Future Challenges

Modern QPI instruments often have proprietary hardware and software specifically
designed to enhance measurement fidelity—a reality that argues in favor of end-to-end
testing, especially considering that the reconstruction process is not quite robust, and error
varies greatly depending on the features of interest. This problem is well illustrated in
Figure 11, where the 3D cell phantom is investigated with three different holographic
tomographs and, both local and global, histograms of ∆RI (and thus inferred dry mass)
and reveals significant differences in the measurement results [160–162].
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measurement volume (d) and manually segmented single nucleoli (e).

Further developments in standardized specimens—be it cells, cell clusters, tissues,
or technical phase objects, as well as quality metrics for determining the metrological
characteristics of a given instrument, are required in order to incorporate this metrological
knowledge to improve the hardware, software, analysis, and what is most important:
dissemination and providing reliable 3D QPI databases for intercomparison between
laboratories and remote diagnostics (e.g., digital phase histopathology).

Currently, the main challenge on the way to adequate metrological assessment of
3D QPI systems is access to validated phantoms. The manufacturing requirements put
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forward by the high resolution and sensitivity to the refractive index are quite demanding
(usually in the range of 100 nm and 10−4, respectively), especially in a form-factor suitable
for systems devoted to biological specimen. Moreover, the resulting structure has to be
validated, and while some aspects of characterization can be readily available (e.g., electron
microscopy or profilometry for geometry analysis), there is no single technique that could
provide 3D morphology and corresponding refractive index values of required fidelity to
serve as reference. This significantly hinders development and commercialization of truly
quantitative 3D QPI systems.

9.3. Advances in Science and Technology to meet Challenges

Suitable test structures can be obtained thanks to the advances in micro- and nano-
scale fabrication in the area of 3D printing. In particular, the two-photon polymerization
method seems to fulfill the requirements set by the 3D QPI metrology [163]. It enables
fabrication of complex structures with sub-µm resolution and locally adjustable refractive
index (based on the degree of conversion of the monomer) in the scope suitable for 3D QPI.
It is also capable of producing multiscale, multimodal structures with adjustable scattering,
fluorescence, or birefringence by exploiting new or doped materials in order to faithfully
recreate cell clusters, tissue slices, or even small animals [164].

When the phantoms become widely available, the next challenge is related to the
reporting of the metrological data in a complete, yet concise manner. A promising ap-
proach is to generalize the concept of the 3D optical transfer function [165–167] to the
3D instrumental transfer function as in surface metrology [168]. Such quantification of
the 3D frequency response of the system to the particular volumetric sample and with
respect to its modalities should account for all imperfections during the measurement and
reconstruction process.

9.4. Concluding Remarks

A wide range of currently used and newly developed 3D QPI methods with the
ever-expanding functionalities will benefit from the proper determination of accuracy and
precision of instruments and uncertainty of the measurements. As current fabrication
methods exceed the 3D QPI capabilities, challenges in metrology are shifting towards
validation and standardization of the phantoms and establishing metrological guidelines.
If done right, it will open up a new chapter in imaging, measurement, and diagnostics,
thanks to the cross-referencing a range of physical properties between QPI techniques
and beyond.

This section was prepared by Malgorzata Kujawinska, Michal Ziemczonok and Arka-
diusz Kus.

10. From Computational to Neural Microscopy
10.1. Status

Here, we emphasize the ongoing evolutions that transform microscopy into a novel
neural microscopy. Recent advances in computational microscopy have led to the prepon-
derant place of algorithms in microscopy experiments. Microscopy can be now considered
as a whole, along with the joint design of an optical setup and algorithms [169]. It is
now envisioned that deep learning solutions can advantageously replace conventional
algorithms. Several convolutional neural networks (NNs) have proven to be very effi-
cient in conducting many tasks, e.g., image processing and inverse problem solver for
image reconstruction [170,171]. If neural networks are intended to replace most—if not
all—conventional algorithms, it is thus possible to define a novel neural microscopy as
being the joint design of optical hardware and neural networks. Looking at the ongoing
evolutions of deep learning applied to microscopy, we found three important evolutionary
leaps, which can settle the concept of neural microscopy (Figure 12). These are (i) NNs
to form an image of the sample, (ii) NNs to infer quantitative or symbolic representation
of the sample, and (iii) all-optical diffractive NNs directly analyzing the sample without
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image acquisition. In the following, we discuss how these evolutions apply to the sub-field
QPI [5].

10.2. Current and Future Challenges

Reconstruction of phase images from intensity with NNs have been recently reviewed
in [172] (Figure 12a). For instance, physics-informed deep learning solutions can run
regularization, in place of gradient-descent schemes, to recover the phase image [173].
Interestingly, several papers have found analogy between NN and beam propagation
methods [102,174]. The inverse problem can thus be solved using a diffractive NN, where
the weights of each layer are the unknown refractive indexes of a slice of the object
and the matrix product between each layer are replaced by a formulation of the light
propagation. The 2D or 3D refractive distribution of the object can then be retrieved by
training the diffractive NN with experimental results [175]. All together, these recent
works demonstrate that NNs can encode, together, the object and the physics of light
scattering, allowing 2D or 3D phase image formation. Using deep learning frameworks
for image formation is advantageous in terms of computation time, since GPU speed-up
is straightforward. Note that the use of deep learning is not impaired by generalization
issues usually faced by deep learning if data fit is insured [173,175]. However, phase
images obtained through NN are rarely compared with that obtained with QPI methods
of reference. For NN-based phase image formation to be accepted in the realms of QPI,
more metrology studies have to be carefully conducted. Phase images, reconstructed
with NNs, can next be transferred to other NNs specialized in image processing. These
interconnections of NNs, coupled to an optical setup, thus form a uniform and coherent
development framework, which settle the novel neural microscopy.

Another evolutionary leap that further defines the concept of neural microscopy is the
development of novel NNs capable of generating quantitative representation. Such NNs
will be able to map a phase image into an image that encodes, simultaneously, the object
position and the measurements (Figure 12b). The latter can be an image with dots at the
position of cells, with the dot gray levels corresponding to the cell dry mass measurement.
Such a NN solution offers a fast means to infer quantitative measurements. For faster
computation, one could rely on an intermediate image different from the sample image
itself (Figure 12c). This moves neural microscopy away from QPI, since imaging would
be discarded.

Ultimately, optical setup and computers can be discarded. Ozcan et al. introduced an
all-optical diffractive NN able to compute a classification task from spatial information of
objects [176]. In line with this development, novel all-optical diffractive NNs could perform
quantitative measurements (Figure 12c). Again, this approach, which can be considered
within the concept of neural microscopy, will be a move away from conventional QPI.

10.3. Advances in Science and Technology to Meet Challenges

A pertinent choice to develop all software elements of the novel neural microscopy is
the Python language. The latter is already used to develop acquisition microscopy software
and is closely linked to the development of deep learning since the advent of NNs. In the
framework of neural microscopy, the use of Python can thus solve a long time problem
associated with microscopy, i.e., the lack of a consistent software ecosystem able to conduct
acquisition, image reconstruction, and analysis [177].

There is however an important issue for neural microscopy to be applied in the sub-
field of QPI. The quantification ability of NNs remains to be studied and validated. This
necessitates the development of new methods and characterization means to better support
metrology studies involving NNs.
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10.4. Concluding Remarks

We define a concept of neural microscopy, relying heavily on neural networks with
the ability to perceive and analyze at a very fast rate. It is forming a consistent framework
for the development of novel phase imaging techniques. However, developments that
favor computation speed could move neural microscopy away from QPI as we know it
today, particularly if quantification no longer relies on image formation.

This section was prepared by Cédric Allier.

11. Conclusions

Quantitative Phase Imaging is a very broad area. The label-free imaging capability of
QPI technique enables 2D and 3D imaging with high accuracy retrieval of various physio-
logical parameters of biological cells and their internal organelles, including morphological
ones, such as shape and volume, and biophysical parameters, such as RI distribution,
dry mass, and more, which can then be analyzed in greater depth. It is also important in
material science and industry in which the control of functional distribution of refractive
index in microstructures is of high interest. The 3D HT technique has emerged as one of
the most powerful 3D QPI methods for the investigation of biological cells and tissues
in a non-invasive manner. The HT has just begun to garner appreciation for its compe-
tencies, and in the near future, this technique will certainly clench an irreplaceable role
in biological studies and analyses. The acceptance of HT in the biomedical community
has enlarged, mainly due to the readiness of the commercial holographic tomography
systems [178–180]. It is also supported by establishing metrological guidelines for QPI
systems, which confirms the quantitative character of the results [160–162]. At present, 3D
QPI has enhanced its implementations by combining techniques, such as fluorescence or
Raman imaging, into multimodal operations [135–141,152,153,155]. Recent developments
in artificial intelligence algorithms and machine learning approaches are now the focus in
3D QPI systems, aimed at improving system architecture and measurement accuracy in a
more effective way [112–115,131–133,176,177].

This Roadmap article is comprised of 9 sections, contributed by prominent experts in
the field, to provide an overview of various aspects of QPI. Although most of the sections
are focused on the most popular QPI implementations, through digital holographic micro-
scopes and optical diffraction tomographs, the presented challenges and trends in 2D and
3D QPI development are much more general, and they can be referred to the microscopes
based on all phase measurement methods. Each of the section refers to particular aspects
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of QPI, however it is relatively easy to compile the most important common challenges for
2D and 3D QPI. This includes (i) the demand for increased phase image quality, includ-
ing spatial lateral and axial resolutions, and high signal-to-noise ratio, (ii) continuously
increasing imaging throughput and data size, due to combined high resolution and large
size of the sample, as well as multi-modality of measurements, (iii) taking into account the
metrological aspects of QPI instrumentation, which allows corroborating measurements
across instruments, laboratories, and geographic sites, (iv) improved means for biomedical
interpretation of QPI data, and (v) combining QPI with artificial intelligence to create 2D or
3D neural microscopy, relying heavily on neural networks with the ability to perceive and
analyze data at a very fast rate.

This section was prepared by Malgorzata Kujawinska and Vinoth Balasubramani.
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