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ABSTRACT
The spiny red gurnard, Chelidonichthys spinosus is a common marine economic fish species along the
coast of China. In the present study, the complete mitochondrial genome of spiny red gurnard col-
lected from the Yangtze Estuary was determined by next-generation sequencing (NGS). The mitoge-
nome is a circular nucleotide 16,466bp in length and has the typical vertebrate genome structure of
13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and two control regions
(Origin of Heavy chain and Origin of Light chain). The termination associated sequence (TAS), the cen-
tral conserved sequence block (central CSB), and the conserved sequence block (CSB) were detected in
the control region. Phylogenetic analysis of C. spinosus places in a fully supported clade with C. kumu
in a sister position to Eutrigla gurnardus. The complete mitochondrial genome sequence of the spiny
red gurnard provides baseline genetic information for future studies on the molecular systematics and
phylogeny of bony fishes in the Triglidae.
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The spiny red gurnard Chelidonichthys spinosus is a tropical
marine fish, mainly distributed in the Northwest Pacific from
southern Hokkaido, Japan to the South China Sea (Zhang
et al. 2009). It is a common commercial fish along the coast
of China and the target of bottom trawl fishing (Wang et al.
2018). Recently, with the increase in fishing intensity, the
population sizes of many economic fishes along the coast of
China have declined (Li et al. 2017). Next-generation
sequencing (NGS) has revolutionized the field of molecular
biology through its high speed and ability to generate large
amounts of genomic data (Schuster 2008; Koboldt et al.
2013). We used NGS technology to determine the complete
mitogenome of C. spinosus, which could be used to provide
insight into population processes and the evolutionary his-
tory of the spiny red gurnard (Zhang and Xian 2015).

The DNA was extracted from muscle tissue of a spiny red
gurnard collected from station 33 (123E, 30.75N) of the
Yangtze estuary in the August 2020 and deposited in the
CAS Key Laboratory of Marine Ecology and Environmental
Sciences, Institute of Oceanology, Chinese Academy of
Sciences, and its catalog number is 4-M-M-5 (Yibang Wang,
wangyibang@qdio.ac.cn). The sequencing was completed
using the Illumina NovaSeq sequencing platform (Illumina,

San Diego, CA). The genome sequence was assembled and
analyzed using A5-miseq v20150522 (Coil et al. 2015) and
SPAdes v3.9.0 (Bankevich et al. 2012). The pilon v1.18 (Walker
et al. 2014) software was used to correct the results to obtain
the final mitochondrial sequence. Annotation of the complete
mitochondrial genome sequence was performed with the
MITOS web server (http://mitos2.bioinf.uni-leipzig.de/index.
py) (Bernt et al. 2013). The maximum-likelihood (ML) tree was
constructed using the ML method withK2P distances in
MEGA10 software with 1000 bootstrap replicates (Kumar
et al. 2018).

The complete mitogenome of the spiny red gurnard was
16,466 bp in length (GenBank accession MW300429), similar
to the size of other teleost mitogenomes. As in other verte-
brates (Miya et al. 2001), it contained 13 protein-coding
genes, two rRNA (12SrRNA and 16S rRNA), 22 tRNA, and two
control regions (OH and OL). Most of the genes of spiny red
gurnard were encoded on the N-strand, with only NAD 6 and
eight tRNA (tRNAGln, tRNAAla, tRNAAsn, tRNACys, tRNATyr,
tRNASer, tRNAGlu, and tRNAPro) genes encoded on the J-
strand. Among the 13 protein coding genes, ATP 6 and ATP
8 overlap by 10 nucleotides, and NAD 4 and NAD 4L share
seven nucleotides. The NAD 5 and NAD 6 genes overlap by
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four nucleotides on the opposite strand. The ATG codon
initiates 12 of the 13 protein coding genes (NAD 1, NAD
2, CO II, ATP 8, ATP 6, CO III, NAD 3, NAD 4L, NAD 4,
NAD 5, NAD 6, and COB), and COI starts GTG. The stop
codon TAA terminates nine genes (NAD 1, NAD 2, CO I,
ATP 8, AYP 6, CO III, NAD 4L, NAD 5, and NAD 6), TAG
terminates NAD 3, and the other genes for COII, NAD 4,
and COB, are stopped with the incomplete T– by post-
transcriptional polyadenylation (Ojala et al. 1981). The 12S
and 16S ribosomal RNA genes of the spiny red gurnard
comprise 946 bp and 1670 bp, respectively. They are
located between tRNAPhe and tRNALeu, and are separated
by tRNAVal, as they are in other vertebrates (Zhang et al.
2016). The 22 tRNA genes were interspersed in the gen-
ome and range in size from 65 to 74bp and fold into clo-
verleaf secondary structures with normal base paring. The
major non-coding region in the spiny red gurnard is
located between tRNAPro and tRNAPhe, and is 515 bp in
length. The termination associated sequence (TAS), central
conserved sequence block (central CSB), and conserved
sequence block (CSB), are detected in the control region
and are similar to most bony fishes (Zhang et al. 2013).

Phylogenetic analysis of the complete mitogenome of C.
spinosus fully resolved it in a clade with C. kumu (Figure
1). Eutrigla gurnardus occupied a sister position in the
same clade. Kim et al. (2012) reported that the interspecific
distances between Hexagrammos sp. and C. spinosus below

0.1% (Kim et al. 2012), which were also confirmed in
our results.
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