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Abstract: Dosage compensation between the sexes results in one X chromosome being inactivated
during female mammalian development. Chromosome-wide transcriptional silencing from the
inactive X chromosome (Xi) in mammalian cells is erased in a process termed X-chromosome
reactivation (XCR), which has emerged as a paradigm for studying the reversal of chromatin silencing.
XCR is linked with germline development and induction of naive pluripotency in the epiblast, and also
takes place upon reprogramming somatic cells to induced pluripotency. XCR depends on silencing
of the long non-coding RNA (lncRNA) X inactive specific transcript (Xist) and is linked with the
erasure of chromatin silencing. Over the past years, the advent of transcriptomics and epigenomics
has provided new insights into the transcriptional and chromatin dynamics with which XCR takes
place. However, multiple questions remain unanswered about how chromatin and transcription
related processes enable XCR. Here, we review recent work on establishing the transcriptional and
chromatin kinetics of XCR, as well as discuss a model by which transcription factors mediate XCR
not only via Xist repression, but also by direct targeting of X-linked genes.

Keywords: epigenetics; chromatin; XCR; XCI; reprogramming; gene regulation; Xist; polycombs;
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1. Introduction

X-chromosome reactivation (XCR) is a developmentally regulated process by which X-chromosome
inactivation (XCI) is reversed [1,2]. It originates from the evolution of sex chromosomes and dosage
compensation mechanisms. The natural aneuploidy of the X chromosome in XY males [3,4] is proposed
to have led to the selection of a compensation mechanism to balance X-linked gene dosage between
diploid autosomes and the aneuploid X chromosome [5]. Indeed, one form of X-chromosome dosage
compensation is X-chromosome upregulation (XCU), where transcriptional upregulation of the sole
active X chromosome in a cell takes place [6–9]. There have been several reports supporting XCU in
mammals [6,10]. There have also been reports that do not support XCU in mammals, analyses which
might be explained by a lack of allele-resolution or lack of exclusion of non-expressed genes [9,11,12].
Multiple reports in the past years have confirmed that XCU occurs in placental mammals [6,13–20].
Nevertheless, while XCU solves the X-chromosome dosage problem relative to autosomes in XY cells,
it potentially creates a double dose of X-linked genes in XX female cells. As a result, it is thought
that eutherian mammals possess the XCI as a mechanism in which one of the two X chromosomes is
randomly silenced in females to ensure gene dosage balance between the sole active upregulated X
chromosome and diploid autosomes [21]. In placental mammals, XCI is random and inactivates the
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paternal or maternal X chromosome early in development. In turn, XCR might be a developmentally
regulated process that reverses XCI in the germline. XCR has also emerged as a paradigm for studying
erasure of chromatin silencing, cellular reprogramming, pluripotency, development, epigenetics and
gene regulation [22–27].

Previous work has revealed a strong link between pluripotency and XCR in placental mammals [28–31].
When naive embryonic stem cells (ESCs) differentiate, random XCI is induced. In mouse, another form of
XCI exists and is initiated around the four-cell stage and always takes place on the paternal X chromosome,
referred to as imprinted XCI [2,28,30–33]. The paternal X chromosome then remains inactive in the
trophectoderm (TE) and primitive endoderm (PE) [1,2,33]. Mice have a second form of XCR in addition
to XCR in the germline, which takes place first during development where the paternal Xi undergoes
XCR in the preimplantation epiblast lineage [1,2]. Paternal Xi reactivation takes place in mice but not
in humans and rabbits, and therefore might be mouse-specific, perhaps linked with the need for rapid
development, although many placental species remain to be examined. The strong link between the
presence of two active X chromosomes (Xas) in the naive epiblast also appears in several eutherians
species [1,34]. Therefore, developmentally regulated induction of pluripotency in the naive epiblast in mice
and in the germline of mice or humans is associated with XCR and the presence of two active Xas [1,2,35].
As a result, naive pluripotent stem cells isolated from the naive epiblast have two Xas. Exit from naive
pluripotency induces random XCI in the mouse epiblast around peri-implantation stages or in vitro upon
differentiation of mouse naive ESCs [36–40]. Once established, chromatin silencing on the Xi is maintained
despite the presence of strong trans factors that promote transcriptional activation of the Xa (trans factors
are factors that have the potential to act on both alleles). Chromatin silencing in cis (affecting only the
same allele) prevents reactivation by transcription factors and forms stable and heritable gene silencing.
Although mouse pluripotent stem cells (PSCs) have been used as a key tool to study random XCI for
decades, random XCI during the differentiation of human naive PSCs has only recently been reported [41].
In line with the strong link between naive pluripotency and XCR, reprogramming somatic cells to naive
pluripotency induces erasure of chromatin silencing and XCR [42,43]. Partial XCR also takes place in
primed human PSCs, a process termed erosion of XCI, which influences differentiation [44]. In sum,
whenever naive pluripotency is induced in eutherian mammals, XCR also takes place in female cells unless
an XaXa state is already pre-established.

During XCR, the long non-coding RNA (lncRNA) X inactive specific transcript (Xist), a key inducer
of XCI [45–47], is silenced, and repressive chromatin marks are lost [23,25,42,48]. Tsix, a lncRNA encoded
antisense to Xist, is reactivated during XCR in mouse [23,25,42,48]. There is also X chromosome-wide
remodeling of chromatin and transcription during XCR. On the Xi, all of the inactivated X-linked genes
are reactivated during XCR, representing a dramatic example of erasure of facultative heterochromatin.
Several events of XCR have been studied during reprograming of somatic cells into induced pluripotency,
which include chromosome-wide chromatin remodeling [23,25,42,49], repression of Xist [23,25,42,48,49],
loss of repressive chromatin marks [25,42], changes in 3D chromatin organization [49,50], loss of DNA
methylation [25,51], gain of histone acetylation [48], gain of active RNA Polymerase II [25] and chromatin
decompaction and changes in replication timing. XCR also leads to loss of chromosome-wide stable and
heritable transcriptional silencing, as well as gain of ability to undergo random XCI [23,25,41,42,48,49,52].
Nearly all epigenetic mechanisms found for XCR are also used across the genome; hence, XCR is an
excellent model to study gene regulation and epigenetics.

Temporal changes in transcription and chromatin during XCR have been the focus of several
studies over the past years. In this review, we discuss recent insights into how pluripotency induction
leads to XCR, reverses chromatin silencing, and erases heritable memory of transcriptional silencing.
We describe an emerging model where transcription factors including members of the pluripotency
gene regulatory network target multiple regulatory elements along the Xi to reverse chromatin silencing
and induce transcriptional activation during reprogramming to pluripotency.
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2. Initiation of XCI during Mouse Development and Differentiation

Initiation of XCI is a remarkable example of developmentally regulated chromosome-wide
heterochromatin formation in which over 1000 genes are silenced on the Xi [53]. Although almost all
genes are subject to XCI, a small proportion of X-linked genes, termed escapee genes, are not silenced
and therefore maintain bi-allelic expression [54–57]. The lncRNA Xist has been shown to orchestrate
changes in chromatin and transcription leading to the initiation, progression and maintenance of
XCI [58–61]. Through RNA FISH it has been shown that Xist RNA expression is first partially induced
on both X chromosomes upon destabilization of the pluripotency network [40], then spreads to all
X chromosomes present except one [62]. Xist forms an RNA cloud on the Xi and spreads along
the X chromosome exploiting 3D chromatin organization (Figure 1a) [62–64]. Intense research has
been conducted to identify the regulatory elements involved in how cells sense the number of X
chromosomes present in a cell (counting) and inactivate all but one X chromosome (choice) [65,66].
These efforts converged on the identification of the X inactivation center (Xic), a region that is necessary
and sufficient for XCI [67–69].

Figure 1. X-chromosome inactivation (XCI) in placental mammals (a) Xist RNA clouds shown by
RNA fluorescence in-situ hybridization (FISH) on mouse female fibroblasts. Reproduced with permission
from [70]. scale bar = 2µm (b) Schematic representation of chromatin changes accompanying X-chromosome
inactivation (XCI). Active X chromosomes (Xas) are shown in green. The inactive X chromosome (Xi) is
shown in red. Ac: acetylation; Me3: H3K27me3; Ub: H2AK119ub1. PTM: post-translational modifications.

Xist RNA triggers the recruitment of a plethora of proteins that induce, propagate and stabilize
the silent chromatin state on the Xi (Figure 1b) [53,71–73]. The molecular events involved include
histone deacetylation [71,74], gain of Polycomb dependent chromatin marks including histone H2A
lysine 119 ubiquitination (H2AK119ub1) then histone H3 lysine 27 trimethylation (H3K27me3) [74–77],
formation of protein condensates [78–80], incorporation of histone variant macroH2A [81,82] and
DNA methylation [83–88]. Intense research efforts have been dedicated to understanding which
elements of Xist RNA are responsible for the changes in chromatin and transcription described above,
which has been covered in excellent recent reviews [79,89,90]. For example, the function of the
E-repeat of Xist is delayed compared to that of the A-repeat [78,91,92]. The A-repeat appears to be the
trigger for silencing while the E-repeat is important to establish stable gene silencing. In summary,
several mechanisms acting in concert help to induce stable chromatin silencing on the Xi, which is
maintained in somatic cells.

3. Maintenance of XCI

Once established, XCI is extremely stable and adopts heritable gene silencing, which can be
maintained for decades. The formation of stable and heritable silenced chromatin on the Xi provides a
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paradigm for understanding the stability and reversibility of gene silencing. Maintaining chromatin
silencing is essential for development and to prevent undesirable gene reactivation. Studies on
maintenance of XCI have revealed several principles by which gene silencing is maintained. The factors
and mechanisms that have been involved in maintenance of XCI include Xist [45,60,83,93–101],
DNA methylation [83–85,88,102,103], histone deacetylation [83], Polycomb [104,105], H3K9me3 [106]
and macroH2A [70,107,108], and likely include additional layers of regulation as well.

Several lines of evidence by using gene editing tools have suggested that Xist is not essential for
maintenance of XCI. First, during XCI, there is a switch between a reversible, Xist dependent phase to a
maintenance, Xist-independent phase of XCI in which Xist plays only a minor role [60]. Removing Xist
expression after several days of differentiation of ESCs does not lead to XCR, arguing that other
mechanisms are utilized to propagate stable and heritable gene silencing on the Xi in the absence of Xist
expression. Second, upon Xist deletion in somatic cells, transcriptional silencing is largely maintained,
also arguing that other mechanisms ensure maintenance of gene silencing [83,107,109]. A more recent
study showed that Xist loss is largely tolerated in female mice [99]. Collectively, these studies have
shown that Xist alone is not essential for maintenance of XCI.

However, several additional lines of evidence using immunofluorescence (IF) and RNA FISH have
indicated that Xist does participate in long term maintenance of XCI, even if this role in maintenance
of XCI is minor and has been underappreciated. First, several features associated with chromatin
repression are lost when Xist is genetically deleted in somatic cells. These include loss of enrichment of
Polycomb-associated repressive chromatin marks H3K27me3 and H2AK119ub1 [110], loss of repressive
histone variant macroH2A on the Xi [111], loss of 3D chromatin structure increasing the probability for
reacquisition of promoter-enhancer interactions [110], and chromatin opening on a small number of
regions [112]. Second, long-term stability of gene silencing is compromised in the absence of Xist were
spontaneous XCR becomes more frequent [83,93,96]. Third, when combined with other treatments such
as DNA methylation and histone deacetylase (HDAC) inhibition, Xist deletion increases the proportion
of cells that undergoes XCR [83], again suggesting a role for Xist in contributing to maintaining long
term repression of gene silencing on the Xi and preventing erosion of XCI. Erosion of XCI in somatic
cells may not manifest itself after several weeks in culture, but could be relevant in aging, although XCR
in aging remains largely unclear [113]. Fourth, several studies have reported examples of partial
gene-specific loss of maintenance of XCI upon Xist deletion in the soma [97,99]. Such examples include
interesting observations in the immune system where Xist and heterochromatin modifications can
show altered patterns in mature naive T and B cells [114,115]. How Xist contributes to gene-specific
and cell-type specific maintenance of XCI in other contexts remains unclear. In summary, these studies
suggest that Xist plays a minor role in maintenance of XCI in most cells, but does contribute to the
long-term stability of the repressed state on the Xi in a cell-type and gene-specific manner.

A key mark for maintenance of XCI is promoter DNA methylation, which helps to maintain
gene silencing especially in embryonic lineages [83–85,88,102,103]. Inhibiting DNA methylation
with 5-Azacytidine (5Aza) induces partial reactivation [83,94,96,98,116–118], probably because 5Aza
inefficiently inhibits DNA methylation at certain concentrations [25]. Indeed, depletion of DNMT1 by
knockdown or genetically also leads to partial XCR [103,106]. Combined DNMT1 knockdown and
5Aza treatment has additive effects on DNA demethylation and XCR [25]. In addition, SMCHD1 has
been implicated in DNA methylation and maintenance of about 1–10% of the genes on the Xi [84,85].
Its role in maintenance of XCI was later linked to DNA methylation independent functions [119],
Polycomb repressive complex 1 (PRC1) [120], and chromatin organization [121,122]. In summary, it is
thought that DNA methylation plays an important role for maintenance of XCI.

The repressive histone marks H3K9me2/3 have been shown to enrich on the Xi during XCI [106].
Depletion of the H3K9me3 transferase Setdb1 has a very small but significant effect on maintenance
of XCI [106], in line with a study in which XCI is maintained in embryos genetically depleted of
H3K9 methyltransferase G9a [123]. These results indicate that H3K9me3 may have a minor role in
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maintenance of XCI, in line with its significant role in establishment of facultative heterochromatin [124],
but other mechanisms are also involved.

Differences in the factors required to maintain XCI in distinct embryonic lineages have been
reported. In the mouse TE, Polycomb group protein Eed maintains imprinted XCI by opposing XCR
upon exit from the TE stem cell state [104,105]. Polycomb repressive complex 2 (PRC2)-mediated
repression is thought to be particularly important for stable maintenance of imprinted XCI in the mouse
TE because the imprinted Xi does not acquire DNA methylation as on the Xi in the soma [104,125–127].
A landmark study in the field showed that in Dnmt1 knockout embryos, maintenance of XCI is
unaffected in the extraembryonic endoderm while XCR takes place in the embryonic lineage [103].
A more recent study that combined genetic perturbations with single-cell RNA sequencing (scRNA-seq)
in mouse embryos confirmed the role of Eed in maintenance of imprinted XCI in the TE [128]. However,
Eed knockout had little impact on maintenance of XCI in the PE, indicating that distinct mechanisms
maintain imprinted XCI in TE and PE lineages [128]. Given that humans have no imprinted XCI,
and also have a much longer development and gestational period compared with mice, it will be
interesting to define the factors and mechanisms involved in induction, maintenance and reversal of
XCI in human extraembryonic lineages, which is discussed in Section 10.

One key difference between the human extraembryonic and embryonic lineages is that embryonic
lineages need to maintain stable chromatin silencing for up to over 100 years, while extraembryonic
lineages support embryo and fetal development for less than a year. Hence, somatic and extraembryonic
lineages might use distinct mechanisms for maintenance of chromatin silencing on the Xi, and on
autosomes as well. Indeed, several studies have indicated that maintenance of XCI in somatic cells
depends on a plethora of distinct mechanisms that include DNA methylation.

Studies in which multiple repressive pathways are targeted individually or in combination have
established that synergism between DNA methylation, histone deacetylation and Xist RNA together
maintain gene silencing on the Xi [83]. Inhibiting DNA methylation, histone deacetylases and deleting
Xist has a much bigger effect on XCR than any individual condition alone. Collectively, these results
suggest that multiple different layers of chromatin repression act together to maintain XCI and ensure
long term maintenance of XCI.

4. XCR during Mouse Development

Despite the presence of most of the repressive chromatin mechanisms that we know of on the
Xi, stable chromatin silencing on the Xi can be reversed. There are two forms of XCR in mouse,
reversal of imprinted XCI and reversal of random XCI. During mouse preimplantation stages of
embryonic development, the transcriptionally repressed paternal X (Xp) is reversed in the epiblast,
whereas the extraembryonic lineages TE and PE maintain imprinted XCI for further stages of the
development [1,2,26,33]. The reversal of imprinted Xp in the preimplantation epiblast is mediated by
loss of Xist RNA, removal of repressive marks and recruitment of active marks on chromatin [1,2,129].

Previous studies have revealed a strong link between pluripotency and XCR in placental
mammals [130], but not in marsupials [29]. The pluripotent cells in the preimplantation epiblast in
mice and germ cells in mice and human have two Xas, while exit from pluripotency induces random
XCI [41,131]. As a result, mouse PSCs derived from the preimplantation epiblast have been used
extensively to study the mechanisms of XCI.

RNA FISH and scRNA-seq experiments in early mouse embryos have shown that different genes
are reactivated at different times during reversal of imprinted XCI. In preimplantation mouse embryos,
XCR correlates with the expression of the pluripotency gene Nanog [1,2,25,132,133]. Most X-linked
genes reactivate after Xist silencing [129,133]. However, a small category of X-linked genes reactivate
before Xist silencing [133]. Late genes are enriched for the repressive mark H3K27me3, suggesting
that this mark might oppose their reactivation [129]. These results suggested that different genes
are regulated by different processes during XCR [129]. Indeed, one study suggested that the active
removal of H3K27me3 by UTX may be involved, because late reactivated genes are more slowly
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reactivated in UTX mutant embryos [129]. It is possible that active mechanisms contribute to fast XCR
in preimplantation epiblast during fast development in mice. On the other end, transcription factors
NANOG and ESRRB were implicated in reactivation of early genes [129]. Furthermore, it is believed
that additional mechanisms may be required to erase repressive chromatin marks during reversal
of imprinted XCR. Additional studies are needed to identify the other mechanisms. Collectively,
these results show that induction of pluripotency in the naive epiblast induces XCR. Accordingly,
reactivation of the randomly inactivated X chromosome can also be induced in the naive epiblast of
cloned embryos [52,134–136].

The second round of XCR in mouse occurs in primordial germ cells (PGCs) and erases random
XCI [137–139]. The main molecular events of XCR in the germline include pluripotency-associated
transcription factor activation, including Nanog and Prdm14 [137], Xist silencing [137], H3K27me3
loss [138,140], and transcriptional reactivation [141] (Reviewed in [22,142]). More recently, it has
been shown that PRDM14 mediates the removal of H3K27me3 marks from the Xi during XCR in
PGCs [143]. In addition, a recent study in pig showed that Xist is silenced in most pre-migratory
PGCs [144]. XCR begins in pre/early migrating PGCs and continues in gonadal PGCs. The kinetics
of XCR is not explained by distance of genes to the Xic [144]. In summary, XCR takes places during
epigenetic reprogramming of the germline and is linked to the expression of pluripotency genes,
including transcription factors. The precise kinetics of XCR in the mouse germline remains to be defined.

5. XCR during Cellular Reprogramming in Mice

Several in vitro systems have been used to induce and study XCR. These include cell fusion [145–148],
and nuclear transfer to mouse or frog oocytes [52,70,134] (reviewed in [22,135,149]) and somatic cell
reprogramming to induced pluripotent stem cells (iPSCs) [23,25,42,48,49,150].

Reprogramming somatic cells into iPSCs erases memory of somatic cell identity and chromatin
silencing [151,152]. RNA FISH studies have demonstrated that iPSC reprogramming also induces
XCR [42,153] (Figure 2a). Recently, XCR has been proposed to take place in three phases: initiation,
progression and completion of XCR [22]. In the initiation phase of XCR, reprogramming induces
reacquisition of PRC2 enrichment on the Xi [25]. The progression phase induces reactivation of
endogenous pluripotency genes [23,25,42,48,49] and include, Tsix reactivation [23,25,42], Xist silencing [23,
25,42], loss of PRC2, H3K27me3 and macroH2A enrichment on the Xi [23,25,42], as well as gain of histone
acetylation and active RNA Polymerase II [25,42,48], DNA demethylation [25,42,51], and transcriptional
reactivation [23,25,42,48,49,150,154]. In the completion phase, stable and heritable gene silencing is
reversed and the X chromosome reacquires the ability to undergo random XCI upon differentiation [42].
In summary, XCR leads to a dramatic remodeling and erasure of silenced chromatin and transcription,
and takes place in distinct phases.

Multiple studies have also shown that the double dose of X-linked genes due to XCR in XX
iPSCs has consequences for the molecular and cellular properties of iPSCs [51,154,155], in line with
previous work in ESCs [156–158]. XX PSCs acquire global and sex-specific DNA hypomethylation
and open chromatin landscapes [51,155,158]. Work so far suggests that reactivation of Dusp9 leads
to repression of DNMTs and induces female-specific DNA hypomethylation [51,154,155,157,158].
XX PSCs also acquire stabilization of pluripotency and exit pluripotency with delay compared with
XY iPSCs, also in line with work in ESCs [51,156]. An additional elegant recent study in ESCs
suggests that reactivation of Klhl13 late in reprogramming likely stabilizes pluripotency and delays
pluripotency exit in XX iPSCs [154,157,159]. Furthermore, aneuploidy of the X chromosome rapidly
takes place in XX iPSCs (Figure 2b), within a couple of passages, which changes sex-specific DNA
hypomethylation, open chromatin landscapes and differentiation propensity to a XY state [51,156,158].
In summary, reprogramming somatic cells to pluripotency leads to Xist silencing and erasure of XCI,
in agreement with the strong link between pluripotency and the XaXa state, which is then responsible
for inducing sex-specific molecular and cellular changes that are then lost upon acquisition of X
chromosome aneuploidy.
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Figure 2. X-chromosome reactivation (XCR) during induced pluripotent stem cell (iPSC) reprogramming
followed by X chromosome aneuploidy. (a) Roadmap showing XCR during mouse embryonic fibroblast
reprogramming to iPSC by Oct4, Sox2, Klf4 and c-Myc factors; (b) XCR followed by rapid loss of X
chromosome or X chromosome aneuploidy in XaXa iPSCs.

6. Transcriptional Kinetics of XCR during Mouse iPSC Cell Reprogramming

Pluripotency induction in somatic cells leads to XCR [23,25,42]. Allele-resolution transcriptomic
studies have been used to define the precise kinetics of XCR during iPSC reprogramming [48,49].
One study reprogrammed mouse embryonic fibroblasts and analyzed reactivation after the isolation
of reprogramming intermediates using the SSEA1 marker [48]. Allele-resolution bulk RNA-seq
revealed that different genes become reactivated at different times. Three categories of genes were
distinguished: (1) early, (2) intermediate and (3) late reactivated genes. Early reactivated genes
represent a small category of genes that become bi-allelically expressed before the entire pluripotency
gene regulatory network is activated [48]. Intermediate reactivated genes represent nearly all genes on
the X chromosome and their coordinated reactivation coincides with reactivation of many pluripotency
transcription factors (TFs) and silencing of Xist [25,48]. Late reactivating genes constitute a very
small class of genes that include Klhl13. Early reactivated genes also become highly expressed in the
progression phase of XCR than in the initiation phase [48]. A more recent study used neural progenitor
cells differentiated from ESCs with a Tsix mutation to force non-random XCI, an Hprt-GFP reporter,
a Nanog reporter and an inducible reprogramming TFs cassette [49]. To define the kinetics of XCR,
the neural progenitor cells were induced to reprogram to iPSCs, and analyzed using bulk RNA-seq
after SSEA1 cell sorting [49]. Partial reactivation of early genes was confirmed [49].

Both studies found that early reactivated genes during iPSC reprogramming have a shorter
genomic distance to escapee genes compared with intermediate and late reactivated genes [48,49].
Accordingly, the kinetics of early gene reactivation are not explained by the distance to the Xist
locus [48,49]. Although it was suggested that early genes initiate reactivation before complete Xist
loss [48], like in pre-implantation embryos [1,129,133], direct evidence by RNA FISH is lacking.
Nevertheless, Xist levels are already reduced during the initiation of XCR at the time early genes
become bi-allelically expressed [48,49]. Hence, it is possible that early reactivated genes may be less
sensitive to Xist levels to maintain their silenced state during reprogramming to iPSCs. Because X-linked
genes relocate to the interior of a repressive compartment during XCI, while escapee genes remain
outside [160], it was proposed that early reactivated genes may be more prone to reactivation due
to their 3D chromatin organization [22,48,49]. While initial Hi-C data analyses did not support or
excluded this idea [48], a more recent study confirmed that early reactivated genes occupy a chromatin
compartment together with escapee genes [49]. Therefore, it is possible that 3D chromatin organization
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could help prime genes for reactivation, but this must be experimentally tested. Recently, work in
human ESCs (hESCs) found that early reactivated genes during XCR in hESCs, known as erosion of XCI
(See Section 12) also starts at genes with shorter genomic distance to escapee genes [161]. Collectively,
these results indicate a possible conserved link between chromatin organization and the stability and
reversibility of gene silencing on the Xi, and may also be linked to the mechanisms regulating variable
escape from XCI [162,163]. If confirmed and extended to autosomes, this could mean that chromatin
organization might play a role in maintaining long-term heritable and stable heterochromatin silencing,
and hence, stable differentiation.

Finally, two studies, one in mouse embryonic fibroblast and the other in neural progenitor
cells, reached different conclusions on how fast XCR takes place during reprogramming to induced
pluripotency [48,49]. The first study suggested that XCR is more gradual and hence, slower than
previously recognized because early genes initiate reactivation at day 8 and late genes complete
reactivation at day 12 [48]. The second study suggested that XCR can be completed within 24 h [49],
like in the epiblast, suggesting that reversal of random XCI can be accelerated [129]. The difference
between both studies can be explained by the criteria used to define the rate of XCR. For example,
whether early reactivated and late reactivated genes are considered modifies the apparent rate of XCR.
Additionally, it is also possible that the rate of XCR depends on the reprogramming system (lentiviruses
versus integrated transgenes), starting cell types (embryo-derived mouse embryonic fibroblasts versus
ESC-derived neural progenitor cells), and the level of reprogramming factors, in line with studies that
linked the speed of reprogramming to iPSCs with starting cell states [164]. More work will be needed to
determine how these parameters influence XCR. Nevertheless, all studies agree that (1) a small category
of genes with genomic and epigenomic features shared with escapee genes are reactivated early and (2)
most genes reactivate concomitant with reactivation of pluripotency TFs and following Xist silencing
in a relatively short period of time. Finally, both studies use bulk measureements, and scRNA-seq will
be needed to resolve the heterogeneity that is inherent to iPSC reprogramming.

7. Chromatin Organization of the Xi and its Dynamics during Mouse XCR

We now know that the mammalian genome is organized hierarchically (Figure 3), and the Xi
adopts a unique conformation [81,165,166]. At the large scale, imaging studies have shown that each
chromosome folds into individual chromosome territories. Chromosome conformation combined with
sequencing techniques have shown that within each territory, active (A) and repressed (B) compartments
are formed, typically hundreds to thousands of kilobase-pairs large [165,166]. At a lower scale,
chromatin looping gives rise to topologically associating domains (TADs), typically tens of kilobase-pairs
large, which constrain the activities of enhancers and restrict chromatin interactions [165,166].
The boundaries between TADs are enriched for CTCF and Cohesin [165,166].

Figure 3. Genome organization. The mammalian genome possesses different levels of organization.
From a large scale to a fine scale, chromosome territories (each in a different color), compartments
A (active chromatin) and B (repressed chromatin), topologically associated domains (TADs),
and nucleosomes of two homologous alleles are shown (from left to right). Middle: Compartments
A and B are indicated by a green and red background, respectively. Homologous alleles are
regulated independently.
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The Xi forms two large mega-domains delimited by the Dxz4 tandem repeat locus [81,167–169].
Several studies indicated a global absence or attenuation of A/B compartment structure on the
Xi [73,81,121]. However, a recent study found evidence for A and B-like compartments structure
present on the Xi, but attenuated due to the presence of the two mega-domains [49]. The A-like
compartment on the Xi contains escapee genes and is associated with enrichment of Xist and H3K27me3,
while the B-like compartment is enriched for heterochromatin-associated protein CBX1, also known as
HP1-BETA [49]. There is also a general attenuation of TADs across the Xi, with the exception of escapee
genes that display TAD-like structure [73,81,121]. In summary, the Xi adopts a unique 3D chromatin
conformation characterized by mega compartments as well as attenuated A and B-like compartments
and TADs. In light of the recent study that reported chromatin clutches within TADs [170], it will be
interesting to define if these structures can also be found on the Xi.

Given that early reactivated genes during XCR have a shorter genomic distance to escapees [48,49]
and given that escapee genes have increased A-like compartment and TAD-like structure [49], it was
proposed that early reactivated genes may also have a specific 3D conformation [22,48]. Indeed, a recent
transcriptomic and epigenomic study indicated that there is a relationship between 3D chromatin
structure and the kinetics of XCR [49]. Early reactivated genes and escapees are enriched together in
an A-like compartment on the Xi, providing evidence that early reactivated genes lie in a 3D chromatin
compartment similar to escapee genes [49]. Chromatin accessibility analysis showed that, during XCI,
the Xi undergoes chromosome-wide loss of accessibility, except at escapee genes [49,129]. In addition,
early reactivating genes already have more accessible chromatin on the Xi before reprogramming [49].
Therefore, chromatin opening precedes transcription of early reactivating genes during the initiation
of XCR [49]. Furthermore, early opening on the Xi starts within chromatin with A-like features
during reprogramming, and, like for gene expression, only reaches iPSC level in the final stages
of reprogramming [49]. While early reactivating genes have expression levels comparable to late
reactivating genes on the Xa [49], early reactivated genes were found to be more expressed than late
reactivating genes on the Xa at day-2 of reprogramming [48]. These results strongly suggest the
presence of trans factors that are induced during reprogramming and increase the expression of early
genes both on the Xa and on the Xi. Together, these results suggest that both chromatin opening
and 3D chromatin organization might poise early genes for activation during iPSC reprogramming,
possibly due to a combination of reduced Xist expression and TFs overexpression, all of which remains
to be functionally tested. In summary, early reactivating genes are located adjacent to escapee genes,
within an A-like compartment, and become partially open and transcriptionally reactivated early
during XCR.

3D chromatin remodeling of the Xic, which contains Xist, also takes place during XCR [49].
Xist silencing is key for XCR [23,25]. Early during XCR, there is a decrease in interactions within
TAD-E, which contains Xist, Jpx and Ftx, whereas interactions between Ftx and Rlim increase [49].
Jpx downregulation might facilitate Xist repression, while Ftx and Rlim are unlikely candidates for Xist
repression due to their reactivation kinetics [49]. Restructuring of TAD-D, which contains lncRNA
Tsix, Xite and Linx (Xist repressors), occurs after XCR, suggesting that it may not be required for XCR.
In summary, distinct changes in 3D-chromatin interactions take place at the Xic during the initiation,
progression and completion of XCR.

XCR leads to the chromosome-wide reacquisition of TADs on the Xi [50]. Indeed, in situ Hi-C
assays have revealed that TAD reacquisition is initiated from B-like compartments on the Xi, and is
anticorrelated with Xist binding [49]. Different TADs are reacquired at different times during XCR,
with the formation of early then late TADs. TAD formation during XCR often precedes and occurs
without significant chromatin opening and gene reactivation. Early TADs do not open chromatin or
reactivate genes before late TADs do. In sum, TAD formation is not sufficient for chromatin opening
and gene activation, suggesting that additional mechanisms such as TF binding are necessary for
erasure of chromatin silencing to take place. Two key remaining questions are (1) Is TAD formation
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required for chromatin opening and gene activation during XCR and (2) What is the trigger for
transcriptional activation?

8. Mechanisms of Mouse XCR

The Xic has long been suspected to play a key role in XCR [67–69] because pluripotency TFs target
repressors of XCR and activate repressors of Xist [28,130]. Pluripotency TFs repress Xist and activate
Tsix [28,31,171]. In this way, pluripotency TFs link pluripotency with the XaXa state [130].

Additional mechanisms have been uncovered for erasure of Xi silencing. One study showed that
the H3K27me3 histone demethylase UTX actively removes H3K27me3 on the Xi during XCR in the
epiblast [129]. Whether a similar mechanism operates during iPSC reprogramming remains to be
determined. It is entirely possible that the mechanisms of reversal of imprinted XCI are not all similar
to those governing the reversal of random XCI, but this remains to be defined. Chromosome-wide
DNA demethylation takes place during reversal of random XCI and is required but not sufficient for
XCR, where combined DNA demethylation and Xist silencing are needed for XCR to take place [25,51].
DNA demethylation could take place via active or passive mechanisms. In favor of a model where
DNA methylation is passively lost during XCR, genetic deletion of both Tet1 and Tet2 in addition to Tet3
depletion does not prevent Xi DNA demethylation [25]. A key remaining question is: which additional
chromatin regulators are involved in XCR and whether active or passive mechanisms are used?
Candidate factors of outstanding interest for remodeling of chromatin during XCR are Smarrc1 and
Smarca4, which were recently identified in a screen for factors involved in XCI [150].

The proposed role of the Xic in inducing XCR is based on two key lines of evidence. First, Xist silencing
is required for XCR [23,25]. Second, several pluripotency TFs bind strongly to multiple regulatory elements
within the Xic, including the first intron of Xist, and the promoter of Xist [28]. Third, pluripotency TFs also
bind and activate Tsix [32]. Fourth, several pluripotency-associated genes have been functionally linked to
Xist repression [28,31,40,172]. Finally, linking pluripotency TFs to the Xic provides a simple and elegant
mechanism linking pluripotency and XCI that also explains why loss of pluripotency triggers XCI.

Still, there are several lines of evidence that also raise doubt whether the Xic is the only regulatory
region required for XCR. First, deletion of Xist intron 1 does not prevent XCR [173]. Second, Tsix,
a repressor of Xist during development [174], is not required for XCR, since its deletion does not prevent
XCR [23,25]. Third, replacing the endogenous Xist promoter with a tetracycline inducible promoter in
the presence of inducer still leads to Xist repression during iPSC reprogramming, indicating that the
promoter of Xist is not required for Xist silencing during reprogramming [25]. Changes in organization
of TAD-D and TAD-E may explain these results [49,175]. Fourth, while combined Xist silencing and
DNA demethylation are required for XCR [25], Xist deletion is not sufficient for XCR in most somatic
cells and reprogramming to iPSCs [25,110,112]. Fifth, the human Xic is not required for maintenance
of XCI [109]. Therefore, Xist silencing is necessary but not sufficient for XCR. Together, these results
indicate that trans factors that also target other regulatory regions, outside the Xic as well, are likely
important for reversing transcriptional silencing on the Xi. Clearly, more work is needed to understand
the mechanisms underlying XCR and to identify the cis regulatory regions and trans factors involved.

9. A Possible Role for Direct Targeting of X-Linked Genes by TFs for XCR

Recent studies have shown that TFs can act as pioneer factors to induce focal chromatin opening
and DNA demethylation on autosomes during somatic cell reprogramming to pluripotency [51,176].
These focal changes are seeded first focally in regulatory elements and then spread more broadly [177].
This suggests a model that may also be applicable to the Xi undergoing XCR, where pluripotency or
other TFs may not only repress Xist but also bind across the Xi to mediate XCR. A key element of this
model is that transcriptional activation requires TF binding; hence, TFs must at some point bind and
activate transcription, but how this takes place during XCR remains to be determined.

Several lines of evidence suggest that direct binding of pluripotency TFs to X-linked genes within
and outside the Xic is involved in XCR. First, in somatic cells, Xist deletion is not sufficient to enable
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TFs involved in transcriptional activation on the Xa to bind to the Xi and induce transcription [111,112].
It is likely that more than Xist silencing is required. Second, multiple X-linked genes outside the Xic
are bound by pluripotency TFs in ESCs [28,32,171].

In this model, pluripotency TFs initially reduce Xist expression, enabling early genes to be
reactivated by pluripotency or other TFs that bind cooperatively with pioneer factors pre-bound to
open chromatin regions. Upon further Xist silencing, repressive marks are lost, and pluripotency TF
engage in focal binding on the Xi in key regulatory regions, concomitant with focal DNA demethylation
and acquisition of chromatin accessibility. Then, spreading to other regions and binding of other TFs,
including both pluripotency or other TFs already engaged in transcriptional activation on the Xa,
takes place. This model would explain why a small category of genes reactivate before most other
genes, and would also explain why transcriptional reactivation takes place upon Xist silencing and
activation of the entire pluripotency gene regulatory network but not upon silencing of Xist in somatic
cells. It also provides a mechanism by which Xist-independent chromatin marks would be reversed on
the Xi.

The model above on Xi could be wrong, and after Xist silencing, the mere removal of repressive
marks by active or passive mechanisms could lead to binding by non-pluripotency-associated TFs.
A key question is whether pluripotency TFs are involved at all in direct activation of Xi-linked gene
expression during XCR, and whether they bind before or after other TFs. These questions remain to
be addressed.

Recent work on transcription suggests that protein compartmentalization is likely involved in XCR.
First, protein compartmentalization has just been implicated in the formation of stable gene silencing
by Xist during XCI [78–80]. Therefore, if phase-separation is also found at the Xi in the maintenance
phase, a mechanism by which repressive compartments are dismantled via loss of repressive chromatin
protein condensates following a decrease in the concentration of critical components might be involved
in XCR. Second, recent studies have also indicated that phase separation is involved in transcriptional
activation through the formation of protein condensates involving the intrinsically disordered region
of transcriptional activators, enhancers and promoters [178]. Therefore, XCR might also require the
formation of phase separated compartments for transcription activation.

10. XCI in Human

Although mice have been the main model species to study XCI and XCR, recent advances have
enabled to also explore dosage compensation in humans. Expression analysis, RNA FISH and IF
studies have demonstrated that in 4 cell stage human embryos, unlike in mouse, XIST is expressed and
forms a cloud on both X chromosome in females and on the sole X chromosome in males [35,179,180].
At this early stage, XIST does not lead to the accumulation of H3K27me3 or gene silencing, which differs
from the mouse where Xist expression is well correlated with H3K27me3 enrichment or gene silencing.
Moreover, there is no imprinted XCI in humans [181], hence, XCR does not take place in the human
preimplantation epiblast. Whether the Xi of somatic cells would be reactivated after nuclear transfer in
humans has not been reported, and whether XCR occurred during cloning of other female mammals
including Dolly the sheep is also not clear [182]. On the one hand, these species have a pluripotent
epiblast, in which one would expect two Xas. On the other hand, there is no imprinted XCI in these
species and therefore whether XCR would take place in the naive epiblast when a Xi is introduced by
nuclear transfer remains uncertain.

Single-cell RNA-seq analysis has confirmed bi-allelic expression of XIST from both X chromosomes
in female and from the only X chromosome in male human pre-implantation embryos [183]. Furthermore,
single-cell transcriptomics also revealed that both X chromosomes in early female human embryos are
active and undergo dampening, where expression of both X chromosomes become attenuated in females
before random XCI is initiated [183]. In addition, models of human postimplantation development
suggest that XCI takes place also during postimplantation stages, in the postimplantation epiblast and TE
lineages but with delayed kinetics in the PE [35,131]. Dampening takes place in all lineages, the epiblast,



Cells 2020, 9, 2706 12 of 25

TE and PE. Another recent study confirmed that both X chromosomes are active at early stages and
undergo dampening [184]. However, a recent analysis questioned the dampening model and proposed
that a small proportion of genes are inactivated at the 8 cell stage, followed by inactivation of other genes
at the morula and blastocyst stages [185]. In addition, the function of XIST may be linked to another
hominoid-specific lncRNA, XACT, that also forms an RNA cloud on the Xa [186,187]. An excellent review
has been published covering general principles of XCI in human [188]. Altogether, these studies revealed
that XCI is incomplete in pre-implantation human embryos and seems to proceed over the first two weeks
of the human embryo development.

11. XCR in the Human Germline

During human postimplantation development, genome-wide reprogramming takes place in PGCs
to prepare for the next generation. Mouse experiments indicated that the Xi undergoes XCR in female
PGCs [137,138,140]. scRNA-seq analysis of human PGCs showed an increase in X-to-autosome gene
dosage in XX versus XY PGCs at week 4 and week 26 [189,190]. Bi-allelic expression of selected
genes was also present, with a 1.6-fold increase in X-linked gene expression in female over male
PGCs. It was concluded that XCR has already taken place by week 9 in human PGCs. However,
whether increased X-dosage in female at week 9 represents the expression of escapee genes is not
clear. Since X-linked gene expression was increased 1.6-fold in female versus male rather than 2 fold;
it is possible that the male X chromosome is upregulated and the female X chromosome has erased
XCU. However, more analysis is required to precisely define the kinetics of X-linked gene expression
during human germline XCR. A more recent study, also using scRNA-seq, found that XCR is more
heterogeneous than previously thought, where 29% PGCs have incomplete XCR by weeks 4–9 of
development [191]. More work is required to further define the kinetics of XCR in the human germline.
Collectively, transcriptomic studies of the human germline indicate that XCR appears to be long,
taking place over 4 weeks and is asynchronous and heterogeneous. During XCR in mouse, Xist is
silenced. However, XIST is initially expressed on the Xa in the epiblast of early human embryos before
silencing is induced, raising the question of whether XIST silencing is coupled to XCR in the human
female germline. Although scRNA-seq analysis showed that female PGCs express XIST much more
than male PGCs [190,191], bulk RNA-seq revealed XIST expression in both male and female PGCs [192].
Moreover, XIST expression does not predict XCR [191]. IF analysis reported that H3K27me3 is enriched
on the Xi in week 4 PGCs, but not week 7 PGCs where a global loss of H3K27me3 takes place [193].
A more recent study however, found a faint H3K27me3 enrichment on the Xi in a subset of PGCs of
week 4 and 9, but not in week 9 and week 39.5 PGCs or in male germ cells [191].

It remains unclear whether XIST silencing is strictly correlated with XCR in the human germline.
Collectively, the results suggest that XIST is expressed in female and male PGCs at a time when
X-chromosome dosage is increased 1.6-fold in females over males. One possibility is that XIST is
expressed in PGCs but does not silence, similar to pre-implantation human embryos, but different
from mice. However, more work is required to answer questions such as: Does XIST form a dispersed
RNA cloud as opposed to a compact RNA cloud in PGCs? Can XIST silence X-linked genes in female
PGCs? Is XIST expression eventually silenced during PGCs development? scRNA-seq on human
gonads as well as PGC-like cell differentiation protocols [144] could help to better understand XCR in
the germline.

12. XCR in Human Pluripotent Stem Cells

Work over the past years by RNA-seq and RNA FISH has shown that, with a few exceptions, most
human PSCs (both hESCs and human iPSCs (hiPSCs)) have one Xi that can undergo XCR by erosion of
XCI [44,179,194–198]. Although conventional hPSCs are in a primed state of pluripotency, they are prone
to silencing XIST expression, loss of enrichment of H3K27me3 on the Xi, loss of DNA methylation and
loss of transcriptional silencing on Xi [179,196]. Erosion also starts with expression of the human-specific
lncRNA XACT that forms an RNA cloud on the Xa [179,199]. However, whether XACT is required for
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erosion is not known and its role in general remains uncertain. An excellent comprehensive analysis
of RNA-seq data for hPSCs revealed that erosion was particularly present in hESCs compared with
hiPSCs [198]. Erosion of XCI influences the differentiation potential of hPSCs [44]. More recently, XCR by
erosion of XCI was shown to start at genes with a shorter genomic distance to escapee genes [161].
These results are in line with the shorter genomic distance of early reactivated genes during mouse iPSC
reprogramming [48,49]. It is possible that conserved mechanisms are used for maintenance of XCI in
human and mouse. For example, the stability and reversibility of X-linked gene silencing could depend
on 3D chromatin organization as well as other chromatin and gene regulation processes, which remain
to be further explored.

13. XCR Following Reprogramming to Human Naive Pluripotency

Great efforts have been made to reprogram human primed PSCs as well as somatic cells to human
naive PSCs, which also leads to XCR [43,200–203]. Human naive pluripotency has been covered by
excellent reviews [204–207]. Below we review what is known about the dynamics of XCR during
induction of human naive pluripotency.

XCR is in fact considered one of the most stringent criteria used as a hallmark of human naive
pluripotency [35,183,208]. The development of improved cell culture conditions to induce human
naive pluripotency starting from primed hPSCs has provided a means to induce and study XCR in
human cells [43]. A landmark study used human primed hESCs with GFP and tdTomato reporters in
each allele of the X-linked MECP2 gene to show that X-linked reporter silencing is erased in naive
hESCs [43]. Furthermore, primed to naive conversion was characterized by XIST reactivation in female
but not in male cells, loss of promoter DNA methylation on the Xi, loss of transcriptional silencing and
increased X-chromosome dosage in female compared with male cells [43]. Redifferentiation of naive
cells induced non-random XCI. In summary, induction of human naive pluripotency induces XCR in
female cells.

Another two studies have considerably increased our understanding of XCR during primed to
naive human pluripotency conversion [179,200]. The sequence of events of XCR during primed to
naive conversion includes XIST silencing [200], transcriptional reactivation [43,179,200,209], bi-allelic
XACT expression [179,200,209], XIST reactivation from one allele, then XIST reactivation from two
alleles in a small proportion of cells [43,200,209]. There is also gain of active Pol II and DNA
demethylation [43,179,200,209]. One study reported H3K27me3 enrichment [200] and other studies
reported little or no H3K27me3 enrichment under the XIST RNA foci in naive human pluripotent
stem cells [180,210]. Finally, the transition also induces dampening of X-linked gene expression [200],
reminiscent of early human embryos [183]. Therefore, naive cells acquire characteristics of human
pre-implantation embryos, such as bi-allelic XIST and XACT expression on the Xas in a small proportion
of cells. Interestingly, naive cells derived from embryos possess a much higher proportion (30% of cells)
with bi-allelic XIST expression [200]. Moreover, H3K27me3 enrichment is not sufficient for silencing
gene expression like in mouse [76,200]. Recently, another study proposed that dampening corresponds
to erasure of XCU [210]. XIST reactivation is also preceded by a stage with XIST silencing [200].
An additional study using RNA-Seq found that XCR primarily takes place in the late stages of primed
to naive conversion, in line with mouse iPSCs work [201]. A small group of genes also reactivated
earlier and became mono-allelically expressed again in naive hESCs [201]. Whether these genes are
closer to escapee genes remains unknown.

Early studies indicated that naive cells can undergo XCI upon differentiation, but XCI was
non-random [43,200]. More recently, another study found that deriving naive cells from primed
cells with reduced FGF enables the derivation of naive cells that can initiate random XCI upon
redifferentiation [41]. If confirmed, this signals a revolution in the field where we will now be able to
study random XCI in humans. A key objective will be to understand which regulatory mechanisms of
XCI are conserved between mouse and human, and in other mammals [211].
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14. Conclusions

The recent advent of improved developmental biology and cellular reprogramming approaches
combined with genomic and gene editing technologies have provided paradigms for investigating
the reversal of imprinted and random XCI. However, several unanswered questions remain
(Table 1 and Figure 4).

Table 1. Key questions raised in this review.

• Which trans factor are involved in XCR? To what extent are pluripotency TFs involved?

• What chromatin regulators are involved in XCR?

• How are regulatory regions outside the Xic targeted for erasure of repressive marks and acquisition of active marks?

• Are there pioneer TFs that target Xi-linked genes for reactivation during XCR?

• Is TAD formation required for chromatin opening and gene activation during XCR

• What are the effects of TAD boundary deletion on the kinetics of transcriptional activation during XCR?

• Why does Xist repression lead to XCR in reprogramming to iPSCs but not in somatic cells?

• By which mechanisms are repressive chromatin marks removed during XCR?

• To what extent are protein condensates and phase separation involved in XCR?

• What are the precise dynamics of XCR in the mouse and human germline?

• What triggers transcriptional reactivation during XCR?

• What factors are required for the initiation, maintenance and reversal of XCI in the human TE?

Figure 4. Gaps in our knowledge of XCR. Several unanswered questions during X-chromosome
reactivations during reprogramming to pluripotent stem cell from somatic cell and also during germline
development are depicted.

Answering these questions will help to better understand XCR, epigenetics, gene regulation,
reprogramming and embryo development. Direct binding of pluripotency TFs during XCR remains a
hypothesis which will need to be further investigated. Rapid advances in single-cell genomics and
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multi-omics as well as reprograming and gene editing and molecular and cellular biology will help to
elucidate the reversal of gene silencing during development and reprogramming.

Funding: Research in the Pasque lab is supported by The Research Foundation–Flanders (FWO) (Odysseus Return
Grant G0F7716N to VP, FWO grants G0C9320N and G0B4420N to VP), the KU Leuven Research Fund (C1 grant
C14/16/077 to VP and project financing). J.J.Z. is supported by core funding of The Novo Nordisk Foundation
Center for Stem Cell Biology (Novo Nordisk Foundation grant number NNF17CC0027852).

Acknowledgments: We thank members of the Pasque laboratory, including Adrian Janiszewski and Irene
Talon for comments on the manuscripts. We thank Bart Theeuwes and Irene Talon for contributing illustrations.
We acknowledge Biorender for some of the illustrations. We apologize to the authors we could not cite, including the
interesting studies reported very recently.

Conflicts of Interest: The authors declare no known conflict of interest. The funders had no role the writing of
the manuscript.

References

1. Mak, W.; Nesterova, T.B.; De Napoles, M.; Appanah, R.; Yamanaka, S.; Otte, A.P.; Brockdorff, N. Reactivation
of the Paternal X Chromosome in Early Mouse Embryos. Science 2004, 303, 666–669. [CrossRef]

2. Okamoto, I.; Otte, A.P.; Allis, C.D.; Reinberg, D.; Heard, E. Epigenetic Dynamics of Imprinted X Inactivation
during Early Mouse Development. Science 2004, 303, 644–649. [CrossRef]

3. Deng, X.; Disteche, C.M. Rapid transcriptional bursts upregulate the X chromosome. Nat. Struct. Mol. Biol.
2019, 26, 851–853. [CrossRef]

4. Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol.
1996, 6, 149–162. [CrossRef]

5. Ohno, S. Sex Chromosomes and Sex-Linked Genes; Springer: Berlin/Heidelberg, Germany, 1967.
6. Di, K.N.; Disteche, C.M. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 2006,

38, 47–53. [CrossRef]
7. Lin, H.; Gupta, V.; Vermilyea, M.D.; Falciani, F.; Lee, J.T.; O’Neill, L.P.; Turner, B.M. Dosage compensation in

the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol. 2007, 5, 2809–2820. [CrossRef]
8. Julien, P.; Brawand, D.; Soumillon, M.; Necsulea, A.; Liechti, A.; Schütz, F.; Daish, T.; Grützner, F.;

Kaessmann, H. Mechanisms and Evolutionary Patterns of Mammalian and Avian Dosage Compensation.
PLoS Biol. 2012, 10, e1001328. [CrossRef]

9. Xiong, Y.; Chen, X.; Chen, Z.; Wang, X.; Shi, S.; Wang, X.; Zhang, J.; He, X. Analys is RNA sequencing shows
no dosage compensation of the active X-chromosome. Nat. Publ. Gr. 2010, 42. [CrossRef]

10. Adler, D.A.; Rugarli, E.I.; Lingenfelter, P.A.; Tsuchiya, K.; Poslinski, D.; Liggitt, H.D.; Chapman, V.M.;
Elliott, R.W.; Ballabio, A.; Disteche, C.M. Evidence of evolutionary up-regulation of the single active X
chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc. Natl.
Acad. Sci. USA 1997, 94, 9244–9248. [CrossRef]

11. Castagné, R.; Rotival, M.; Zeller, T.; Wild, P.S.; Truong, V.; Trégouët, D.A.; Munzel, T.; Ziegler, A.; Cambien, F.;
Blankenberg, S.; et al. The choice of the filtering method in microarrays affects the inference regarding dosage
compensation of the active X-chromosome. PLoS ONE 2011, 6, 3–11. [CrossRef]

12. Lin, F.; Xing, K.; Zhang, J.; He, X. Expression reduction in mammalian X chromosome evolution refutes
Ohno’s hypothesis of dosage compensation. Proc. Natl. Acad. Sci. USA 2012, 109, 11752–11757. [CrossRef]

13. Deng, X.; Hiatt, J.B.; Nguyen, D.K.; Ercan, S.; Sturgill, D.; Hillier, L.W.; Schlesinger, F.; Davis, C.A.; Reinke, V.J.;
Gingeras, T.R.; et al. Evidence for compensatory upregulation of expressed X-linked genes in mammals,
Caenorhabditis elegans and Drosophila melanogaster. Nat. Genet. 2011, 43, 1179–1185. [CrossRef]

14. Yildirim, E.; Sadreyev, R.I.; Pinter, S.F.; Lee, J.T. X-chromosome hyperactivation in mammals via nonlinear
relationships between chromatin states and transcription. Nat. Struct. Mol. Biol. 2012, 19, 56–62. [CrossRef]

15. Li, X.; Hu, Z.; Yu, X.; Zhang, C.; Ma, B.; He, L.; Wei, C.; Wu, J. Dosage compensation in the process of
inactivation/reactivation during both germ cell development and early embryogenesis in mouse. Sci. Rep.
2017, 7, 1–13. [CrossRef]

16. Larsson, A.J.M.; Coucoravas, C.; Sandberg, R.; Reinius, B. X-chromosome upregulation is driven by increased
burst frequency. Nat. Struct. Mol. Biol. 2019, 26, 963–969. [CrossRef]

http://dx.doi.org/10.1126/science.1092674
http://dx.doi.org/10.1126/science.1092727
http://dx.doi.org/10.1038/s41594-019-0314-y
http://dx.doi.org/10.1016/S0960-9822(02)00448-7
http://dx.doi.org/10.1038/ng1705
http://dx.doi.org/10.1371/journal.pbio.0050326
http://dx.doi.org/10.1371/journal.pbio.1001328
http://dx.doi.org/10.1038/ng.711
http://dx.doi.org/10.1073/pnas.94.17.9244
http://dx.doi.org/10.1371/journal.pone.0023956
http://dx.doi.org/10.1073/pnas.1201816109
http://dx.doi.org/10.1038/ng.948
http://dx.doi.org/10.1038/nsmb.2195
http://dx.doi.org/10.1038/s41598-017-03829-z
http://dx.doi.org/10.1038/s41594-019-0306-y


Cells 2020, 9, 2706 16 of 25

17. Lentini, A.; Enge, M.; Deng, Q.; Reinius, B. X-chromosome upregulation is dynamically linked to the
X-inactivation state. bioRxiv Cell Biol. 2020, 189787. [CrossRef]

18. Gupta, V.; Parisi, M.; Sturgill, D.; Nuttall, R.; Doctolero, M.; Dudko, O.K.; Malley, J.D.; Eastman, P.S.; Oliver, B.
Global analysis of X-chromosome dosage compensation. J. Biol. 2006, 5. [CrossRef]

19. Disteche, C.M. Dosage compensation of the sex chromosomes and autosomes. Semin. Cell Dev. Biol. 2016,
56, 9–18. [CrossRef]

20. Wang, M.; Lin, F.; Xing, K.; Liu, L. Random X-chromosome inactivation dynamics in vivo by single-cell RNA
sequencing. BMC Genom. 2017, 18, 1–11. [CrossRef]

21. Lyon Mary, F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961, 190, 372–373.
[CrossRef]

22. Talon, I.; Janiszewski, A.; Chappell, J.; Vanheer, L.; Pasque, V. Recent Advances in Understanding the Reversal
of Gene Silencing During X Chromosome Reactivation. Front. Cell Dev. Biol. 2019, 7, 1–13. [CrossRef]

23. Payer, B.; Rosenberg, M.; Yamaji, M.; Yabuta, Y.; Koyanagi-Aoi, M.; Hayashi, K.; Yamanaka, S.; Saitou, M.;
Lee, J.T. Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming.
Mol. Cell 2013, 52, 805–818. [CrossRef]

24. Payer, B.; Lee, J.T. Coupling of X-chromosome reactivation with the pluripotent stem cell state. RNA Biol.
2014, 11, 798–807. [CrossRef]

25. Pasque, V.; Tchieu, J.; Karnik, R.; Uyeda, M.; Sadhu Dimashkie, A.; Case, D.; Papp, B.; Bonora, G.; Patel, S.;
Ho, R.; et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell
2014, 159, 1681–1697. [CrossRef]

26. Ohhata, T.; Wutz, A. Reactivation of the inactive X chromosome in development and reprogramming.
Cell. Mol. Life Sci. 2013, 70, 2443–2461. [CrossRef]

27. Rebuzzini, P.; Zuccotti, M.; Garagna, S. X-Chromosome Inactivation during Preimplantation Development
and in Pluripotent Stem Cells. Cytogenet. Genome Res. 2020, 160, 283–294. [CrossRef]

28. Navarro, P.; Chambers, I.; Karwacki-Neisius, V.; Chureau, C.; Morey, C.; Rougeulle, C.; Avner, P. Molecular
Coupling of Xist Regulation and Pluripotency. Science (80-) 2008, 321, 1693–1695. [CrossRef]

29. Mahadevaiah, S.K.; Sangrithi, M.N.; Hirota, T.; Turner, J.M.A. A single-cell transcriptome atlas of marsupial
embryogenesis and X inactivation. Nature 2020. [CrossRef]

30. Escamilla-Del-Arenal, M.; Da Rocha, S.T.; Heard, E. Evolutionary diversity and developmental regulation of
X-chromosome inactivation. Hum. Genet. 2011, 130, 307–327. [CrossRef]

31. Donohoe, M.E.; Silva, S.S.; Pinter, S.F.; Xu, N.; Lee, J.T. The pluripotency factor Oct4 interacts with Ctcf and
also controls X-chromosome pairing and counting. Nature 2009, 460, 128–132. [CrossRef]

32. Navarro, P.; Oldfield, A.; Legoupi, J.; Festuccia, N.; Dubois, A.S.; Attia, M.; Schoorlemmer, J.; Rougeulle, C.;
Chambers, I.; Avner, P. Molecular coupling of Tsix regulation and pluripotency. Nature 2010, 468, 457–460.
[CrossRef]

33. Nobuo Takagi, M.S. Preferential inactivation of the paternally derived X chromosome in the extraembryonic
membranes of the mouse. Nature 1975, 256, 3.

34. Okamoto, I.; Otte, A.P.; Allis, C.D.; Reinberg, D.; Heard, E. X-Chromosome Inactivation in Cloned Mouse
Embryos. Science 2004, 290, 1578–1581. [CrossRef]

35. Okamoto, I.; Patrat, C.; Thépot, D.; Peynot, N.; Fauque, P.; Daniel, N.; Diabangouaya, P.; Wolf, J.P.; Renard, J.P.;
Duranthon, V.; et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during
development (Nature (2011) 472 (370-374)). Nature 2011, 474, 239–240. [CrossRef]

36. Marilyn, M.; Mary, I. Harper Sequential X chromosome inactivation coupled with cellular differentiation in
early mouse embryos. Nature 1979, 7, 311–313.

37. Takagi, N.; Sugawara, O.; Sasaki, M. Regional and temporal changes in the pattern of X-chromosome
replication during the early post-implantation development of the female mouse. Chromosoma 1982,
85, 275–286. [CrossRef]

38. Minkovsky, A.; Patel, S.; Plath, K. Concise review: Pluripotency and the transcriptional inactivation of the
female mammalian X chromosome. Stem. Cells 2012, 30, 48–54. [CrossRef]

39. Chen, G.; Schell, J.P.; Benitez, J.A.; Petropoulos, S.; Yilmaz, M.; Reinius, B.; Alekseenko, Z.; Shi, L.; Hedlund, E.;
Lanner, F.; et al. Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during
differentiation. Genome Res. 2016, 26, 1342–1354. [CrossRef]

http://dx.doi.org/10.1101/2020.07.06.189787
http://dx.doi.org/10.1186/jbiol30
http://dx.doi.org/10.1016/j.semcdb.2016.04.013
http://dx.doi.org/10.1186/s12864-016-3466-8
http://dx.doi.org/10.1038/190372a0
http://dx.doi.org/10.3389/fcell.2019.00169
http://dx.doi.org/10.1016/j.molcel.2013.10.023
http://dx.doi.org/10.4161/rna.29779
http://dx.doi.org/10.1016/j.cell.2014.11.040
http://dx.doi.org/10.1007/s00018-012-1174-3
http://dx.doi.org/10.1159/000508610
http://dx.doi.org/10.1126/science.1160952
http://dx.doi.org/10.1038/s41586-020-2629-6
http://dx.doi.org/10.1007/s00439-011-1029-2
http://dx.doi.org/10.1038/nature08098
http://dx.doi.org/10.1038/nature09496
http://dx.doi.org/10.1126/science.290.5496.1578
http://dx.doi.org/10.1038/nature10184
http://dx.doi.org/10.1007/BF00294971
http://dx.doi.org/10.1002/stem.755
http://dx.doi.org/10.1101/gr.201954.115


Cells 2020, 9, 2706 17 of 25

40. Sousa, E.J.; Stuart, H.T.; Bates, L.E.; Ghorbani, M.; Nichols, J.; Dietmann, S.; Silva, J.C.R. Exit from Naive
Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males. Cell Stem. Cell 2018,
22, 919–928.e6. [CrossRef]

41. An, C.; Feng, G.; Zhang, J.; Cao, S.; Wang, Y.; Wang, N.; Lu, F.; Zhou, Q.; Wang, H. Overcoming Autocrine
FGF Signaling-Induced Heterogeneity in Naive Human ESCs Enables Modeling of Random X Chromosome
Inactivation. Cell Stem Cell 2020, 27, 482–497.e4. [CrossRef]

42. Maherali, N.; Sridharan, R.; Xie, W.; Utikal, J.; Eminli, S.; Arnold, K.; Stadtfeld, M.; Yachechko, R.; Tchieu, J.;
Jaenisch, R.; et al. Directly Reprogrammed Fibroblasts Show Global Epigenetic Remodeling and Widespread
Tissue Contribution. Cell Stem Cell 2007, 1, 55–70. [CrossRef]

43. Theunissen, T.W.; Friedli, M.; He, Y.; Planet, E.; O’Neil, R.C.; Markoulaki, S.; Pontis, J.; Wang, H.; Iouranova, A.;
Imbeault, M.; et al. Molecular Criteria for Defining the Naive Human Pluripotent State. Cell Stem Cell 2016,
19, 502–515. [CrossRef]

44. Anguera, M.C.; Sadreyev, R.; Zhang, Z.; Szanto, A.; Payer, B.; Sheridan, S.D.; Kwok, S.; Haggarty, S.J.; Sur, M.;
Alvarez, J.; et al. Molecular signatures of human induced pluripotent stem cells highlight sex differences and
cancer genes. Cell Stem Cell 2012, 11, 75–90. [CrossRef]

45. Brown, C.J.; Ballabio, A.; Rupert, J.L.; Lafreniere, R.G.; Grompe, M.; Tonlorenzi, R.; Willardt, H.F. A gene
from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome.
Nature 1991, 349, 38–44. [CrossRef]

46. Borsani, G.; Tonlorenzi, R.; Simmler, M.C.; Dandolo, L.; Arnaud, D.; Capra, V.; Grompe, M.; Pizzuti, A.;
Muzny, D.; Lawrence, C.; et al. Characterization of a murine gene expressed from the inactive X chromosome.
Nature 1991, 351, 325–329. [CrossRef]

47. Brockdorff, N.; Ashworth, A.; Kay, G.F.; Cooper, P.; Smith, S.; McCabe, V.M.; Norris, D.P.; Penny, G.D.;
Patel, D.; Rastan, S. Conservation of position and exclusive expression of mouse Xist from the inactive X
chromosome. Nature 1991, 351, 329–331. [CrossRef]

48. Janiszewski, A.; Talon, I.; Chappell, J.; Collombet, S.; Song, J.; De Geest, N.; Kit To, S.; Bervoets, G.;
Marin-Bejar, O.; Provenzano, C.; et al. Dynamic reversal of random X-Chromosome inactivation during iPSC
reprogramming. Genome Res. 2019, 29, 1659–1672. [CrossRef]

49. Bauer, M.; Vidal, E.; Zorita, E.; Pinter, S.F.; Filion, G.J.; Payer, B. Chromosome Compartments on the Inactive X
Guide TAD Formation Independently of Transcription during X-Reactivation. bioRxiv 2020, 177790. [CrossRef]

50. Stadhouders, R.; Vidal, E.; Serra, F.; Di Stefano, B.; Le Dily, F.; Quilez, J.; Gomez, A.; Collombet, S.;
Berenguer, C.; Cuartero, Y.; et al. Transcription factors orchestrate dynamic interplay between genome
topology and gene regulation during cell reprogramming. Nat. Genet. 2018, 50, 238–249. [CrossRef]

51. Pasque, V.; Karnik, R.; Chronis, C.; Petrella, P.; Langerman, J.; Bonora, G.; Song, J.; Vanheer, L.; Sadhu Dimashkie, A.;
Meissner, A.; et al. X Chromosome Dosage Influences DNA Methylation Dynamics during Reprogramming to
Mouse iPSCs. Stem Cell Rep. 2018, 10, 1537–1550. [CrossRef]

52. Eggan, K.; Akutsu, H.; Hochedlinger, K.; Rideout, W.; Yanagimachi, R.; Jaenisch, R. X-Chromosome
inactivation in cloned mouse embryos. Science 2000, 290, 1578–1581. [CrossRef]

53. Jan, J. Zylicz and Edith Heard Molecular Mechanisms of Facultative Heterochromatin Formation:
An X-Chromosome Perspective. Annu. Rev. Biochem. 2020, 89, 82.

54. Carrel, L.; Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in
females. Nature 2005, 434, 400–404. [CrossRef]

55. Lopes, A.M.; Arnold-Croop, S.E.; Amorim, A.; Carrel, L. Clustered transcripts that escape X inactivation at
mouse XqD. Mamm. Genome 2011, 22, 572–582. [CrossRef]

56. Yang, F.; Babak, T.; Shendure, J.; Disteche, C.M. Global survey of escape from X inactivation by
RNA-sequencing in mouse. Genome Res. 2010, 20, 614–622. [CrossRef]

57. Marks, H.; Kerstens, H.H.D.; Barakat, T.S.; Splinter, E.; Dirks, R.A.M.; Van Mierlo, G.; Joshi, O.; Wang, S.Y.;
Babak, T.; Albers, C.A.; et al. Dynamics of gene silencing during X inactivation using allele-specific RNA-seq.
Genome Biol. 2015, 16, 1–20. [CrossRef]

58. Marahrens, Y.; Panning, B.; Dausman, J.; Strauss, W.; Jaenisch, R. Xist-deficient mice are defective in dosage
compensation but not spermatogenesis. Genes Dev. 1997, 11, 156–166. [CrossRef]

59. Panning, B.; Dausman, J.; Jaenisch, R. X chromosome inactivation is mediated by Xist RNA stabilization. Cell
1997, 90, 907–916. [CrossRef]

http://dx.doi.org/10.1016/j.stem.2018.05.001
http://dx.doi.org/10.1016/j.stem.2020.06.002
http://dx.doi.org/10.1016/j.stem.2007.05.014
http://dx.doi.org/10.1016/j.stem.2016.06.011
http://dx.doi.org/10.1016/j.stem.2012.03.008
http://dx.doi.org/10.1038/349038a0
http://dx.doi.org/10.1038/351325a0
http://dx.doi.org/10.1038/351329a0
http://dx.doi.org/10.1101/gr.249706.119
http://dx.doi.org/10.1101/2020.07.02.177790
http://dx.doi.org/10.1038/s41588-017-0030-7
http://dx.doi.org/10.1016/j.stemcr.2018.03.019
http://dx.doi.org/10.1126/science.290.5496.1578
http://dx.doi.org/10.1038/nature03479
http://dx.doi.org/10.1007/s00335-011-9350-6
http://dx.doi.org/10.1101/gr.103200.109
http://dx.doi.org/10.1186/s13059-015-0698-x
http://dx.doi.org/10.1101/gad.11.2.156
http://dx.doi.org/10.1016/S0092-8674(00)80355-4


Cells 2020, 9, 2706 18 of 25

60. Wutz, A.; Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell
differentiation. Mol. Cell 2000, 5, 695–705. [CrossRef]

61. Penny, G.D.; Kay, G.F.; Sheardown, S.A.; Rastan, S.; Brockdorff, N. Requirement for Xist in X chromosome
inactivation. Nature 1996, 379, 131–137. [CrossRef]

62. Engreitz, J.M.; Pandya-Jones, A.; McDonel, P.; Shishkin, A.; Sirokman, K.; Surka, C.; Kadri, S.; Xing, J.;
Goren, A.; Lander, E.S.; et al. The Xist lncRNA exploits three-dimensional genome architecture to spread
across the X chromosome. Science 2013, 341, 1–9. [CrossRef]

63. Simon, M.D.; Pinter, S.F.; Fang, R.; Sarma, K.; Rutenberg-Schoenberg, M.; Bowman, S.K.; Kesner, B.A.;
Maier, V.K.; Kingston, R.E.; Lee, J.T. High-resolution Xist binding maps reveal two-step spreading during
X-chromosome inactivation. Nature 2013, 504, 465–469. [CrossRef]

64. Clemson, C.M.; McNeil, J.A.; Willard, H.F.; Lawrence, J.B. XIST RNA paints the inactive X chromosome
at interphase: Evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 1996,
132, 259–275. [CrossRef]

65. Jégu, T.; Aeby, E.; Lee, J.T. The X chromosome in space. Nat. Rev. Genet. 2017, 18, 377–389. [CrossRef]
66. Augui, S.; Nora, E.P.; Heard, E. Regulation of X-chromosome inactivation by the X-inactivation centre.

Nat. Rev. Genet. 2011, 12, 429–442. [CrossRef]
67. Rastan, S.; Robertson, E.J. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of

X-chromosome inactivation. J. Embryol. Exp. Morphol. 1985, 90, 379–388.
68. Rastan, S. Non-random X-chromosome inactivation in mouse X-autosome translocation embryos—location

of the inactivation centre. J. Embryol. Exp. Morphol. 1983, 78, 1–22.
69. Cattanach, B.M.; Isaacson, J.H. Controlling elements in the mouse X chromosome. Genetics 1967, 57, 331–346.

[CrossRef]
70. Pasque, V.; Gillich, A.; Garrett, N.; Gurdon, J.B. Histone variant macroH2A confers resistance to nuclear

reprogramming. EMBO J. 2011, 30, 2373–2387. [CrossRef]
71. McHugh, C.A.; Chen, C.K.; Chow, A.; Surka, C.F.; Tran, C.; McDonel, P.; Pandya-Jones, A.; Blanco, M.;

Burghard, C.; Moradian, A.; et al. The Xist lncRNA interacts directly with SHARP to silence transcription
through HDAC3. Nature 2015, 521, 232–236. [CrossRef]

72. Chu, C.; Zhang, Q.C.; Da Rocha, S.T.; Flynn, R.A.; Bharadwaj, M.; Calabrese, J.M.; Magnuson, T.; Heard, E.;
Chang, H.Y. Systematic discovery of Xist RNA binding proteins. Cell 2015, 161, 404–416. [CrossRef]

73. Minajigi, A.; Froberg, J.E.; Wei, C.; Sunwoo, H.; Kesner, B.; Colognori, D.; Lessing, D.; Payer, B.; Boukhali, M.;
Haas, W.; et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNAdirected chromosome
conformation. Science 2015, 349, 89–91. [CrossRef]
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