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Exploring the transcriptome of hormone-naive multifocal
prostate cancer and matched lymph node metastases
Linnéa Schmidt1, Mia Møller1, Christa Haldrup1, Siri H. Strand1, Søren Vang1, Jakob Hedegaard1, Søren Høyer2, Michael Borre3,
Torben Ørntoft1 and Karina Dalsgaard Sørensen1

BACKGROUND: The current inability to predict whether a primary prostate cancer (PC) will progress to metastatic disease leads to
overtreatment of indolent PCs as well as undertreatment of aggressive PCs. Here, we explored the transcriptional changes
associated with metastatic progression of multifocal hormone-naive PC.
METHODS: Using total RNA-sequencing, we analysed laser micro-dissected primary PC foci (n= 23), adjacent normal prostate
tissue samples (n= 23) and lymph node metastases (n= 9) from ten hormone-naive PC patients. Genes important for PC
progression were identified using differential gene expression and clustering analysis. From these, two multi-gene-based
expression signatures (models) were developed, and their prognostic potential was evaluated using Cox-regression and
Kaplan–Meier analyses in three independent radical prostatectomy (RP) cohorts (>650 patients).
RESULTS:We identified several novel PC-associated transcripts deregulated during PC progression, and these transcripts were used
to develop two novel gene-expression-based prognostic models. The models showed independent prognostic potential in three RP
cohorts (n= 405, n= 107 and n= 91), using biochemical recurrence after RP as the primary clinical endpoint.
CONCLUSIONS: We identified several transcripts deregulated during PC progression and developed two new prognostic models
for PC risk stratification, each of which showed independent prognostic value beyond routine clinicopathological factors in three
independent RP cohorts.
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INTRODUCTION
Localised prostate cancer (PC) is generally curable by radical
prostatectomy or radiation therapy, whereas disseminated PC
cannot be cured.1 Frequent side effects of primary PC treatment
include incontinence and impotence, and it is therefore highly
important to distinguish localised PCs that will develop into
aggressive disease from those that will not, in order to guide
treatment decisions. The prognostic tools currently used to assess
PC aggressiveness (primarily Gleason score, TNM stage, and pre-
operative serum PSA levels) are suboptimal, leading to over-
treatment of indolent tumours and insufficient or delayed
treatment of aggressive tumours.1 Existing knowledge of the
molecular alterations that drive progression towards aggressive
metastatic PC is insufficient. In addition, the multifocality and
molecular heterogeneity often seen in PC, complicates biomarker
development.2,3 Thus, new and more accurate biomarkers are
urgently needed to solve these clinical challenges.
Primary PC often presents as a multifocal disease, harboring

several morphologically and often also clonally distinct tumour
foci.4–6 Despite the multifocal heterogeneity of the primary foci,
studies have shown that many distant metastases in the same
patient share a majority of genetic alterations, suggesting that the
metastatic cells originate from one primary monoclonal focus.5,6

However, evidence of polyclonal seeding has also been reported,

suggesting that both mono- and polyclonal seeding may occur
during the progression of PC.7

Previous research on metastatic PC or castration-resistant PC
(CRPC) has generally been based on metastatic samples from
patients pre-treated with androgen deprivation therapy (ADT)
and/or additional secondary endocrine or chemotherapy, i.e.
heavily pre-treated patients.5–18 While these earlier studies
provided new knowledge on how treatment affects tumour
progression, they did not directly assess the initiating events
associated with metastatic progression in primary hormone-naive
PC. To our knowledge, only one study including metastatic tissue
from hormone-naive PC patients has been published, in which
analysis of the DNA methylome of multiple PC samples and
metastatic tissue led the authors to propose that heterogeneity in
methylation patterns mirrors the genomic/clonal evolution of
PC.19 To our knowledge, studies on the transcriptional level have
not yet been performed, which could give a deeper insight into
the functional genome, by directly investigating gene-expression
activity.
In addition to the previous development of gene-expression

signatures for PC and PC aggressiveness,20–29 comparison of gene-
expression patterns in different tissue types during PC progression
(benign tissue, cancerous tissue and metastatic tissue) should
enable the discovery of gene signature profiles that can be

www.nature.com/bjc

Received: 8 June 2018 Revised: 9 October 2018 Accepted: 9 October 2018
Published online: 19 November 2018

1Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; 2Department of Pathology, Aarhus University Hospital, Aarhus, Denmark and 3Department of
Urology, Aarhus University Hospital, Aarhus, Denmark
Correspondence: Karina Dalsgaard Sørensen (kdso@clin.au.dk)

© The Author(s) 2018 Published by Springer Nature on behalf of Cancer Research UK

mailto:kdso@clin.au.dk


associated with functionally important steps in the progression of
aggressive PC. In this study, we sought to provide new knowledge
on differentially expressed genes during the progression of
aggressive PC. We analysed the transcriptome of multiple paired
tissue samples from lymph node metastases, primary tumours,
and adjacent normal samples from ten hormone-naive PC patients
using total RNA-sequencing (RNA-Seq). Moreover, we used these
data to develop two expression-based multi-gene models, which
displayed prognostic potential in three radical prostatectomy (RP)
cohorts independent of clinicopathological variables.

MATERIALS AND METHODS
Patient material
Discovery cohort: Hormone-naive prostate cancer patients with
matched primary tumour and lymph node metastasis samples. We
obtained formalin-fixed paraffin-embedded (FFPE) whole-prostate
and lymph node tissue blocks from ten hormone-naive PC
patients who underwent radical prostatectomy (RP) for histologi-
cally verified primary PC at the Department of Urology, Aarhus
University Hospital, Denmark (2002-2009) (see Table 1 for
clinicopathological information). An expert pathologist evaluated
three hematoxylin and eosin-stained sections (top, middle, and
bottom) from all tissue blocks, and marked areas of distant
adjacent normal (DAN; i.e. benign prostate epithelial tissue > 3
mm away from the nearest PC focus), proximal adjacent normal
(PAN, i.e. benign epithelial tissue < 1mm away from a PC focus),
primary PC tissue (CAN), and lymph node metastasis tissue (MET)
samples, as previously described30 (Figure S1A-B). In addition,
non-malignant lymph node tissue samples (LYMPH) were included
for two patients (PT2 and PT4). For this study, a total of 31 FFPE
tissue blocks (64 areas) were used for Laser Microdissection (LMD),
and RNA extraction was performed for each of these 64 areas
(Fig. 1a). Seven samples with low quality sequencing libraries were
discarded, leaving 57 samples eligible for downstream analysis
(10 × DAN, 13 × PAN, 23 × CAN, 9 ×MET, 2 × LYMPH; Table 1).
Experimental procedures for total RNA extraction and RNA-Seq are
described in Supplementary methods. RNA-Seq summary statistics
are given in Table S1.

Prostate cancer sample sets with existing transcriptomic profiling
data used for external validation. To be able to validate candidate
transcripts and multi-transcript models identified in the discovery
cohort, we collected gene-expression profiling data and clinical
data from six publicly available PC cohorts of different sizes,
characteristics and geographical origins. From two RP patient sets,
we had RNA-Seq data (Fragments Per Kilobase of transcript per
Million mapped reads, FPKM) for 6 AN and 14 CAN samples
(Strand cohort), respectively 13 AN and 29 CAN samples (Haldrup
cohort).31,32 The Grasso cohort14 included 28 AN, 59 CAN and 35
metastatic castrate-resistant prostate cancer tissue samples from
122 PC patients, profiled on the Whole Human Genome
Microarray 4 × 44 K and Whole Human Genome Oligo Microarray
(downloaded from the Gene Expression Omnibus (GEO) database,
accession number GSE35988). RNA-Seq data (FPKM) from the
TCGA consortium including 551 PC patients (52 AN and 499 CAN
samples) was downloaded from the GDC data portal, NIH National
Cancer Institute, USA.33 The Taylor cohort34 included 29 AN and
150 CAN samples from 179 PC patients, profiled on the Affymetrix
Human Exon 1.0 ST Array (downloaded from GEO, accession
number GSE21036).
For testing the prognostic multi-gene-expression models

(described below), we used primary PC tissue samples (CAN)
from RP patients in the TCGA (n= 499), Taylor (n= 150) and Long
(n= 106)24 cohorts. In the TCGA cohort, FPKM values for the
overlapping genes of interest, i.e. genes included in the two
prognostic models, and clinical information were available for 477
patients, which were included in the final analyses. In the Taylor

cohort, all patients receiving post-endocrine treatment (n= 43)
were excluded from the analysis (this information was unavailable
in the TCGA and Long cohorts), leaving 107 patients eligible for
final analyses. The Long cohort was profiled using RNA-Seq and
downloaded from the GEO database (accession number
GSE54460). After removing duplicates (n= 6) and patients with
0 days to post-operative BCR (n= 9), a total of 91 patients in the
Long cohort were eligible for further analysis. Clinicopathological
information on TCGA, Taylor, and Long can be found in Table S2.

Prognostic gene models
Differential gene-expression analysis was performed in our
discovery cohort and enabled us (i) to investigate genes
associated with the progression from localised PC to metastatic
disease, by exploring the expression levels in AN, CAN and MET
samples, and; (ii) to define one of several PC foci in the same
patient, a likely “seeding focus”, which was proposed to be
responsible for seeding the metastasis. Two different strategies
were used to develop the progression model and the seeding
model.

Progression model. To identify transcripts associated with the
progression of primary PC to metastasis, differential gene-
expression analysis was performed for the AN group versus CAN
group, and for the CAN group versus MET group. Transcripts with
an expression pattern in the same direction of log fold change
below 2 or above 2 from AN to CAN, and furthermore from CAN to
MET (FDR < 0.05) were considered for further analysis. We found
19 downregulated transcripts and no upregulated transcripts
using this strategy (Table S3). For testing in five of the six
validation cohorts (above) the 19 genes were summarised in each
cohort, and log2-transformed to give a progression score for each
patient. Due to different platforms used (Microarray or RNA-Seq),
out of the 19 genes included in the progression model,
transcriptional expression data were available for 19 genes
(100%) in the Strand cohort, for 19 genes (100%) in the Haldrup
cohort, for 17 genes (89.5%) in TCGA, for 12 genes (70.6%) in the
Taylor cohort, for 15 genes (78.9%) in the Long cohort, and for 14
genes (73.7%) in the Grasso cohort. For validation of the
prognostic potential, a weighted model was developed from the
19 genes (below), which was tested in the TCGA, Taylor and Long
cohorts (below) using Cox-regression and Kaplan–Meier analyses.

Seeding model. Four patients with multifocal PC (PT1, PT3, PT5
and PT7) had two or more primary PC samples and a matched
metastatic sample analysed by RNA-Seq. Thus, these patients were
eligible for analysis to find the PC focus most likely to be the origin
of the metastasis in each patient. Hence, as a first step to identify
genes for the seeding model, the 500, 100 and 50 most variable
transcripts were clustered (heatmap.2 function in R35) to identify
the CAN sample which clustered with the MET sample. A likely
“seeding focus” could be identified in two patients (PT5 and PT7).
These “seeding focus” samples were compared, using gene-
expression analysis in the edgeR package,35 to the four likely “non-
seeding focus” samples from the same patients. Genes with
significant differential expression (FDR < 0.01) were considered to
be important for the seeding process (n= 20, Table S4). For
validation of the prognostic potential of the seeding model, the
TCGA, Taylor and Long cohorts were used.24,33,34 Due to different
platforms used (Microarray or RNA-Seq), out of the 20 genes
included in the seeding model, transcriptional expression data
were available for 20 genes (100%) in the TCGA cohort, for 13
genes (60%) in the Taylor cohort and for 18 genes (90%) in the
Long cohort.

Weighted models. To be able to test the prognostic potential of
the genes found to be associated with the progression of PC (n=
19) and the genes found to likely be involved in seeding of the
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metastasis (n= 20), two prognostic models were calculated from
the normalised gene-expression values from the 19 genes
(progression model), and the 20 genes (seeding model),
respectively. The models were calculated in each of the three
cohorts (TCGA, Taylor, and Long) where an analysis of prognostic
potential was possible, i.e. cohorts with follow-up data including
BCR and time to BCR. Gene-expression values were multiplied by
the regression coefficient from each gene in multivariate Cox-
regression analysis, and the following weighted expression values
were summarised into a model score for each patient. The final
model score for each patient was determined by dividing the
individual score with the standard deviation of the scores for all
patients.

Gene set enrichment analysis (GSEA)
Differentially expressed transcripts and genes from the progres-
sion model were investigated for gene set enrichments using the
GSEA software 3.0, and the online Molecular Signatures Database
(MSigDB) (http://software.broadinstitute.org/gsea),36,37 respec-
tively. Gene lists with FDR < 0.25 were considered statistically
significant. FPKM values used for the analysis were filtered to
include only transcripts expressed at >1 FPKM in at least 50% of
each subgroup (CAN, AN, MET, LYMPH), resulting in 11,017
transcripts available for GSEA. The same 11,017 transcripts were
used when comparing PAN and DAN samples using GSEA.

Statistical analyses
All statistical analyses were conducted in R35 unless stated
otherwise. False discovery rate (FDR) and P values < 0.05 were
considered significant, unless stated otherwise. Associations
between the seeding model and the progression model and
clinicopathological parameters were assessed using the Wilcoxon
rank-sum test. For evaluation of prognostic potential, the primary
clinical endpoint was BCR-free survival (RFS) after RP. Patients not
having experienced BCR were censored at their last PSA test. For
RFS analyses, we performed uni- and multivariate Cox-regression
analyses as well as Kaplan–Meier analyses and two-sided log-rank

tests using the survival package in R.35 For Kaplan–Meier analysis,
the cutoff (fraction) defined in TCGA was applied to the Taylor and
Long cohorts for the progression and seeding model, respectively.
For multivariate analysis, only clinicopathological parameters
significant in univariate analysis were included. Variables failing
in this analysis were excluded from the final multivariate model
through stepwise backward selection. Predictive accuracy was
determined using Harrell’s concordance index (C-index).

RESULTS
RNA-Seq of 57 matched samples from 10 hormone-naive prostate
cancer patients
In order to investigate the gene-expression changes in metastatic
PC tissue samples compared to primary tumour samples and
adjacent normal prostate tissue samples, we performed LMD and
RNA-Seq on multiple matched tissue samples from each of ten
hormone-naive PC patients with metastatic disease (PT1-PT10,
Fig. 1a and Figure S1). Matched samples of distant adjacent
normal tissue (DAN), proximal adjacent normal (PAN), primary
tumour tissue (CAN), and lymph node metastases (MET) were
included for each patient (Fig. 1a). For two patients, non-
malignant lymph node tissue samples (LYMPH) were also included
(Fig. 1a). After QC, a total of 57 tissue samples were successfully
sequenced (10 DAN, 13 PAN, 23 CAN, 9 MET, 2 LYMPH). Four
patients had more than one primary PC focus included in the final
data analysis. Gleason scores were determined for each metastatic
sample and for each primary PC focus, and were highly
heterogeneous within patients, e.g. Gleason scores 6, 8 and 9
were found in three distinct PC foci from PT5 (Table 1).

Clustering revealed interpatient sample types more similar than
intrapatient samples
To investigate the similarity of our samples, we performed
clustering analysis of gene expression from all samples. We
observed that sample types clustered together (CAN, MET, and an
adjacent normal cluster of DAN and PAN samples), and the two

Table 1 Clinicopathological characteristics for patients 1-10 (PT1-PT10) and final RNA-seq samples

Patient Sample PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9 PT10

DAN 1 1 1 1 1 1 1 0 1 2

PAN 1 1 1 2 1 1 1 0 1 4

CAN 2 1 2 1 3 1 3 2 4 4

MET 1 1 1 3 1 1 1 0 0 0

LYMPH 0 1 0 1 0 0 0 0 0 0

Age at RP, years 61 51 67 49 63 64 69 65 52 68

Pre-operative PSA, ng/mL 21.0 28.9 18.1 47.1 5.6 22.6 155 7.0 20.6 7.2

Pathological Gleason Score 7 6 7 8 7 7 7 7 7 7

CAN 1 4+ 3, 3+ 3 4+ 4, 4+ 3 3+ 3, 3+ 4 4+ 4, 3+ 4 3+ 4+ 5, 3+ 3,

CAN 2 4+ 5 4+ 3 4+ 4, 3+ 3, 4+ 4 3+ 3, 3+ 3,

CAN 3 4+ 5 4+ 4 3+ 4+ 5, 3+ 4,

Gleason gradesa 3+ 4 4+ 4

MET 1 4+ 3 4+ 3 4+ 5 4+ 5 4+ 4 4+ 4

MET 2 4+ 5

MET 3 —

pT pT3 pT3 pT3 pT3 pT3 pT3 pT3 pT3 pT3 pT3

pN pN1 pN1 pN1 pN1 pN1 pN1 pN1 pN1 pN1 pN1

DAN Distant adjacent normal, PAN proximal adjacent normal, CAN primary tumour, MET lymph node metastasis, LYMPH non-malignant lymph node, pT
pathological tumour stage, pN pathological lymph node status
aGleason grades were determined for each included focus from the primary tumour and MET samples
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non-malignant LYMPH samples clustered together. Thus, inter-
patient sample types were more similar than intrapatient samples
(Fig. 1b). The clustering of samples by tissue types rather than by

individual patient is in contrast to the patient wise clustering
reported in a methylome study of multiple paired samples from
hormone-naive PC patients.19
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Differential expression analysis
To identify genes differentially expressed between sample types
(DAN, PAN, CAN, MET, LYMPH), we performed group-wise
comparisons of gene expression. We initially looked for differential
gene expression between the DAN and PAN sample group and
found only 7 significantly differentially expressed transcripts (FDR
< 0.05) out of more than 23,000 transcripts investigated (Table S5).
Still, GSEA revealed a negative enrichment score for HALL-
MARK_P53_PATHWAY and HALLMARK_NOTCH_PATHWAY in
PAN samples compared to DAN samples (FDR < 0.25, Table S6).
Nevertheless, based on their highly similar expression profiles, we
collapsed the DAN and PAN sample groups to an adjacent normal
(AN) sample group for all subsequent analyses.
Next, we proceeded to evaluate differentially expressed genes

between the AN and CAN samples, as well as between the CAN
and MET samples. Among the top 20 most significantly
upregulated transcripts in CAN versus AN samples, 45% were
genes which have previously been studied in relation to PC
biology and/or progression of PC (PC-associated genes) (Table S7),
e.g. ERG and AMACR. The top 20 most significantly differentially
downregulated transcripts in CAN versus AN samples, comprised
65% PC-associated genes, e.g. the keratin KRT5 and Tumour
Protein TP63. To identify classes of genes that were over or under-
represented between sample types, GSEA was performed
between the CAN and AN. The differential gene-expression results
were corroborated by GSEA, e.g. a significant enrichment of
HALLMARK_ANDROGEN_RESPONSE (FDR < 0.01, NES= 2.41;
Table S8). Accordingly, a significant enrichment of the prostate-
specific gene set “TOMLINS_PROSTATE_CANCER_UP” gene set
was observed in CAN samples versus AN samples (Figure S2A).38

When exploring differential expression profiles for upregulated
transcripts in CAN versus MET samples, only 10% of identified
genes had previously been studied in PC (PC-associated genes)
(Table S9). In contrast, for the downregulated transcripts, 60% of
the transcripts were previously reported as PC-associated tran-
scripts, exemplified by CNN1 (CYR61), SPOC3 and ACTG2
(Table S9). Based on these observations, a downregulation of
transcripts during both the cancerous (AN to CAN) and metastatic
(CAN to MET) processes were more pronounced compared to an
upregulation of transcripts, suggesting that a loss of transcrip-
tional activity is more common than upregulation of specific
genes in the progression of PC.

Genes involved in prostate cancer progression
We moved on to look for up- or downregulated transcripts
associated with the malignant progression from AN to CAN, and
further from CAN to MET. Using stringent criteria (Methods), we
found no significantly upregulated transcripts, but 19 significantly
downregulated transcripts from AN to CAN, and further down-
regulated from CAN to MET (Table S3). Of these 19 transcripts, five
were non-coding RNAs and 14 were protein coding. For functional
evaluation, we used GSEA to search for overrepresentation of the
19 genes in gene lists published by others (Methods). Interest-
ingly, three of the top four identified gene lists included

overlapping genes (KRT15, KRT5, KRT23, COL13A1, FLRT3, MUC4,
SMOC1, KCTD14 and RBFOX3) downregulated during PC develop-
ment and progression (Table S10).
Further, the 19 genes were summarised to a progression score

and analysed in five additional cohorts including Strand (n= 20),
Haldrup (n= 42), Grasso (n= 122), TCGA (n= 551) and Taylor (n=
179). Four of the five cohorts included AN and CAN samples, while
the Grasso cohort also included metastatic PC samples. Since the
genes were found to be downregulated during cancerous and
metastatic progression of PC, we hypothesised that the score
should reflect this trend also in these external cohorts. Indeed, the
progression score was significantly lower in CAN samples
compared to AN samples in all five cohorts, as well as significantly
lower in metastatic samples compared to cancer samples in the
Grasso cohort (Fig. 1c). Thus, these results indicate that the
identified genes are associated with PC progression in several
external independent cohorts of different sizes and origins.
To test the prognostic potential of the 19 genes, three cohorts

with clinical follow-up data were used (TCGA, Taylor, and Long).
We used the gene-expression values to calculate a weighted
progression model from available genes in each of the RP cohorts,
with BCR as the clinical endpoint. When tested in Cox-regression
analysis, the progression model was a significant predictor of BCR
using univariate analysis in all three cohorts (TCGA: Hazard Ratio
(HR) 2.61, P < 0.001; Taylor: HR 5.66, P= 0.0008; and Long: HR 2.33,
P= 0.0068), and in multivariate Cox-regression analysis in TCGA
and Taylor et al. (TCGA: HR 2.09, P= 0.0026; Taylor: HR 5.64, P=
0.0006) (Table 2). In TCGA, the C-index increased from 0.673 to
0.725, and in Taylor from 0.653 to 0.87, when adding the
progression model to the multivariate model. Using Kaplan–Meier
analysis, the progression model could successfully divide patients
in high and low risk to experience BCR in all three cohorts (TCGA,
P < 0.0001; Taylor, P= 0.0068; Long, P= 0.0243, log-rank test,
Fig. 2). The cutoff for Kaplan–Meier analysis for Taylor et al., and
for Long et al. was set using the fractions defined in the TCGA
cohort. Furthermore, when assessing the importance of the
progression model on clinicopathological variables in these three
cohorts, a high progression model score was significantly
associated with higher Gleason score (>7 vs. ≤7), advanced
tumour stage (pT3 vs. pT2), higher pre-operative PSA values
(PSA ≥ 10 ng/mL vs. <10 ng/mL), and positive nodal status at
surgery in TCGA, and with higher Gleason score (>7 vs. ≤7) in
Taylor (Wilcoxon rank-sum test; Figure S3A). No association
between the progression model and clinicopathological variables
in Long were observed (Wilcoxon rank-sum test; Figure S3A).

Identification of the most-probable seeding focus
For four of the ten patients in the discovery cohort (PT1, PT3, PT5
and PT7), multiple primary tumour samples as well as matched
metastatic samples were analysed (Table 1 and Fig. 3a). We
hypothesised that the primary tumour focus from which the
metastasis originated could be determined based on transcrip-
tional profile similarity. Using clustering analysis of the samples we
could identify one likely seeding focus and two likely non-seeding

Fig. 1 Workflow describing sample preparation. a An illustration of HE stained sections of prostate and lymph node FFPE tissue from ten
radical prostatectomy patients (PT1-PT10). Firstly, FFPE tissue blocks were sectioned for HE staining and for laser microdissection. Secondly,
marked tissue areas (colored regions in figure) were used for laser microdissection, RNA extraction, and RNA-sequencing. DAN distant
adjacent normal, PAN proximal adjacent normal, CAN primary tumor, MET lymph node metastasis, LYMPH non-malignant lymph node. NA not
available. b Heatmap based on RNA expression for all samples. Hierarchical clustering of patient samples, using the 500 most variable
transcripts, revealed a distinct clustering pattern where samples types clustered closer together than intrapatient samples. Rows correspond
to patient samples (patient numbers and sample types; CAN, DAN, PAN, MET and LYMPH are illustrated by the colored bars above
the heatmap). Columns correspond to the 500 transcripts with the largest variation between samples. c Progression scores in five external PC
patient cohorts (Methods). The sum of the expression values of the genes included were validated to be lower in the more aggressive tissue
types in Strand (6 AN and 14 CAN), Haldrup (13 AN and 29 CAN), TCGA (52 AN and 499 CAN), Taylor (29 AN and 150 CAN) and in Grasso (28
AN, 59 CAN, and 35 MET), as assessed by two-sided t-tests (overlap of the 19 genes in each cohort can be found in Methods)
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foci for patient PT5 and patient PT7 (Fig. 3a). To identify transcripts
that could be involved in the seeding of the metastatic sample, i.e.
associated with increased aggressiveness, we compared the likely
seeding focus versus the likely non-seeding focus/foci using
differential gene-expression analysis. The differentially expressed

transcripts between seeding foci (n= 2) and non-seeding foci (n
= 4), included 49 transcripts (FDR < 0.05, 5 upregulated and 44
downregulated; Table S11). Using GSEA, five significantly enriched
gene sets (FDR < 0.25) were identified in the seeding foci
compared to non-seeding foci including, e.g.

Table 2 Progression and seeding models in uni- and multivariate Cox-regression analysis in three cohorts (TCGA,Taylor, and Long)

Progression model

Univariate Multivariate

Variable Characteristics HR P-value C-index HR P-value C-index C-index*

TCGA (n= 405, 58 BCR)

PSA Continuous 1.03 (1.01–1.04) 4.60E−03 0.610 — — — —

Margin status Pos. vs. neg. 1.30 (0.77–2.19) 3.30E−01 0.519 — — — —

Gleason score >7 vs. ≤7 3.79 (2.10–6.84) 9.38E−06 0.642 2.07 (1.10–3.91) 2.42E−02 0.725 0.673

Tumour stage pT3 vs. pT2 5.18 (2.22–12.11) 1.46E−04 0.624 3.15 (1.29–7.70) 1.20E−02

Progression score Continuous 2.61 (1.63–4.18) 7.08E−05 0.672 2.09 (1.29–3.37) 2.66E−03

Taylor (n= 107, 13 BCR)

PSA Continuous 1.04 (0.99–1.10) 9.32E−02 0.671 — — — —

Margin status Pos. vs. neg. 3.14 (1.02–9.69) 4.66E−02 0.653 4.32 (1.37–13.65) 1.26E−02 0.870 0.653

Gleason score >7 vs. ≤7 8.66 (2.49–30.28) 6.92E−04 0.670 — —

Tumour stage pT3 vs. pT2 2.83 (0.91–8.78) 7.25E−02 0.639 — —

Progression score Continuous 5.66 (2.05–15.64) 8.29E−04 0.829 5.64 (2.11–15.07) 5.63E−04

Long (n= 91, 40 BCR)

PSA Continuous 1.10 (1.07–1.13) 1.61E−09 0.719 1.09 (1.05–1.12) 3.85E−07

Margin status Pos. vs. neg. 3.29 (1.73–6.27) 2.92E−04 0.649 2.31 (1.16–4.61) 1.67E−02

Gleason score >7 vs. ≤7 2.71 (1.24–5.93) 1.24E−02 0.575 — —

Tumour stage pT3 vs. pT2 1.90 (0.85–4.29) 1.20E−01 0.562 — —

Progression score Continuous 2.33 (1.27–4.28) 6.80E−03 0.628 1.72 (0.98–3.04) 5.96E−02

Seeding model

Univariate Multivariate

Variable Characteristics HR P-value C-index HR P-value C-index C-index*

TCGA (n= 405, 58 BCR)

PSA Continuous 1.03 (1.01–1.04) 4.60E−03 0.610 — — — —

Margin status Pos. vs. neg. 1.30 (0.77–2.19) 3.30E−01 0.519 — — — —

Gleason score >7 vs. ≤7 3.79 (2.10–6.84) 9.38E−06 0.642 — — — —

Tumour stage pT3 vs. pT2 5.18 (2.22–12.11) 1.46E−04 0.624 3.70 (1.55–8.84) 3.17E−03 0.722 0.624

Seeding score Continuous 2.39 (1.81–3.16) 1.05E−09 0.705 2.01 (1.51–2.69) 2.46E−06

Taylor (n= 107, 13 BCR)

PSA Continuous 1.04 (0.99–1.10) 9.32E−02 0.671 — — — —

Margin status Pos. vs. neg. 3.14 (1.02–9.69) 4.66E−02 0.653 4.77 (1.52–15.01) 7.52E−03 0.785 0.653

Gleason score >7 vs. ≤7 8.69 (2.49–30.28) 6.92E−04 0.670 — —

Tumour stage pT3 vs. pT2 2.83 (0.91–8.78) 7.25E−02 0.639 — —

Seeding score Continuous 4.31 (1.94–9.57) 3.37E−04 0.777 4.85 (2.17–10.86) 1.23E−04

Long (n= 91, 40 BCR)

PSA Continuous 1.10 (1.07–1.13) 1.61E−09 0.719 1.12 (1.08–1.16) 3.15E−09 0.807 0.719

Margin status Pos. vs. neg. 3.29 (1.73–6.27) 2.92E−04 0.649 — —

Gleason score >7 vs. ≤7 2.71 (1.24–5.93) 1.24E−02 0.575 — —

Tumour stage pT3 vs. pT2 1.90 (0.85–4.29) 1.20E−01 0.562 — —

Seeding score Continuous 2.79 (1.80–4.34) 4.86E−06 0.704 2.70 (1.78–4.10) 3.27E−06

Significant P values (P < 0.05) are highlighted in bold
C-index= Harrell’s C-index for final model including progression model (top) or seeding model (bottom)
C-index*= Harrell’s C-index for final model excluding progression model (top) or seeding model (bottom)
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HALLMARK_ANDROGEN_RESPONSE and HALLMARK_HEDGE-
HOG_SIGNALING (Table S12), suggesting that these gene sets
might be involved in the metastatic process.
Applying a cutoff value of FDR < 0.01 to the list of 49

deregulated transcripts, revealed a list of 20 transcripts (2
upregulated, 18 downregulated; Table S4). These transcripts were
used to calculate a weighted seeding model for prognostic testing
in each the three validation cohorts (Methods). The seeding model
significantly predicted time to BCR independently of clinicopatho-
logical variables in uni- and multivariate Cox-regression analysis in
TCGA (univariate: HR 2.39, P < 0.0001, multivariate: HR 2.01, P <
0.0001), Taylor (univariate: HR 4.31, P= 0.0003, multivariate: HR
4.85, P= 0.0001), and Long (univariate: HR 2.79, P < 0.0001,
multivariate: HR 2.70, P < 0.0001) (Table 2). Using Kaplan–Meier
analysis, the seeding model could successfully divide patients in
high- and low risk groups to experience BCR in TCGA (P < 0.0001,
log-rank test), Taylor (P= 0.0234, log-rank test), and in Long (P <
0.0001, log-rank test) (Fig. 3b). The cutoff was set using the
fractions defined in the TCGA cohort. Moreover, a significantly
higher seeding model score was associated with positive nodal
status, higher Gleason score (>7 vs. ≤7), and advanced tumour
stage (pT3 versus pT2) in TCGA, and higher Gleason score (>7 vs.
≤7) in Taylor (Wilcoxon rank-sum test; Figure S4B). The seeding
model was not significantly associated with any clinicopathologi-
cal variables in Long (Wilcoxon rank-sum test; Figure S4B).
In summary, the progression and seeding models developed

from our relatively small cohort of 10 PC patients with matched
primary tumour and metastatic tissue samples were shown to
have prognostic potential in three independent RP cohorts, and
could be relevant as prognostic markers to assess metastatic
potential and/or risk of recurrence in early stage PC. Further
validation is warranted.

DISCUSSION
One of the greatest hurdles in prostate cancer management is to
accurately discern the aggressiveness of the individual cancer at
the time of diagnosis. Many tumours remain indolent while some
progress to advanced disease. Current clinicopathological para-
meters are lacking in prognostic accuracy, resulting in both
overtreatment of indolent tumours and undertreatment of
aggressive tumours. In the clinical management of prostate cancer
patients, diagnostic needle biopsy samples are taken from the
prostate, and assessed by a pathologist. However, due to the often
multifocal origin of prostate cancer, it is still uncertain if all foci are
represented, and to which extent the biopsy samples can predict
prognosis. By transcriptomic profiling all tumour foci with matched
metastases, results could plausibly enable the development of an
aggressiveness gene signature representing the entire disease.
Here, we present a study including a cohort of 10 hormone-naive
PC patients with multiple cancer foci matched with metastatic
samples, which enables a unique possibility to uncoil important
markers of the metastatic process not confounded by drug
treatment effects. Thus, in the study presented, we successfully
generated RNA-Seq data from 57 different samples types (CAN, AN,
MET, and LYMPH). We identified several differentially expressed
transcripts between AN, CAN and MET samples, many of which
have previously been associated with PC progression,13,39–43

thereby supporting the validity of our study. In addition, we
identified two gene-expression-based models with strong prog-
nostic potential using two different strategies. Firstly, genes that
were downregulated from AN to CAN, and further downregulated
from CAN to MET (in total 19 genes), were used to construct a
progression model. Secondly, using stringent clustering criteria, we
identified the most likely seeding focus in the primary tumour of
two patients and developed a seeding model from the 20 most
significantly differentially expressed genes between likely seeding-
and likely non-seeding foci. Both models were significantly
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associated with more aggressive clinicopathological variables, and
displayed strong prognostic potential in three independent RP
cohorts (more than 650 patients in total) using univariate- and
multivariate Cox-regression and Kaplan–Meier analysis.

During technical analysis of our sequencing pipeline, we
observed some variations in mapping percentages. While the
range was wider than expected, the mapping percentages below
30% for a fraction of samples, correspond to previous observation
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for PC FFPE samples with mapping percentages from 29 to 49%
(Hedegaard et al.44). Archival FFPE tissue, which is often easily
available in pathological archives, include samples with degraded
RNA as input for RNA-Seq, which complicates novel analyses of PC
related events such as gene fusions, chromoplexia and chromo-
trypsis. Future studies could aim to analyse, e.g. fresh-frozen tissue
with high quality RNA.
Due to the high similarity observed between DAN and PAN

samples, we collapsed these two sample groups into a single AN
group. However, seven significantly differentially expressed
transcripts were observed, and further investigation of these
transcripts could provide novel information regarding differences
in gene expression in a possible field effect depending on
distance to the primary tumour focus. GSEA analysis revealed a
negative enrichment of the p53 and Notch pathway in PAN
samples, which is interesting due to their previous association
with cancer-associated fibroblasts.45 Further studies on possible
field effects, and the possible involvement of p53 and Notch
signaling in normal adjacent tissue to cancer tissue, are reserved
for future work including a larger sample set.
Some of the genes in the progression model have previously

been studied. Interestingly, three studies with overlapping
genes (KRT5, KRT15, KRT23, KCTD14 and RBFOX3) were found,
which represented different stages of PC development (CAN
versus AN samples,41 CAN versus MET samples,13 and multiple
stages of PC progression in a mouse-model39). In addition,
these studies included fresh-frozen tissue samples as opposed
to FFPE13,41 indicating a robustness of the identified candidates
across different material types and study designs. MIR205HG
was the most significantly downregulated transcript from AN to
CAN and from CAN to MET in our cohort, which is in line with a
previous study in PC reporting this miRNA as downregulated in
the epithelial to mesenchymal transition by inhibiting ZEB2.46

In the discovery cohort, we managed to identify seeding foci
in two out of four patients with multiple primary PC foci. The
reasons for not identifying one in all four patients, could be due
to e.g. possible variations in monoclonal versus polyclonal
origins of the metastasis, as previously described.5,7,47 Addi-
tional variation in transcriptional profiles within the likely
seeding focus could introduce another source of noise, as
exemplified by Suh et al.,48 reporting intrafocal heterogeneity of
ERG protein expression and gene fusion patterns in PC.
Nevertheless, the likely seeding foci identified in our study
gave rise to a seeding model, which showed high potential in
predicting patients with high risk of BCR in three large
independent RP patient cohorts including more than 650 PC
patients. Furthermore, GSEA identified Hedgehog and androgen
signaling as enriched gene sets in the likely seeding foci. These
results implicate Hedgehog signaling in PC progression, an
association which is previously described,49–51 but further
studies are warranted to confirm this association.
There are some limitations to the present study. The discovery

dataset was rather small, counting 59 samples from 10 PC
patients. Nevertheless, the successful validation of both the
progression model and the seeding model in three independent
cohorts indicates that our novel marker panels are robust, despite
the small discovery cohort. Previous studies52 have also shown
that some prognostic candidate markers identified in small
discovery cohorts can be successfully validated in larger cohorts,
as was also the case in our current study. We note that the C-
indices for our novel models ranged from 0.722 to 0.870. Thus, the
observed C-indices for the progression model and the seeding
model are comparable to those reported for the commercially
available prognostic panels Decipher,28,53–58 OncotypeDx23,59 and
Prolaris.60–62 Moreover, due to different expression profiling
platforms in the external cohorts used in this study, it was
impossible to thoroughly investigate all the 19 genes in the
progression model or the 20 genes in the seeding model, since

not all genes were present in all cohorts. In future studies, larger
cohorts with a 100% gene overlap should be used when analyzing
the seeding model and progression model as well as the genes
included in these two models. Furthermore, the validation cohorts
used in the present study had some different characteristics. The
Long cohort was the smallest of the three validation cohorts,
which may potentially explain at least in part, why our progression
model was only borderline significant (P= 0.0596) in multivariate
analysis in this cohort. Furthermore, the C-indices for Gleason
score and tumour stage were only 0.575 and 0.562, respectively,
for the Long cohort (Table 2), suggesting it may not be a fully
representative RP cohort. Thus, further investigation using large
independent cohorts with long follow-up and more clinically
relevant end-points, such as distant metastases and/or PC-specific
death, are needed to assess the clinical utility of the novel models
presented here.
In conclusion, we identified several transcripts associated with

the progression to metastatic PC. In addition, gene-expression-
based models based on these genes could significantly divide
patients in high and low risk to experience BCR in three external
RP cohorts, implicating them as interesting clinical biomarker
candidates. Additional large PC cohorts are needed to evaluate
the clinical utility of the models.
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