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Abstract: Background: Patients with locally advanced or recurrent prostate cancer typically undergo
androgen deprivation therapy (ADT), but the benefits are often short-lived and the responses
variable. ADT failure results in castration-resistant prostate cancer (CRPC), which inevitably leads
to metastasis. We hypothesized that differences in tumor transcriptional programs may reflect
differential responses to ADT and subsequent metastasis. Results: We performed whole transcriptome
analysis of 20 patient-matched Pre-ADT biopsies and 20 Post-ADT prostatectomy specimens,
and identified two subgroups of patients (high impact and low impact groups) that exhibited distinct
transcriptional changes in response to ADT. We found that all patients lost the AR-dependent subtype
(PCS2) transcriptional signatures. The high impact group maintained the more aggressive subtype
(PCS1) signal, while the low impact group more resembled an AR-suppressed (PCS3) subtype.
Computational analyses identified transcription factor coordinated groups (TFCGs) enriched in the
high impact group network. Leveraging a large public dataset of over 800 metastatic and primary
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samples, we identified 33 TFCGs in common between the high impact group and metastatic lesions,
including SOX4/FOXA2/GATA4, and a TFCG containing JUN, JUNB, JUND, FOS, FOSB, and FOSL1.
The majority of metastatic TFCGs were subsets of larger TFCGs in the high impact group network,
suggesting a refinement of critical TFCGs in prostate cancer progression. Conclusions: We have
identified TFCGs associated with pronounced initial transcriptional response to ADT, aggressive
signatures, and metastasis. Our findings suggest multiple new hypotheses that could lead to novel
combination therapies to prevent the development of CRPC following ADT.

Keywords: androgen deprivation therapy; prostate cancer; transcriptional networks; metastasis

1. Introduction

Prostate cancer is one of the most commonly diagnosed cancers and the second leading cause
of cancer death in men in the United States [1]. Currently, androgen deprivation therapy (ADT) is
one component of care for patients with locally advanced prostate cancer, and advanced or metastatic
prostate cancer [2,3]. Patients with advanced and metastatic prostate cancer will usually respond
favorably initially, but will frequently experience disease progression despite the therapy [4]. This type
of cancer is termed castration-resistant prostate cancer (CRPC) and is typically associated with
metastatic disease and a poor prognosis, rendering it virtually incurable [5]. However, there is
a subset of patients with locally advanced prostate cancer who benefit from ADT, in conjunction
with other treatments such as radiation therapy, and experience improved disease-free and overall
survival [3]. In these patients, ADT forces changes in the tumor biology that result in distinct molecular
profiles. While many studies focus on the dysregulated gene expression programs characteristic of
ADT response, the upstream regulators that characterize these differential transcriptional programs
have not been comprehensively elucidated [6].

Androgen receptor (AR) stimulation and downstream signaling is critical for the initiation and
progression of prostate cancer [7]. Upon androgen ligand activation, AR can function as a transcription
factor to regulate target genes. AR-signaling is reestablished in CRPC despite the initial inhibition by
ADT, due to mutational adaptations of the AR gene, including gene amplification and the expression
of alternative AR splice variants (AR-V) [8,9]. Interestingly, DNA binding and the subsequent gene
expression profiles may vary between full length AR (AR-FL) and an ARV [10]. Stimulation of
AR transcriptional activity was found to be largely dependent on the cooperation with specific
co-activators [11–13]. Moreover, AR transcriptional activity can be inhibited via targeting of specific
co-activators [14]. Additionally, other AR-independent signal transduction pathways can be aberrantly
activated by facilitating crosstalk with, and/or bypass of, the AR-signaling pathway. Many studies
have identified actionable signaling pathways, including the Wnt and PI3K-AKT-PTEN signaling
pathways, as significantly altered in tumors from patients with metastatic CRPC, as compared to
hormone naïve localized tumors [15,16]. Thus, understanding the key regulators responsible for the
progression to metastasis in an androgen-deprived environment is essential.

Here we identify novel putative transcription factor coordinated groups (TFCGs) that characterize
the differential transcriptional signatures in tumors of patients who received ADT, as well as the
progression from localized prostate cancer to a metastatic disease. We generated whole transcriptome
gene expression data from 20 patient-matched formalin-fixed prostate paraffin embedded (FFPE)
needle core biopsies, taken before initiation of neoadjuvant ADT (pre-ADT Bxs), and the corresponding
FFPE radical prostatectomy samples, acquired after ADT (post-ADT RPs), and leveraged a large dataset
(n > 800) of multiple publicly available cohorts of primary and metastatic tumors [17]. We integrated
the protein-protein interaction, gene expression, and DNA binding data by utilizing the PANDA
(Passing Attributes between Networks for Data Assimilation) method [18,19] to infer condition-specific
relationships between the transcription factors and putative gene targets. We combined these
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analyses to uncover groups of putative transcription factor regulators that were unique to patients
demonstrating a strong transcriptional response to ADT, and to patients with metastatic prostate
cancer. Our analysis leverages multiple datatypes and independent datasets to find common TFCGs
that may serve as putative regulators of prostate cancer aggressiveness.

2. Results

2.1. Differential Expression Analysis Reveals Two Distinct Transcriptional Responses to ADT

The total RNA was derived from matched pairs of pre-ADT and post-ADT samples from
20 patients. All patients received neoadjuvant ADT and one patient also underwent radiation
therapy. The median ADT duration time between the biopsy and RP was 3 months, with a range
of 1 to 8 months (Supplementary Table S1, column W). ADT treatment regimens are indicated in
Supplementary Table S1, column T. Six of the patients developed metastasis (ranging 42–166 months
after RP, Supplementary Table S1, column BB). The samples included in the study were comprised of
20 matched needle core biopsies obtained before ADT, and 20 radical prostatectomies obtained after
ADT. On average, we obtained 91 M reads per sample, with a 64× coverage of the transcriptome.

We performed a differential expression analysis of the RNA-Seq data and identified
190 significantly differentially expressed genes with a fold change greater than or equal to 2
(FDR < 0.05) (Figure 1B and Supplementary Table S2). A total of 127 of these genes were upregulated
and 63 significant genes were downregulated. To gain initial insights into signaling pathways associated
with all post-ADT RPs, we performed an Ingenuity Pathway Analysis (IPA) on the differentially
expressed genes. As expected, we observed an enrichment of downregulated genes that are typically
altered in response to agents that promote AR-signaling, such as dihydrotestosterone, and the AR
agonist metribolone (R1881) (Supplementary Table S3). Additionally, we found that genes inhibited by
U0126 (an inhibitor of the MAPK signaling pathway [20]), were downregulated, while genes activated
by PDGF, a growth factor that stimulates MAPK signaling, were activated. Furthermore, there was an
enrichment of upregulated genes within the estrogen signaling pathway despite a lack of increase in
ESR1 expression (Mann–Whitney test p-value = 0.06). (Supplementary Table S3). These data support
the expected repression of androgen-driven genes as well as possibly compensatory increases of
estrogen and PDGF-MAPK signaling following ADT.

Hierarchical clustering segregated the post-ADT RP samples based on the expression of two
clusters of upregulated and downregulated genes that defined the pre- and post-ADT conditions
(Figure 1A). There was a common decrease in the downregulated genes among all but one of the
post-ADT RP samples, though the degree of repression was strikingly more pronounced in one group.
One RP sample was clustered closely with the pre-ADT samples mainly due to the relatively higher
expression of downregulated genes, discriminating it from the rest of the post-ADT RP samples.
The upregulated genes further segregated the post-ADT samples based on the increased expression
in one subgroup (high impact group) but relatively unchanged expression after ADT in the other
subgroup (low impact group). Principal component analysis (PCA) of differentially expressed genes
confirmed the observations of the hierarchical clustering. PCA revealed a distinct cluster segregating
the high impact group away from the low impact group. The low impact group was more similar
to the pre-ADT Bx. Three outlier RP samples did not cluster with any group, and one RP sample
very closely segregated with the pre-ADT Bx both in PCA and hierarchical clustering of differentially
expressed genes, denoting that this tumor remained relatively unchanged after ADT (Figure 1C).
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Figure 1. The hierarchical clustering and principal component analysis (PCA) of 190 significantly 
differentially expressed genes in 20 matched Pre-ADT biopsies and Post-ADT radical prostatectomies 
(RPs). (A) Clustering reveals two groups of Post-ADT RPs displaying segregated based on the 
expression of upregulated and downregulated genes (high- or low-impact groups, respectively); (B) 
Volcano plot highlighting 190 significantly differentially expressed genes; (C) PCA reveals 4 post-
ADT RP samples as not clustering with either the high or low impact groups; (D) Boxplot depicting 
KLK3 expression in counts per million mapped reads demonstrates that the decrease in the KLK3 
expression is significantly more pronounced in the high impact group than in the low impact group. 

Although there was no significant difference in the ADT exposure time in the high and low 
impact group (p < 7.18 × 10−2 Mann–Whitney test), we observed striking differences in the 
transcriptional signatures after ADT. We evaluated the differences in the relative gene expression of 
both the “upregulated” and “downregulated” gene sets in the pre-ADT Bx, low impact, and high 
impact groups (Figure 1A, Supplementary Figure S1). The mean expression of the upregulated genes 
in these three groups was significantly different (one-way ANOVA and Tukey Honest Significant 
Differences p-value = 2.14 × 10−8). The high impact group displayed over a 4.5-fold higher mean 
expression of “upregulated” genes as compared to the low impact group. Moreover, the mean 
expression of the “downregulated” genes in the pre-ADT Bx, low impact, and high impact groups 
were also significantly different (one-way ANOVA and Tukey Honest Significant Differences p-value 
= 3.59 × 10−11). The “downregulated” mean gene expression was more than 3-fold lower in the high 
impact group than in the low impact group (Supplementary Figure S1). For example, the KLK3 
(Prostate Specific Antigen or PSA) gene expression was more significantly decreased in the high 

Figure 1. The hierarchical clustering and principal component analysis (PCA) of 190 significantly
differentially expressed genes in 20 matched Pre-ADT biopsies and Post-ADT radical prostatectomies
(RPs). (A) Clustering reveals two groups of Post-ADT RPs displaying segregated based on the
expression of upregulated and downregulated genes (high- or low-impact groups, respectively);
(B) Volcano plot highlighting 190 significantly differentially expressed genes; (C) PCA reveals
4 post-ADT RP samples as not clustering with either the high or low impact groups; (D) Boxplot
depicting KLK3 expression in counts per million mapped reads demonstrates that the decrease in
the KLK3 expression is significantly more pronounced in the high impact group than in the low
impact group.

Although there was no significant difference in the ADT exposure time in the high and
low impact group (p < 7.18 × 10−2 Mann–Whitney test), we observed striking differences in the
transcriptional signatures after ADT. We evaluated the differences in the relative gene expression of
both the “upregulated” and “downregulated” gene sets in the pre-ADT Bx, low impact, and high
impact groups (Figure 1A, Supplementary Figure S1). The mean expression of the upregulated
genes in these three groups was significantly different (one-way ANOVA and Tukey Honest
Significant Differences p-value = 2.14 × 10−8). The high impact group displayed over a 4.5-fold
higher mean expression of “upregulated” genes as compared to the low impact group. Moreover,
the mean expression of the “downregulated” genes in the pre-ADT Bx, low impact, and high impact
groups were also significantly different (one-way ANOVA and Tukey Honest Significant Differences
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p-value = 3.59 × 10−11). The “downregulated” mean gene expression was more than 3-fold lower
in the high impact group than in the low impact group (Supplementary Figure S1). For example,
the KLK3 (Prostate Specific Antigen or PSA) gene expression was more significantly decreased in
the high impact group than in the low impact group after ADT (p < 2.14 × 10−3 Mann–Whitney
test), concordant with the IPA results suggesting a decrease in androgen driven genes (Figure 1D).
To biologically characterize the transcriptional changes specific to the low and high impact groups,
we employed a subtyping method developed by You et al. [17]. The prostate cancer subtypes (PCS)
defined in this scheme utilize gene signatures based on a priori prostate cancer-relevant biological
pathways as determined by You et al. to segregate tumors into three groups: prostate cancer subtype
1, 2, or 3 (PCS1-3) [17]. The PCS1 subtype is enriched for genes involved in androgen receptor
variant (AR-V) (ligand-independent, constitutively active) activation, and is associated with a poor
prognosis. The PCS2 subtype is enriched for genes indicative of AR activation and has a variable
prognosis. The PCS3 subtype is characterized by the low activation of AR or AR-V associated genes
(AR-suppressed) and has a variable prognosis.

To classify the relative PCS makeup of the 40-matched pre-ADT Bx and post-ADT RP samples,
we performed hierarchical clustering on the median-centered log-normalized counts of the PCS subtype
signature genes on 20 specimens in our cohort. Interestingly, we found that the clustering of the
subtype signature genes again segregated the high and low impact groups (Supplementary Figure S2),
consistent with the clustering of differentially expressed genes. We evaluated whether the expression
of the subtype genes in tumors before ADT would inform the relative changes in the subtype signature
observed after ADT (Figure 2). Specifically, we calculated the fraction of PCS1, PCS2, and PCS3
genes that were overexpressed in every high impact and low impact sample. We considered a gene
to be overexpressed if it was greater than two-fold above the median expression of that gene
for all samples. We evaluated the changes in gene expression for each subtype before and after
ADT. Before ADT, there was no obvious segregation of high impact and low impact pre-ADT Bx
samples. After ADT, all post-ADT RP samples displayed a common decrease in the AR-dependent,
PCS2 gene expression, and a similar increase in the PCS3 gene expression, but there was a striking
divergence in the expression of the aggressive PCS1 signature (Figure 2A). We found that after ADT
treatment, the transcriptional signature indicative of the more aggressive, ADT-resistant, androgen
receptor-independent subtype (PCS1) was not only retained, but also significantly increased in the
high impact group (p-value = 4.66 × 10−3 Mann–Whitney test). On the other hand, the low impact
group exhibited a relative loss of the PCS1 signature, and only the proportion of genes characteristic of
the AR-suppressed PCS3 increased (Figure 2B). Finally, the percent of PCS1 genes expressed in the
high impact group was significantly higher than the percentage of these genes in the low impact group
(p-value = 1.04 × 10−3 Mann–Whitney test). Taken together, these data suggest a relative shift in the
subtype makeup that correlates with the differential intensity in the transcriptional reaction to ADT.

2.2. Identifying Transcription Factors (TFs) Enriched for Unique Targets in the High Impact Network

To elucidate putative transcriptional regulators associated with the transcriptional changes
unique to the high impact group, we ascertained the regulatory networks. To accomplish this,
we utilized the PANDA algorithm [18] that integrates RNA expression data, protein-protein interaction
data and DNA binding motif data to reverse engineer the transcriptional networks. We used
PANDA to integrate the protein-protein interaction data from the human protein reference database
and experimentally validated the interactions among known cancer-associated drivers and tumor
suppressors [21,22], DNA binding motif data found within H3K27ac and DNase1 hypersensitivity
regions [23], and RNA-Seq data from 16 Post-ADT RPs. To find TFs that putatively regulated the
differential transcriptional response to ADT, as opposed to simply before and after ADT, we focused
our analysis on the differences between the high impact and low impact networks. We converted
the PANDA z-score normalized edge weights to unique interaction probabilities that estimate how
likely a transcription factor regulates a given gene, and identified the transcription factors that were
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enriched for the gene targets in the high impact network as compared to the low impact network
using the cumulative distribution function, (termed Key TFs) [18]. We identified 394 out of 725 Key
TFs that were significantly enriched for unique targets in the high impact network, as compared to
that of the low impact network using the hypergeometric distribution and Bonferroni correction for
multiple testing with a critical p-value of 0.05 (p < 7.85 × 10−5), as performed by Glass et al. [19].
Notably, AR and multiple transcription factors extensively reported to be involved in prostate cancer
aggressiveness, such as ETV5 and ETV1 [16] were identified as Key TFs with increased transcriptional
targets, supporting the biological relevance of our analysis. Moreover, the transcription factors involved
in epithelial to mesenchymal transition (EMT), a critical first step in the metastatic cascade, such as
SNAI1, SMAD2/3/4, were also predicted to be significantly associated with the high impact group.
Interestingly, the pro-EMT factor SNAI1 has been observed to be upregulated after inhibition of AR
signaling via ADT [24].
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Figure 2. Divergent expression of the PCS1 genes in the high impact group and common loss of PCS2
and PCS3 after ADT. (A) The bar plots depict three stacked bars. Each bar displays the fraction of
the subtype-specific genes expressed in a given subtype that is more than two-fold above the median
across all samples. Both the high and low impact groups lose the expression of the PCS2 genes after
ADT, but the high impact group samples display a retention and increase in the PCS1 signature after
ADT, while the low impact group loses the PCS1 signature but displays an increase in the PCS2 gene
expression; (B) Plots depict the average percent change of the subtype gene expression before and after
ADT. The PCS1 gene signature is significantly higher in the high impact group after ADT than in the
low impact group after ADT (p-value = 1.04 × 10−3 95% CI: 30.95 to 60.71 by Mann–Whitney test).

2.3. Finding the Transcription Factor Coordinated Groups (TCFGs) in the High Impact Network

Next, we identified the transcription factors that might function in a coordinated fashion
by determining the groups of Key TFs that were predicted to regulate the same target genes.
We hypothesized that these transcription factor groups that are uniquely enriched in the high impact
network, and that were predicted to collaboratively regulate the same genes, might provide insights
into the biology of this set of patients with pronounced transcriptional responses to ADT. For each Key
TF, we calculated the percentage of target genes that overlapped with the target genes of every other
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Key TF. We then performed a hierarchical clustering of the pairwise percent overlaps to find TFCGs
in which all the Key TF members mutually shared at least 70% of their target genes (Figures 3 and 4).
We found 34 TFCGs in this analysis, some of which contained both known oncogenic factors with
other factors not previously associated with prostate cancer (Supplementary Table S5). Moreover,
within some of these groups were transcription factors with well-described associations, such as AR
and FOXA1 (TFCG 33 Supplementary Table S5).
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Figure 3. A flowchart depicting the how transcription factor coordinated groups (TFCGs) were
identified. Expression-, motif-, and protein interaction data were used as inputs to PANDA. This was
run twice using two independent expression datasets (e.g., high- and low impact expression data)
to generate networks. Post-processing of the PANDA output (refer to methods) yielded edge
probabilities representing the likelihood that a transcription factor targets a given gene. Next, Key TFs
were found based on the criteria that a TF gains a significant number of predicted target genes in one
network versus another. After determining the percentage overlap of shared predicted target genes
(refer to methods), TFCGs were ascertained as groups of Key TFs that share >70% of the predicted
target genes.
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hierarchical clustering of putative gene target percentage overlap of one Key TF as compared to all
others. The dark blue to dark red color gradient denotes the degree of shared target overlap. Because the
degree of target overlap between a pair of Key TFs may be non-reciprocal, the dendrograms are ordered
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TFCGs (white boxes demarcate two representative TFCGs as symmetrical squares on the diagonal).
Beside the heatmap are two representative TFCG schematics depicting a TFCG containing Key TFs that
reciprocally share >70% of their predicted target genes with each other.

2.4. Comparison of the Metastatic PCS1 Network and High Impact Group Network Reveals Common TFCGs

We next investigated whether the high impact transcription factor relationships that emerged early
after ADT exposure maintained associations in metastatic tumors. These overlapping TFCGs (oTFCG)
may represent important transcription factors that, in a concerted fashion, continue to be active in driving
metastasis. To do this, we leveraged a large dataset of over 800 patients compiled from multiple publicly
available cohorts that were normalized and subtyped by You et al. [17] to use as the RNA expression data
input to PANDA. These cohorts comprised of 2790 gene expression profiles including primary tumors,
and metastatic or CRPC tumors [17]. Primary tumors profiles were collected from cohorts including
The Cancer Genome Atlas (TCGA). Data from metastatic tumors were derived from the Stand Up To
Cancer/Prostate Cancer Foundation Dream Team cohort (SU2C). Our observations suggested an ADT
mediated selection against the PCS2 subtype genes, and a relative enrichment of the aggressive PCS1
signature in primary tumors of the high impact group. We hypothesized that there were overlapping
TFCGs that were associated with analogous changes in the subtype (the loss of PCS2 and the gain of PCS1
genes) that were also unique to metastatic tumors. Consequently, we elected to find oTFCGs enriched in
metastatic tumors of the PCS1 subtype (Met.PCS1) as compared to PCS2 primary tumors.

We first determined the Key TFs that had a significant enrichment of unique targets in the Met.PCS1
network (p < 2.19 × 10−4) and identified TFCGs (Supplementary Tables S6 and S7). We found that more
than 80% of the Met.PCS1 Key TFCGs were also exclusively associated in the high impact group network.
We identified 33 TFCGs enriched in both the networks (Table 1) and defined an “overlapping TFCG”
(oTFCG) as a TFCG in the Met.PCS1 network that shared at least two Key TFs with a TFCG in the
high impact group network. We found groups that contained within them known associations among
the transcription factors associated with prostate cancer-relevant signaling pathways, such as JUN and
FOS, both member of the MAPK signaling pathway (oTFCG3, Table 1). We also identified groups that
contained validated prostate cancer oncogenes with novel associations, such as SOX4, a prostate cancer
transforming oncogene, and FOXA2 and GATA4, known pioneer factors (oTFCG13, Table 1) [25].
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Table 1. Thirty-three overlapping TFCGs (oTFCGs) between the high impact ADT group and Met.PCS1 networks. Annotations are derived from the KEGG pathway
database and/or the primary literature.

Group Name Transcription Factors Kegg Pathway Annotation and/or Reference

oTFCG1
NR2F2-SMAD9-PAX2-TAL1-ELK4-ELK3-KLF12-ETV6-SMAD7-

MAFA-TCF7L2-ETV4-SREBF2-GATA3-MYBL2-MYB-YBX1-
ERG-FLI1-RFX1-SREBF1-HSF4-ZEB1-GABPA-ELF1-ELF5

Transcriptional misregulation in cancer; TGF-β signaling

oTFCG2
MYF5-TCF4-MYOG-TCF12-NR2C2-NF1A-SMAD5-PAX4-ELK1-

SPIB-MYOD1-TCF3-GATA1-NFIX-KLF4-PURA-KLF6-GEN1-
E2F3-TFDP1-GTF2I-HIC1-WT1-E2F4

Pathways regulating pluripotency of stem cells

oTFCG3 JUN-SOX10-SOX18-JUND-JUNB-SMAD3-FOS-RXRA-BRCA1-
SMAD2-NR3C1-ETS2-GATA2-YY1-TCF7L1-FOSL2-FOSB-FOSL1

MAPK signaling; osteoclast differentiation; IL-17 signaling pathway;
Wnt signaling; TGF-β signaling

oTFCG4 NFKB1-MTF1-ZIC3-TFCP2-ZBTB7A-MZF1-
BCL6B-SP4-SP3-ZIC1-SP2-TP73-TP63 MicroRNAs in cancer

oTFCG5 HES1-IKZF1-TFAP2C-PAX8-RUNX3-ETV7-THAP1 Pathways in Cancer

oTFCG6 HSF1-HNF1A-SOX17-FOXM1-IRF4-NKX2-5 Wnt Signaling

oTFCG7 NR1H3-RARB-NR1I2-RARG-NR1H2-NR1I3 Insulin resistance; Small cell lung cancer; Non-small cell lung cancer

oTFCG8 GATA5-SRY-SOX8-POU2F1-CUX1

oTFCG9 GATA6-FOXA1-POU3F3-FOXD3 EMT in pancreatic cancer [26]

oTFCG10 EGR1-KLF13-EGR2-HIC2 GnRH signaling; Human T-cell leukemia virus 1 infection

oTFCG11 ERF-ETV5-ETV3-ELF4 Transcriptional misregulation in cancer; Prostate Cancer

oTFCG12 EP300-SPI1-SMAD4-E2F1 Pathways in Cancer; Human T-cell leukemia virus 1 infection;
TGF-beta signaling; Prostate Cancer; Wnt signaling; Cell cycle

oTFCG13 SOX4-FOXA2-GATA4 Prostate cancer oncogene [25]

oTFCG14 E2F7-E2F5-E2F2 Gastric Cancer; Prostate Cancer; Bladder Cancer

oTFCG15 HOXB2-PRRX2-PDX1 TGF-beta signaling induced invasion in breast cancer [27]

oTFCG16 ARNT-TFAP2A-TFAP2B Cushing Syndrome; HIF-1 signaling; Renal Cell Carcinoma

oTFCG17 NFYC-NFYA-NFYB Antigen processing and presentation

oTFCG18 MAFK-CEBPG-CEBPE Transcriptional misregulation in cancer; Acute myeloid leukemia
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Table 1. Cont.

Group Name Transcription Factors Kegg Pathway Annotation and/or Reference

oTFCG19 MAZ-ARHGEF7-CD40 Regulation of actin cytoskeleton

oTFCG20 MAX-EGR3-ZIC2 C-type lectin receptor signaling; Small cell lung cancer; Transcriptional
misregulation in cancer; MAPK signaling

oTFCG21 GLI3-GLI2 Hedgehog signaling; Basal Cell Carcinoma; Hippo signaling

oTFCG22 ZBTB33-PLAGL1 Metastasis and TGF-β signaling in triple negative breast cancer [28];
Cell cycle [29]

oTFCG23 HDAC1-UBP1 Epigenetic reprogramming in cancer (HDAC) [30]

oTFCG24 FOXL1-TBP Huntington disease; Basal transcription factors

oTFCG25 KLF2-RREB1 MAPK Signaling; FOXO signaling

oTFCG26 USF2-USF1 Inhibition of cell cycle [31]

oTFCG27 CEBPB-CEBPD TNF Signaling pathway; Transcriptional misregulation in cancer

oTFCG28 CHURC1-TEAD2 EMT in breast cancer [32]

oTFCG29 ETV1-HIF1A HIF1-signaling; Angiogenesis; Prostate cancer invasion [33]

oTFCG30 ATM-GTF2IRD1 FoxO signaling; Cell cycle; NF-kappa β signaling

oTFCG31 MYC-RXRB Gastric Cancer; Thyroid hormone signaling; Small cell lung cancer;
PPAR signaling

oTFCG32 SP1-TP53 Endocrine resistance; Huntington disease; Breast cancer; Transcriptional
misregulation in cancer; Endocrine resistance

oTFCG33 NR4A2-TFAP4 MAPK Signaling; osteoclast differentiation; IL-17 signaling; Wnt signaling;
TGF-β signaling



Cancers 2018, 10, 379 11 of 20

Using independent expression datasets, we identified the common exclusive transcription factor
relationships significantly associated with the loss of the PCS2 signal and the retention of the PCS1
signal in the high impact group, and with PCS1 metastatic tumors. Moreover, these transcription
factors were predicted to exclusively associate with each other based on sharing distinct sets of
target genes in the high impact and Met.PCS1 networks. In some cases, the transcription factors
within oTFCGs collectively gained or lost other transcription factors between networks. For example,
one TFCG comprised of ERF-ETV5-ETV3-ELF4, gained HIF1A, a well-characterized transcription
factor involved in metastasis, in the Met.PCS1 network. The addition or loss of transcription factors
from an oTFCG may inform the observed changes in predicted gene targets and suggest an evolving
role of these factors in cancer progression. Thus, we identified TFCGs that appear to be functioning in
a coordinated fashion to achieve changes in gene expression in two distinct phases of prostate cancer
progression. Taken together, these data suggest a concerted condition-dependent re-localization that
maintained interactions of these transcription factors during metastasis.

3. Discussion

The heterogeneous nature of prostate cancer tumors requires complex and dynamic changes in
transcriptional networks to adapt to the various stages of cancer progression. Currently, the regulatory
mechanisms that drive these fluctuations in expression profiles throughout the progression are not
well understood. ADT is used as one component of treatment for intermediate and advanced prostate
cancer. At present, it is difficult to assess the transcriptional changes that are direct consequences of
ADT, as the current guidelines discourage the use of neoadjuvant ADT with radical prostatectomy [34].
Our cohort is novel, unique, and unusual in that all but one of the patients received neoadjuvant ADT
alone, and subsequent radical prostatectomy, allowing us to interrogate the direct effects of ADT using
patient-matched tissues on transcriptional programs.

A complete understanding of the transcriptional pathways that characterize ADT response and
subsequent metastatic progression is still unclear. Previous studies have sought to find molecular
mechanisms associated with prostate cancer progression, but these analyses typically rely on expression
profiling alone to predict putative upstream regulators [35]. We applied the PANDA [18] algorithm
to curate and integrate the expression, protein-protein interaction, and DNA binding data in order
to predict the transcription factor-gene target interactions. We utilized these networks to identify
the putative cooperative and collaborative transcription factor groups that are most associated with
pronounced transcriptional response to ADT, retention of aggressive subtype signatures, and the
development of metastatic disease. By employing a top-down approach integrating large, independent
datasets, we have predicted and prioritized the transcription factor groups that could serve as critical
upstream regulators of ADT response and metastasis.

Differential expression analysis comparing Pre-ADT Bxs and Post-ADT RPs yielded 190
significantly differentially expressed genes. IPA analysis identified multiple therapeutic agents as
putative upstream regulators of these genes. These were largely associated with androgen receptor (AR)
signaling (Supplementary Table S2). Specifically, genes regulated by dihydrotestosterone (androgen),
and metribolone (R1881), a widely used AR agonist that has been shown to increase the expression of
AR target genes [36], were both inhibited in our dataset, as would be expected from ADT. Intriguingly,
despite relatively short ADT exposure times, we identified divergent transcriptional responses
segregating the high and low impact groups. Accordingly, KLK3 (PSA) expression was significantly
lower in the high impact group than in the low impact group, underscoring the biological relevance
of the differential transcriptional responses between the two groups. This may also indicate the
initial AR signaling inhibition in response to ADT before the eventual reactivation of this signaling
pathway [8,37]. IPA analysis also showed that the beta-estradiol (estrogen) targets were activated and
the targets of U0126, a MAPK kinase pathway inhibitor, were inhibited in response to ADT, suggesting
a bypass or compensatory PDGF-MAPK and estrogen signaling. Concordantly, Hu et al. found that
AR expression is associated with a favorable outcome in ER+ breast cancers. On the other hand,
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they also found that AR expression in ER-negative TNBC breast cancers was significantly associated
with increased mortality, as compared with AR-negative, ER-negative TNBC tumors (multivariate
hazard ratio (model 3), 1.83; 95 percent confidence interval, 1.11 to 3.01; p = 0.02) [38]. Taken together
with our observations, these data suggest a compensatory relationship between AR and estrogen
signaling in both prostate cancer and triple negative breast cancers. While the IPA analysis provided
initial insights into the initial transcriptional responses to ADT, among well-established signaling
networks, we were interested in identifying novel transcriptional relationships in this setting.

We characterized the transcriptional responses in our cohort using a previously developed
subtyping scheme developed by You et al. [17]. These PCS subtypes were developed by integrating a
priori defined prostate cancer-relevant signaling pathways, genetic and genomic alterations, and other
biological characteristics of aggressive prostate cancer such as stemness and cell proliferation [17].
The PCS1 subtype is the most aggressive of the three subtypes, with a poorer prognosis, shorter
metastasis-free survival, and metastatic CRPC [17]. This aggressive subtype is enriched for the
AR-variant pathway genes and it is also associated with enzalutamide-resistance [17,39] and
metastatic-CRPC [15]. The PCS2 subtype is enriched for AR-signaling genes, and was found to
be sensitive to enzalutamide [17]. The PCS3 subtype exhibits a low expression of AR-signaling
genes [17,40] and it is associated with gene signatures enriched in basal cells [40].

In contrast to the similar transcriptional changes in the PCS2 and PCS3 signatures, we observed
a striking difference in the percentage of PCS1 genes expressed in the high and low impact groups
following ADT. The high impact group exhibited not only a retention of this signal, but in many
cases, an increase in expression of the PCS1 genes, while the low impact group tended to lose
expression of these genes (Figure 2). These data suggest that despite similar ADT exposure times
for all patients, only the tumors of the high impact group were associated with a more aggressive
subtype. We speculate that the high impact group tumors could resist an ADT mediated selection
against aggressive components, or clonal populations by activating transcriptional programs that
adapt to the inhibition of AR signaling, while those of the low impact group were more sensitive to the
effects of ADT treatment [17].

Many studies utilize expression profiling alone to elucidate critical gene signatures important to
prostate cancer [35]. We aimed to find the common transcription factor combinatorial relationships
that putatively regulate the transcriptional programs associated with ADT response and metastasis.
A limitation of our study is that we do not directly address or characterize patients who present with
metastases at diagnosis and are still hormone-naïve. However, the TFCG associations that we describe
here may serve as critical upstream hubs for patients who have undergone ADT treatment. A Key TF
might gain putative target genes in the high impact group network because it is either upregulated
or has increased accessibility for target genes due to changes in the local epigenetic landscape [41].
Therefore, we did not require that a Key TF exhibit a significant increase in expression. These groups
contained both known and undescribed relationships. For example, TFCG33 (Supplementary Table
S5) contained AR and FOXA1, a well-studied AR collaborating factor. Interestingly, this TFCG also
contained STAT3, which was recently shown to be co-regulated with AR by Janus Kinase/IL-6 [42].
The strength of our analysis relies on the integration of context-dependent transcriptional data and
validated protein-protein interactions with DNA motif data to infer condition-specific TFCGs.

Next, we sought to ascertain whether associations identified among transcription factors in
the high impact group after ADT were also present in metastatic samples. We integrated gene
expression data from a large cohort of unmatched primary and metastatic samples (n > 800) subtyped
by You et al. [17] with our own analysis, and interrogated the transcriptional differences between
primary PCS2 tumors and PCS1 metastases. TFCGs, common between the high impact group and
metastatic lesions of PCS1, could shed light on potential drug targets and actionable pathways that
can be inhibited earlier in prostate cancer development. Intriguingly, by using independent gene
expression datasets, we found that more than 80% of TFCGs in the Met.PCS1 network were also
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present in the high impact network. These observations could reflect a possible ADT-mediated clonal
selection of aggressive cancer cells (reviewed in Reference [43]).

Considerable research has been devoted to understanding how the collaborative transcription
factor relationships and interdependencies confer a precise temporal control of condition-specific
changes in transcription (reviewed in Reference [44]). Despite dynamic transcriptional changes that
occur in a tumor in response to ADT and during metastatic progression, we identified common TFCGs
that emerge early after ADT administration, and remain associated with each other in metastatic
tumors, the final stage of cancer progression. The common TFCGs between the high impact group and
Met.PCS1 networks can reflect both spatial and temporal interactions. Intriguingly, these relationships
remained despite targeting a distinct set of genes between the networks. This possibly reflects a
refinement of more robust TFCG associations that are more critical in influencing both a pronounced
transcriptional response to ADT, retention of aggressive subtype pathways, and metastatic progression.

ADT resistance is associated with AR splice variants (e.g., AR-V7) [45], genomic amplification of
AR [46], and mutations to the AR ligand binding domain [47] that maintain transcriptional activity in
a low androgen environment. Interestingly, AR separates from a large TFCG in the high impact group
network, and associates with C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPε in the Met.PCS1 network.
The C/EBP family of transcription factors is associated with mesenchymal gene signatures and
aggressive diseases in a variety of tumors including glioblastomas [48–50], esophageal squamous
cell carcinoma [51], urothelial carcinoma [52], and hepatocellular carcinoma [53]. Additionally,
C/EBPβ promotes oncogene-induced senescence, facilitating tumor progression and chemotherapy
resistance after androgen deprivation [54]. This may reflect distinct transcriptional programs for
AR to both evade the effects of ADT and promote metastases, and sheds light on the dynamic
interactions of AR to maintain signaling throughout the prostate cancer progression, despite changes
in androgen availability.

The SOX4-FOXA2-GATA4 oTFCG (oTFCG13 Table 1) is also of interest for multiple reasons.
We have shown that deletion of SOX4 in vivo can inhibit prostate cancer progression [55] and that the
knockdown of SOX4 [25] can induce apoptosis in prostate cancer cells. Moreover, in pancreatic cancer,
SOX, FOX, and GATA factors may cooperate to drive metastases [56].

Importantly, the oTFCGs that contain transcription factors regulated by distinct signaling
pathways suggest not only a possible compensatory activation after ADT, but also suggest a maintained
activity of these pathways throughout the progression to metastasis. FOS, FOSB, FOSL1, JUN, JUND,
and JUNB, all members of the MAPK signaling pathway, were associated with each other in both
high impact and Met.PCS1 networks, and FOS and FOSB were also significantly overexpressed
after ADT. Notably, IPA analysis informed the biological relevance of this oTFCG as it showed that
targets of U0126, a MAPK kinase pathway inhibitor, were inhibited in response to ADT. Combining
our observations of decreased KLK3 expression with the IPA analysis indicating an inhibition of
AR-signaling, these data suggest a bypass or compensatory PDGF-MAPK signaling after ADT. This is
consistent with previous reports of increased phospho-MAPK levels enriched in tumor tissues of
patients who have undergone ADT [57]. Moreover, it has recently been shown that AR-null prostate
cancers that do not undergo neuroendocrine differentiation, or ‘double negative’ metastatic prostate
cancers have sustained FGF-MAPK signaling and that these cancers are sensitive to MEK and ERK1/2
inhibition in vitro and in vivo [58]. Thus, both the IPA analysis and our finding that these factors
maintain associations in the high impact group, and metastatic tumors suggest that combination
therapies that include ER, MEK, JNK, and/or ERK inhibitors may provide some benefit to patients
undergoing ADT.
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4. Materials and Methods

4.1. Tissue Specimens

Patient tissue specimens and associated clinical data were selected from the prostate cancer
biobank of the Centre hospitalier de l’Université de Montréal research center (CRCHUM). All patients
signed an informed consent form to participate in the biobank and the Comité d’éthique à la recherche
of the CRCHUM approved the study. We selected patients with matched pre- and post-androgen
deprivation therapy specimens of biopsy and RP performed at the CHUM between 1993 and 2012.
Following the review of the hematoxylin/eosin (H&E) -stained slides by a genitourinary pathologist,
the tumor areas were identified. Biopsies and prostatectomies pathology reports were used to establish
the localization of the tumors. If relevant, (i.e., no effects of hormone therapy), histologies were also
compared. Of note, the tumor locations could not be confirmed for every patient. For RP, the whole
case was reviewed to identify the index tumor or, when it could be identified from the biopsy report,
the nodule from which the biopsy was taken. The corresponding area on the FFPE tumor blocks
were extracted using a 0.6 mm diameter tissue arrayer needle (TMArrayer; Pathology Devices, Inc.,
Westminster, MD, USA) and transferred into a 1.5 mL plastic tube prior to extraction. The FFPE
biopsies were macrodissected prior to RNA preparation to exclude benign tissues.

4.2. RNA-Sequencing and Differential Gene Expression Analysis of Pre/Post ADT Patient Samples

The total RNA from 40 matched FFPE specimens from Pre-ADT core biopsies and Post-ADT
radical prostatectomies were sequenced using Illumina’s TruSeq RNA Access Library Prep kit.
Sequence alignment and gene level expression quantifications were obtained using the STAR read
aligner to map them to the hg38 reference genome [59–61]. Differential gene expression analysis was
performed with the edgeR Bioconductor package in R. The final statistical model included corrections
for sequencing the batch effects and sequence coverage. Datasets can be accessed in the NCBI GEO
and SRA databases (accession No. GSE111177).

4.3. Constructing Transcriptional Networks Using PANDA

To infer interactions between transcription factors and gene targets, we used three datatypes as
inputs to PANDA: co-transcriptional expression, protein-protein interaction (PPI), and transcription
factor binding site (TFBS) motif data, described in detail below [18]. Briefly, we used PANDA to
construct a network for each condition (e.g., pre-, post-ADT) using constant PPI and protein-gene
datasets, but condition-specific gene expression data. PANDA was run with default parameters
(alpha = 0.2, hamming distance = 1 × 10−5) using MATLAB. Transcription factors that were absent in
either the PPI or expression data (normalized DESeq counts < 1) were removed.

4.4. Protein-Protein Interaction Data

Binary (direct interactions between two proteins) PPI data were obtained from the human protein
reference database (HPRD) (http://www.hprd.org), and OncoPPI [21]. HPRD contains interactions
that are derived from experimental evidence from the literature [22], and OncoPPI contains interactions
from the TR-FRET screening data.

4.5. Motif Data

The regions of H3K27Ac and DNaseI hypersensitivity within the human genome (build hg19) were
obtained from the ENCODE data tracks [62] in the UCSC human genome database [63]. We utilized
the MATCH software [23] based on the BioBase Knowledge Library 2017.3 TRANSFAC database [64]
to identify all vertebrate TFBS in these regions with a minimum core matrix score greater than 0.95.
Motif data were further annotated to retrieve the HGNC symbols corresponding to the TRANSFAC
transcription factor position weight matrix identifiers.

http://www.hprd.org
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4.6. Expression Data

Mapped read counts were normalized using the DESeq Bioconductor package. Log-2 transformed
normalized counts were centered by the median of all samples in the dataset. For primary and
metastatic network construction, we obtained median-centered normalized expression data of publicly
available datasets containing more than 800 patient samples that were curated and subtyped by
You et al. [17].

Identification of network-specific “Key” transcription factor coordinated groups and gene target
expression analysis

To identify the transcriptional relationships that were significantly altered between two conditions,
we first compared pairs of networks to identify the interactions between transcription factors and
gene target interactions that were unique to one network versus another. Briefly, the program uses a
message-passing procedure to estimate the agreement of data types by calculating a similarity score
that represents the support that a gene is putatively targeted by a transcription factor. We included TFs
that had an expression value count greater than 1 for the DESeq normalized counts [65]. The similarity
scores, or edge weights, are the z-scores normalized to allow for the iterative updating of these edge
weights across the data types [18]. The PANDA algorithms outputs z-scores that represent the support
that a transcription factor targets a gene in a given network. We identified unique interactions by
converting the z-scores to “unique interaction probabilities” as described in Glass et al. [19]. Briefly,
we used the cumulative distribution function to generate probabilities representing whether an
interaction was unique to, and strongly supported in, one network but not in another. We selected the
transcription factor–target gene interactions that had a probability greater than 90%. Next, we identified
the transcription factors that were significantly enriched for gene targets in one network versus another
by employing the hypergeometric distribution and Bonferroni correction for multiple testing with a
critical p-value of 0.05 (Key TFs). To uncover the transcription factors that share common gene targets
in a network, we performed non-reciprocal pairwise comparisons to determine the percent overlap
of predicted high confidence target genes shared between two Key TFs followed by the hierarchical
clustering of these percentages to reveal putative coordinated groups. We defined a coordinated
group as containing Key transcription factors that exclusively share at least 70% of their targets.
Finally, we performed hierarchical clustering (Euclidean dissimilarity metric, complete agglomerative
clustering) of the shared target gene expression.

To assess whether we would identify a given number of Key transcription factors by chance alone,
we permuted the RNA-seq sample identifiers without replacement. We used the permuted RNA-seq
data as one of the inputs for PANDA, and performed analyses to identify the Key transcription
factors. The permuted network did not contain any transcription factor–gene target interactions
with a probability greater than 90%, demonstrating the significance of the identified pairs in the
actual network.

5. Conclusions

Our analysis utilizes a novel, unique dataset from matched patient samples that interrogates the
direct effects of ADT, and integrates these data with a large cohort of primary and metastatic tumors
to predict the common mechanisms important to the resistance to therapy and the progression to
a metastatic disease. We have elucidated the transcription factor relationships that are consistently
associated with aggressive ADT transcriptional responses, and metastasis: two distinct, and clinically
significant phases of prostate cancer progression. This hypothesis-driving study expands what is
known about the important coordinated transcription factor activities that regulate prostate cancer
aggressiveness, metastasis, and the development of androgen-resistance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/10/379/
s1, Supplementary Table S1, Clinical and pathological patient data from 20 patients; Supplementary Table S2,
Significantly differentially expressed genes identified using edgeR analysis of pre-ADT Bxs and post-ADT
RPs; Supplementary Table S3, Ingenuity Pathway Analysis suggests upstream regulators associated with
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significantly differentially expressed genes; Supplementary Table S4, Key TFs in the high impact network;
Supplementary Table S5, TFCGs in the high impact network; Supplementary Table S6, Key TFs in the Met.PCS1
network; Supplementary Table S7, TFCGs in the Met.PCS1 network; Supplementary Figure S1, The high impact
group displays a significant decrease in “downregulated” gene group expression, and significant increase
in “upregulated” gene group expression, as compared to the pre-ADT Bx and low impact group samples;
Supplementary Figure S2, Hierarchical clustering of PCS genes of 20 matched pre-ADT Bxs and post-ADT RPs
again segregates post-ADT RP samples.
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