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Abstract

Background: Duchenne muscular dystrophy (DMD) is the most common disease in children caused by mutations
in the DMD gene, and DMD and Becker muscular dystrophy (BMD) are collectively called dystrophinopathies.
Dystrophinopathies show a complex mutation spectrum. The importance of mutation databases, with clinical
phenotypes and protein studies of patients, is increasingly recognized as a reference for genetic diagnosis and

for the development of gene therapy.

Methods: We used the data from the Japanese Registry of Muscular Dystrophy (Remudy) compiled during from
July 2009 to March 2017, and reviewed 1497 patients with dystrophinopathies.

Results: The spectrum of identified mutations contained exon deletions (61%), exon duplications (13%), nonsense
mutations (13%), small deletions (5%), small insertions (3%), splice-site mutations (4%), and missense mutations (1%).
Exon deletions were found most frequently in the central hot spot region between exons 45-52 (42%), and most
duplications were detected in the proximal hot spot region between exons 3-25 (47%). In the 371 patients
harboring a small mutation, 194 mutations were reported and 187 mutations were unreported.

Conclusions: We report the largest dystrophinopathies mutation dataset in Japan from a national patient registry,
“Remudy”. This dataset provides a useful reference to support the genetic diagnosis and treatment of

dystrophinopathy.
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Background

Dystrophinopathies are an X-linked disease caused by
mutations in the DMD gene (OMIM 300377) located at
Xp21.2. DMD is a large gene, spanning more than 2.2 Mb
of genomic DNA, and containing 79 exons and lengthy
introns, which produces a 14-kb mRNA transcript [1].
Dystrophinopathies are the most common muscle disease
in children which affects one in 3600-6000 live male
births [2, 3], and has been classically classified into two
forms: Duchenne muscular dystrophy (DMD; OMIM
310200) and Becker muscular dystrophy (BMD; OMIM
300376). DMD shows a severe phenotype clinically
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characterized by rapid progression in early childhood,
and loss of ambulation during the second decade of
life, while BMD shows a milder form with patients
being ambulant after 16 years of age. Patients with an
intermediate phenotype are sometimes referred to as
having intermediate muscular dystrophy (IMD).
Nevertheless, the classification into the three forms is
not always easy.

To date, approximately 70% of mutations found in
DMD patients are deletions/duplications of one or
more exons, while the remaining 30% are caused by
small mutations at the nucleotide level. Multiplex
ligation-dependent probe amplification (MLPA), which
can examine the duplications and/or deletions of all 79
exons, has been developed and widely used. [4—6] How-
ever, the remaining 30% of patients harboring small
mutations are undiagnosed and need to perform sanger
sequencing for diagnosis.
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Recently, promising mutation-specific molecular
therapies have been developed. For instance, exon
skipping is expected to be applicable to patients that
have one or more exons deletions in DMD. Further-
more, read-through therapy of a nonsense codon to
produce full-length dystrophin is applicable to patients
with DMD harboring nonsense mutations. Nonsense
mutations are present in approximately 15% of all
DMD patients [7-9]. However, the precise analysis of
the DMD mutation is required for the application of
these molecular therapies to patients.

In Japan, a hospital based dataset of 127 patients
harboring small mutations by Takeshima et al. in 2010
[10], and a registry based dataset in Japanese Registry
of Muscular Dystrophy (Remudy) of exon deletions
and duplications by Nakamura et al. [11] have been
compiled. Here, we extend these previous reports not
only by increasing the number of the patients (1497
patients), but also by comprehensive genetic analysis
of exonic and small nucleotide mutations and immu-
nostaining of dystrophin on muscle biopsies to deduce
genotype-phenotype correlations in patients with
dystrophinopathies.

Methods

Registry-based datasets

Remudy was developed in 2009 in collaboration with
the Translational Research in Europe-Assessment and
Treatment of Neuromuscular Diseases (TREAT-NMD)
Network of Excellence [11-13]. The Remudy database
for male patients with dystrophinopathies includes
clinical and molecular genetic data, as well as all
mandatory and highly encouraged items for the
TREAT-NMD global patient registry. To classify into
DMD, BMD or IMD, the attending physicians reviewed
their clinical information. Then, our clinical and genetic
curators independently evaluated physicians’ classifica-
tion by reviewing the clinical information, and patho-
logical data (including dystrophin immune-staining, if
applicable), and report of genetic analysis for DMD. In
the present study, we used the registry data compiled
during from July 2009 to March 2017.

Analysis of small mutations

When the mutations were not detected by MLPA, but
dystrophin immunostaining supported the diagnosis of
dystrophinopathies, the nucleotide sequence of all exons
and their flanking intronic regions in DMD was deter-
mined by IonPGM (Thermo Fisher Scientific, MA, USA)
[14] or Sanger method. Missense variants were filtered
with an allele frequency under 0.01 in the Human Genet-
ics Variation Browser (HGVD; http://www.hgvd.genome.
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med.kyoto-u.ac,jp/), the Exome Aggregation Consortium
(ExAC; http://exac.broadinstitute.org/), and the NHLBI
Exome Sequencing Project (ESP6500; http://evs.gs.
washington.edu/EVS/). In silico analysis of the effect of
the amino acid change was conducted using Polymorphism
Phenotyping version 2 (PolyPhen 2; http://genetics.bwh.
harvard.edu/pph2/) [15, 16].

Dystrophin immunostaining

Immunohistochemical analyses for dystrophin on patient’s
muscle sections were performed using mouse monoclonal
antibodies against dystrophin C-terminus (NCL-DYS2),
rod (NCL-DYS1), and N-terminus (NCL-DYS3) (all from
Novocastra Lab) by standard procedures as reported pre-
viously [17].

Results
In July 2009 through March 2017, a total of 1497 dystro-
phinopathies patients were registered in Remudy.

Among them, 1167, 295, and 35 patients were respect-
ively diagnosed having DMD, BMD, and IMD. The gen-
etic diagnosis was made by MLPA and/or multiplex-
PCR in 1092 patients with exon deletion in 901 patients
(61% of 1497 dystrophinopathies patients), exon duplica-
tions in 188 (13%), and both exon deletions and duplica-
tions in 3 (0.2%). All patients harboring single exon
deletion were performed sanger sequencing to confirm
the deletion.

Among the remaining 405 patients, DNA sequencing
revealed small mutations in 371.

One patient was found to have pericentric inversion of
the X chromosome by chromosome testing. One patients
were diagnosed as having facioscalpulohumeral muscular
dystrophy after registration. However, the remaining 32
patients remained genetically undiagnosed.

Large deletion/duplication mutation patterns and hot
spot analysis

The deletion or duplication patterns and their frequen-
cies were plotted, in Fig. la and b. The cumulative
number of subjects with deletions or duplications of
each exon was plotted as shown in Fig. 2a and b. The
most common exon deletion pattern was the deletion
of exons 45-47 (68/901, 7.5%) (Fig. la). Most exon
deletions in patients with dystrophinopathies were
observed in the hotspot region between exons 45 and
52 (42%) (Fig. 2a). A second frequent-deletion hotspot
region towards the 5'-end was distinguished in the re-
gion between exons 3 and 21 (28%) (Fig. 2a). On the
other hand, the most common exon duplication pattern
was the duplication of exon 2 (14/188, 7.4%) (Fig. 1b).
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Fig. 1 Patterns of exon deletion and exon duplication in the dystrophin gene in patients with dystrophinopathy. a Exon deletion. Each bar
represents a deleted exon observed in a patient. b Exon duplication. Each bar represents a duplicated exon observed in a patient

The largest duplications in the patients with dystrophi-
nopathies were observed in the hotspot region between
exons 3 and 25 (47%) (Fig. 2b).

Small mutations

The spectrum of identified mutations included nonsense
mutations (186/371, 50%); small deletions (77/371, 21%);
small insertions (39/371, 11%); splice-site mutations
(61/371, 16%); and missense mutations (8/371, 2%)
(Fig. 3a). The location of small mutations in patients
with DMD and BMD patients is shown in Fig. 3b. Detailed
results of the small mutations in the 371 patients, with
312 kinds of mutations, are shown in Additional file 1:
Table S1. Among the 312 mutations, 149 were reported
and 163 were unreported by HGMD (Human Gene Muta-
tion Database) [18].

Nonsense mutations

Nonsense mutations were the most common small
mutations, accounting for 50% of the patients (186/371)
(Fig. 3a). Although the mutations were almost uniformly
distributed throughout the DMD, 6 patients shared
the common mutation p.Arg3381* (c.10141C > T).
Interestingly, 17 of 186 patients showed faint and patchy
patterns of dystrophin immunostaining on skeletal mus-
cles (Fig. 4, Additional file 1: Table S2). Clinical diagnosis
of the 17 patients was DMD in 3 patients, IMD in 2, and
BMD in 12, respectively.

Missense variations

Only 8 patients (6 unrelated and 2 siblings) had 7 dis-
tinct missense variants (2% of the 371 patients with
small mutations) (Table 1). Among them, 3 presented
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Fig. 2 Cumulative numbers of subjects with a deletion/duplication
per exon. a Deletions. A hot spot region is visible between exon 45
and exon 52. b Duplications. A hot spot region is visible between
exon 3 and exon 25

Fig. 3 a Mutation spectrum of small mutations in the dystrophin
gene in patients with dystrophinopathy. b Distribution of small
mutations in DMD
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Fig. 4 Distribution of the number of patients with nonsense
mutations and faint and patchy dystrophin immunostaining

DMD phenotype while 3 BMD. Among the 7 patients
who received muscle biopsy, the 2 patients showed
total dystrophin deficiency, while 5 showed faint and
patchy expression pattern on immunohistochemistry.
None of the 7 missense variants was registered in any
of HGVD, ExAC, and ESP6500. All variants were pre-
dicted to be probably or possibly damaging by PolyPhen2
(Table 1).

Discussion

This study retrospectively evaluated the results of gene
analysis for 1497 patients with dystrophinopathies with
clinical features and dystrophin immunostaining. Among
the 1497 patients, 1092 (73%) were diagnosed by the
MLPA method; including 901 patients with exon dele-
tions (901/1497, 61%) and 188 patients with exon dupli-
cations (188/1497, 13%).

This is the report of the largest number of patients all
previous dystrophinopathies reports from Asian coun-
tries [19-24]. Most of the previously reports from Asian
countries [19-21] demonstrated lower deletion and
higher duplication rates. This may be explained by the
fact that much smaller numbers of patients were studied
including female carriers. Nevertheless, Suh et al. [24],
who reported the rates of deletions and duplications re-
spectively, as 71.8%/ and 16.4% among 130 patients in
Korea, which is similar not only to our results but also
to the results reported from Western countries [25, 26].
In addition, exon deletion and duplication hotspots in
our study (Fig. 2) are similar to those in the previous re-
ports [20-22, 25, 26], suggesting that ethnicity is not a
factor to cause any difference in the proportion of exon
deletions and duplications in DMD.

Based on our results of exon deletions/duplications,
we estimated the applicability of exon skipping therapies
(Tables 2 and 3). Skipping of exon 51, which has been
approved by FDA, and of exon 53 skipping, which is in
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Patient Phetnotype Dystrophin Exon DNA change Protein Frequency PolyPhen2
immunostaining (predicted) HGVD ESP6500 EXAC prediction
5 BMD faint&patchy 3 c152T>G p.Leu51Arg no no no 0.999 probably
19 BMD faint&patchy 6 €434G > C p.Arg145Pro no no no 0.998 probably
22" BMD not done 6 c481A > C p.Thr161Pro no no no 0628  possibly
237 BMD faint&patchy 6 c481A > C p.Thr161Pro no no no 0628  possibly
112 DMD negative 22 €2949G > T p.GIn9832His no no no 0.991 probably
317 BMD faint&patchy 68 C9896A > G p.His3299Arg no no no 0.999 probably
320 DMD faint&patchy 68 c9937T>C p.Cys3313Arg no no no 0.999 probably
325 DMD negative 69 c10011C > G p.Cys3337Trp no no no 1 probably

*2 represents brothers

clinical trials, cans theoretically be applied to the largest
group of the patients with exon deletions, as suggested
in previous reports [27].

Among 185 patients (13%) who harbor a nonsense
mutation, interestingly, 17 patients showed faint and
patchy dystrophin expression pattern on immunohisto-
chemistry (Fig .4 and Additional file 1: Table S2). Non-
sense mutations found in patients with BMD patients
have reported to be present in exons 27, 29, 31, 37, 49,
and 72 [28-30], all of which are in-frame exons,

Table 2 Overview of therapeutic exon 51 or 53 skipping for a
series of DMD patients with exon deletion

skipped exon Deleted exon Number of patients

51 13-50 0
29-50 0
43-50 0
45-50 23
48-50 25
49-50 29
50 12
52 18
47-50 0
52-63 0

total 107

53 10-53 0
43-52 0
45-52 35
47-52 0
48-52 33
49-52 19
50-52 6
52 18

total 111

resulting in dystrophin positivity and milder pheno-
types. Similarly 15 of the 17 patients with nonsense
mutations and faint and patchy dystrophin staining in
this study had mutations in in-frame exons. BMD
phenotype in these patients may well be explained by
the skipping of the correspondent exon, but cDNA
analysis is necessary to be conclusive. From these re-
sults, there are 168 patients (12%) who are treated for
nonsense codon read-through treatment.

Seven distinct missense variants were identified in 8
patients (Table 1). They may well be pathogenic since
they are not reported in the HGVD, ESP6500, or ExAC
and are predicted to be possibly or probably damaging
in proteins by PolyPhen2. Especially, the 4 variants lo-
cated in the N-terminus of dystrophin may be more
likely to have pathogenic significance as previous reports
showed the missense mutations in the actin binding do-
main of dystrophin, which is in the N-terminus region,
induce thermodynamic instability of dystrophin mole-
cules and protein aggregation [31, 32]. Needless to say,
however, there still remains a possibility that patients
may have unidentified causative mutations in other re-
gions such as deep intronic regions or some missense
mutations have an effect on splicing.

Conclusion

Our report provides the largest DMD mutation dataset
in Japan, which could be used as a reference for genetic
diagnosis and will also help in further elucidating the na-
ture of the disease.

Table 3 Overview of the applicability of exon 51 or 53 skipping
for DMD exon deletions

ekipping  Rate of applicable patients ~ Rate of applicable patients in
exon in all mutated patients patients with exon deletion
51 7.1% 11.9%

53 74% 12.3%
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Additional file 1: Table S1. Clinical and dystrophin immunostaining in
the patients with a small mutation. Table S2. Patients with nonsense
mutation and faint&patchy dystrophin staining. (PDF 286 kb)
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