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Abstract: Several biologic therapies that target inflammatory modulators are now used for treating
patients with uncontrolled, severe asthma. Knowledge about how this type of treatment modifies the
molecular milieu is rapidly increasing. Thus, this systematic review aimed to compile the reported
effects of therapeutic antibodies on the transcriptome or proteome of asthma patients. Studies of
asthmatic patients under biological treatment describing transcriptomic or proteomic changes upon
treatment were included. Preclinical or single gene/protein studies were not considered. PubMed
and Scopus search was performed in August and September 2021. Following PRISMA guidelines and
GRADE recommendations, we selected 12 studies on gene or protein expression changes in patients
treated with the antibodies currently approved by EMA and the FDA. All studies were at low risk of
bias as per the RoB2 tool. Different gene clusters have been identified to change upon omalizumab
treatment, found a reduction in eosinophil-associated gene signatures after benralizumab treatment,
and protein profiles were different in patients treated with mepolizumab and in those treated with
benralizumab. The main potential biomarkers proposed by the selected studies are shown. These
results may contribute to discovering biomarkers of response and selecting the best therapy for
each patient.

Keywords: therapeutic antibody; mepolizumab; benralizumab; omalizumab; asthma; transcriptome;
proteome

1. Introduction

During the last few decades, asthma and related diseases have become a global health
problem affecting all age groups. The high incidence of asthma in the population of
some countries suppose a burden to health care systems and loss of productivity and
quality of life. Asthma is a heterogeneous disease, usually characterized by chronic airway
inflammation. It is defined by the history of respiratory symptoms, such as wheezing,
shortness of breath, chest tightness, and coughing, which vary over time and in intensity,
together with variable expiratory airflow limitation [1].
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Asthma has been classified as either a T2-type and a non-T2-type [2]. T2-type asthma
presents a T2-type immune response, characterized by Th2 cell-driven inflammation and
mainly includes allergic asthma, late-onset eosinophilic asthma, and aspirin-exacerbated
respiratory disease (AERD) [3]. On the other hand, non-T2-type asthma refers to asthma
without a T2-type immune response, with Th1 or Th17 cell-driven inflammatory responses,
including neutrophilic asthma and smooth muscle mediated paucigranulocitic asthma [3].

Current treatments for asthma aim to control symptoms and reduce the risk of future
exacerbations. Nevertheless, some asthmatic patients have severe asthma with persistent
symptoms, reduced lung function, or multiple exacerbations despite maximal treatment [4].

Over the last years, several monoclonal antibodies targeting specific inflammatory
pathways have been developed and approved to tackle this problem and improve the pa-
tients’ quality of life [5]. These monoclonal antibodies block IL-5 cells, such as mepolizumab,
reslizumab [6], IL-5 receptor (IL5-Rα), i.e., benralizumab [7], and IL-4 and IL-13 via IL-
4/IL-13 receptor s(IL4-Rα), i.e., dupilumab [8], abrogating their inflammatory signaling
pathways in allergic eosinophilic asthma. Omalizumab, which blocks IgE, has also shown
efficacy in the treatment of severe allergic asthma [9].

Although biological agents are revolutionizing the management of severe uncontrolled
asthma, 13-31% of patients can be unresponsive [10–13]; in addition, there are currently
no parameters to predict the individual response to any biologics. In this sense, there is a
remarkable lack of pharmacogenetic biomarkers that allow a more precise and practical
selection of patients and establish uniform treatment response criteria. Thus, further effort
is needed to identify other potential molecular targets that could be used as prognostic and
therapeutic biomarkers that will facilitate therapeutic strategies tailored to each patient’s
requirements [14]. It also entails reducing unnecessary expenses in patients who would not
obtain any benefit, which is particularly interesting, considering the high costs of biological
drugs (upwards of thousands of euros per year).

The genetics of asthma appear to be quite intricate, involving multiple genes and
epigenetic mechanisms, each with a small effect size [2]. Therefore, next-generation se-
quencing techniques may offer an excellent approach to shed light on the complex genetic
networks underlying the different endotypes of the disease. This systematic review aimed
to compile the publications on transcriptomics, proteomics, and epigenetics in asthmatic
patients treated with biologic therapies.

2. Materials and Methods

This systematic review has been performed following PRISMA guidelines for Sys-
tematic Reviews and Meta-Analysis-2020 checklist [15] (see Supplementary Material) and
GRADE recommendations [16]. Protocol was registered at PROSPERO (ID304691).

Original articles and meta-analyses indexed from January 2000 to August 2021 de-
scribing the effects of biologic therapy of asthmatic patients on gene expression were
searched. We identified eligible studies using the following inclusion criteria: (1) pri-
mary study or meta-analysis; (2) written in English; (3) human subjects, both children and
adults; (4) patients who had asthma and were under biological treatment; and (5) studies
describing gene or protein expression changes upon treatment. The exclusion criteria
were: (1) animal, in vitro, or in silico studies; (2) review articles; (3) single gene or protein
studies; (4) articles focused on other diseases in which asthma was merely mentioned; and
(5) studies lacking pre-treatment data or healthy controls to compare with.

We performed the literature search between August and September 2021 in PubMed
and Scopus databases, using the following terms: “asthma” AND “gene expression” OR
“transcriptomics” OR “RNASeq” OR “proteomics” AND “benralizumab” OR “mepolizumab”
OR “omalizumab” OR “dupilumab” OR “reslizumab”. We omitted “biologic therapy” or
“antibody treatment”, since the ambiguity of such terms retrieved many irrelevant articles.

We sought out the effects of biologics therapy on gene expression or protein expression
at an “omics” level, such as transcriptomics, genome-wide association studies (GWAS), or
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proteomics. Those studies lacking a comparison to baseline or referring to a single gene or
protein were considered of limited relevance and excluded.

Four authors individually reviewed the database search results, assessing titles, eval-
uating abstracts, and considering or not the study for full review. Any disagreements in
either the title/abstract or the entire manuscript review phases were resolved by consensus.
All eligible studies were formally evaluated and included in this systematic review.

The authors independently graded the risk of bias of the included studies using the RoB2
tool [17] and evaluated the quality of evidence as per the appraisal form for Longitudinal
Studies by the Evidence Evaluation Tools and Resources (LEGEND) from the Cincinnati Chil-
dren’s Hospital form for Longitudinal Studies (https://www.cincinnatichildrens.org/research/
divisions/j/anderson-center/evidence-based-care/legend; accessed on 1 November 2021). In
this appraisal, a total score over nine was considered high quality evidence, a score between
six and eight merited moderate quality evidence, and low quality was attributed to studies
under a score of five.

3. Results
3.1. Selection, Bias and Quality of Articles

The database search yielded 104 articles after duplicate removal (Figure 1). After title
and abstract review, 79 articles were excluded since they did not fulfill eligibility criteria, i.e.,
in vitro/animal studies, literature reviews, articles focused on other conditions that merely
cited asthma, and studies including only clinical data. As a result, 25 articles qualified for
full-text review. Of those, 13 studies were further eliminated since they were review articles,
referred to in vitro data exclusively, or focused on aspects other than gene expression. The
flow diagram of the selection process is shown in Figure 1.
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Figure 1. PRISMA-based flow diagram of the selection process (www.prisma-statement.org; accessed
on 1 September 2021).

Therefore, 12 articles qualified for the qualitative synthesis, two including omal-
izumab treatment [18,19], two referring to mepolizumab [20,21], four reporting data
on benralizumab treatment [22–25], two comparing mepolizumab and benralizumab
treatments [26,27], one comparing reslizumab and mepolizumab [28], and one about
fekanizumab [29]. A summary of the selected studies is presented in Table 1.

https://www.cincinnatichildrens.org/research/divisions/j/anderson-center/evidence-based-care/legend
https://www.cincinnatichildrens.org/research/divisions/j/anderson-center/evidence-based-care/legend
www.prisma-statement.org
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Table 1. Summary of selected studies.

Ref. Biologic Therapy Study
Type Disease Objective/s Sample Size Time of Treatment Main Results

Zhang et al., 2021 OMA Transcriptome Severe asthma
To identify the biomarkers

for predicting treatment
response to omalizumab

45 patients
11 NRs
34 Rs
17 HC

0, 6, 14, and 26 weeks

A gene module (547 genes) predominated
in responders.

CD3E, a predictive biomarker for response.
Other potential biomarkers: CD79, serum
periostin, galectin 5, CXCL10, and IL-12

Upchurch
et al., 2020 OMA Transcriptome Moderate to severe asthma

To investigate the
transcriptional variations
between responders and

non-responders;
to study the mechanisms

of action

45 patients
34 Rs

11 NRs
17 HC

0, 6, 14, and 26 weeks

Eight gene clusters identified.
Upregulation of neutrophil and eosinophil
activities in NRs, independent of treatment.

Gene expression in responders, more
similar to that of HC after treatment.

Condreay et al., 2017 MEP GWAS Severe asthma

To investigate genetic
associations that may
predict response to

treatment

148 placebos
441 MEP 1 year

Eight gene variants had weak evidence of
association with treatment.

No genetic marker was significantly
associated with exacerbation rate.

Buchheit et al., 2021 MEP Single-cell RNA
sequencing AERD

To identify the
mechanisms by treatment

improves respiratory
inflammation

36 AERD patients:
18 MEP
18 other

3 months

Decreased production of inflammatory
eicosanoids.

Upregulation of genes involved in tight
junction pathways (TJP3, ACTN4, and

AMOT) and cilium organization.

Landi
et al., 2017

MEP
BEN Proteomics SEA

To compare the serum
proteomic profiles, before

and after one month of
therapy for molecular

modifications

10 patients MEP
8 patients

BEN
4 HC

Baseline,
1 month

Benralizumab: Increased plasmin,
α-1-antitrypsin, plasminogen,

α-2-macroglobulin, and ceruloplasmin
levels.

Mepolizumab: increases in albumin,
fibrinogen γ, and factor B levels

Vantag-giato et al. 2020 MEP
BEN Proteome Severe asthma

To compare the serum
proteomic profiles of

patients before and after
treatment

10 patients:
5 MEP
5 BEN

Baseline,
1 month

Ceruloplasmin is a potential biomarker for
benralizumab treatment.

Sridhar et al., 2019 BEN Transcriptome
Proteome Severe asthma and COPD

To investigate the effects of
treatment on blood

inflammatory markers.

Asthma patients:
395 for

proteome
326 for

transcriptome
COPD patients:

84 for
proteome

78 for
transcriptome

0, 52 weeks (asthma study)
0, 32 weeks (COPD study)

Benralizumab: upregulation of eotaxin-1
and eotaxin-2.

Significant reductions in
eosinophil-associated signatures.
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Table 1. Cont.

Ref. Biologic Therapy Study
Type Disease Objective/s Sample Size Time of Treatment Main Results

Nakajima
et al., 2021 BEN Transcriptome SEA

To identify gene expression
patterns in response to

benralizumab;
to determine correlation

with clinical
responsiveness

41 patients Baseline, 4 months
33 eosinophilic genes and 29 neutrophilic

genes (4 clusters) associated with response
to treatment

Hirai
et al., 2021 BEN

Gene expression
analysis
(qPCR)

Severe asthma

To elucidate the influence
of treatment on key

molecules involved in
steroid responses

17 patients 0, 4, 8, 16, and 24 weeks
30 mg per dose

Increased expression levels of
PI3K-associated genes (HDAC2, NFE2L2,

GLCCI1, and PTEN).
Decreased level of miR-21-5p
Inhibition of PI3K pathway.

Cañas et al., 2021 BEN
Gene

expression analysis
(qPCR)

SEA

To search some miRNAs
that could serve as

biomarkers to detect an
early response

15 SEA patients
15 MA patients Baseline, 8 weeks Decreased expression of three miRNAs

(miR-1246, miR-5100 and miR-338-3p)

Rial et al., 2021 RES
MEP

Gene
expression analysis

(qPCR)
SEA

To analyze possible
changes in serum miRNAs
in patients upon treatment

16 patients
10 RES
6 MEP

Baseline, 8 weeks

miR-195-5p and miR-27b-3p were
downregulated

miR-1260a (p < 0.05), miR-193a-5p (p <
0.01), and miR-338-3p (p < 0.05) were

upregulated

Badi et al., 2021 FZ Transcriptome Severe asthma

To determine whether the
AD transcriptomic

signature of responders to
fezakinumab (FZ) is

enriched in severe asthma
patients

421 SA
88 MA
101 HC

12 weeks
The FZ-response signature (296 down-, 144
upregulated genes) was enriched in blood

from neutrophilic asthmatic patients

Abbreviations: Ref., reference; NRs, non-responders to treatment; Rs, responders to treatment; HC, healthy controls; GWAS, genome-wide association study; AERD, aspirin-exacerbated respiratory disease; SEA, severe
eosinophilic asthma; SA, severe asthma; MA, mild/moderate asthma; COPD, chronic obstructive pulmonary disease; AD, atopic dermatitis; qPCR, quantitative PCR; OMA, omalizumab; MEP, mepolizumab; BEN,
benralizumab; RES, reslizumab; FZ, fezakinumab.
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We followed the Cochrane guidelines to assess the risk of bias of the selected studies,
using an adapted version of the RoB2 tool to fit the specific nature of the studies. The
tool evaluates the randomization process, deviation from intended intervention, missing
outcome data, measurement of the outcome, and selection of the reported result. An
in-depth appraisal of each article did not find any concerns regarding these topics; thus, all
the selected studies qualified as having a low risk of bias (Table 2).

Table 2. Results of the RoB2 analysis, as per assignment to intervention (the ‘intention-to-treat’ effect).
Total number of studies: 12.

Randomization
Process

Deviations
from Intended
Interventions

Missing
Outcome Data

Outcome
Measurement

Selection of
the Reported

Result
Overall Bias

Low risk 100% 100% 100% 100% 100% 100%
Some concerns - - - - - -

High risk - - - - - -

Concerning the quality of evidence, 3 out of the 12 articles were considered mod-
erate quality articles due to methodology validity concerns and sample size limitations
(<20 patients). Also, it is worth mentioning that five studies included a conflict of interest
of the authors (Table 3).

Table 3. Evaluation of quality of evidence, as per the appraisal form for Longitudinal Studies by the
Evidence Evaluation Tools and Resources (LEGEND). Articles are identified by their numbers in
the Reference List below. Red circles indicate some concerns in the area evaluated. Total score was
obtained from the number of green circles. High: 9–11; Moderate: 6–8.

Reference
Number

Adequate
Aim/Criteria

Validity Reliability Applicability Assessment
Appropriate

Methods
Appropriate
Technology

Clearly
Described

Methodology

Clearly
Described
Outcomes

Conflict of
Interest

Appropriate
Statistical
Analysis

Sample Size Precision Significant
Results

18 • • • • • • • • • • • High
19 • • • • • • • • • • • High
20 • • • • • • • • • • • High
21 • • • • • • • • • • • High
22 • • • • • • • • • • • High
23 • • • • • • • • • • • High
24 • • • • • • • • • • • High
25 • • • • • • • • • • • High
26 • • • • • • • • • • • Moderate
27 • • • • • • • • • • • Moderate
28 • • • • • • • • • • • Moderate
29 • • • • • • • • • • • High

3.2. Omalizumab

Upchurch et al. [18] published an expression profiling study on 45 patients with
uncontrolled asthma under omalizumab treatment compared to 17 healthy controls (HC).
They reported 34 patients as responders to omalizumab and 11 as non-responders and took
samples at baseline and 6, 14, and 26 weeks of treatment. All data are publicly available at
the GEO repository (GSE134544).

When analyzing the data, the authors found that both responder and non-responder
expression profiles were similar to HC during the first six weeks of treatment. Eight
gene clusters were identified, including genes related to protein synthesis (cluster 1),
T cell/NK cell/cytotoxicity (cluster 2), hematopoiesis (cluster 3), cell cycle control and
proliferation (cluster 4), T cell regulation and activation (cluster 5), monocytes (cluster 6),
glucose metabolism (cluster 7), and inflammation (cluster 8). Significant changes between
responders and non-responders were found in clusters 2, 3, 7, and 8 at baseline; in clusters
2, 3, and 7 at 6 weeks; in clusters 3 and 7 at 14 weeks; and in cluster 8 at the final time point
of 26 weeks. After modular analysis, the largest number of variations between asthmatic
patients and HC occurred before treatment, and this difference slowly decreased upon
omalizumab therapy in responders while non-responders showed a higher number of
differentially expressed modules when compared with HC at week 26. Regarding pathway
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analysis, the 293 transcripts overexpressed in responders were related to Th2 and Th1
responses. The 496 transcripts under expressed in non-responders were connected to the
suppression of inflammation, and other connections were associated with the promotion
of allergic inflammation. In summary, responders showed increased immune cell motility
while non-responders showed increased cytokine signaling and inflammation networks.

Using the same transcriptomics data, Zhang et al. [19] carried out a bioinformatics
analysis to find potential biomarkers for predicting patient responses to omalizumab treat-
ment. They identified ten modules using hierarchical clustering, the red cluster containing
547 genes, the closest to omalizumab responders (Pearson coefficient = 0.89; p = 5e-16).
Within this module, only CD3E and CD79A had significantly higher expression in the
responder group than in the non-responder group (p = 0.014 and 0.037, respectively), but
only CD3E remained significant after logistic regression analysis. CD3E is part of the
TCR-CD3 complex on the T-cell surface, crucial in T-cell development and activation.

Out of the articles listed in our systematic search, we decided to exclude the study by
Hachim et al. [30]. The authors showed that the levels of expression of periostin (POSTN)
in blood and saliva of severe asthmatic patients were lower in a group of patients treated
with omalizumab than in those patients without treatment. Nevertheless, the patients were
recruited when they were already under omalizumab treatment.

3.3. Mepolizumab

Buchheit et al. [20] investigated how mepolizumab treatment improved respiratory
inflammation in AERD patients. A group of 18 AERD patients receiving standard of care
was compared with 18 received mepolizumab for at least three months. Different blood
cell populations were analyzed by flow cytometry, and nasal epithelium mRNA expression
was also investigated. Regarding gene expression, 242 genes were differentially regulated
in subjects treated with mepolizumab. The 94 upregulated genes included TJP3, ACTN4,
and AMOT, which are involved in tight junctions. Among the 148 downregulated genes,
authors highlighted CLDN17, which is also related to tight junctions. CRTH2 surface
expression was higher on blood cells of treated patients than on those from non-treated
subjects, although eosinophils and basophils count decreased in the mepolizumab group.

Condreay et al. [21] tested the association of genetic markers that may predict re-
sponses to mepolizumab in two cohorts of severe asthma patients, i.e., DREAM and
MENSA studies, including a total of 589 patients, 441 who received mepolizumab and
the rest who received a placebo. They conducted candidate genetic variant and GWAS
analyses, finding eight variants with weak evidence of association (p > 0.05). However,
this association was driven mainly by a small subset of patients treated with the highest
experimental dose. Thus, no pharmacogenetic effects were unambiguously detected in this
article, and the authors recommended further and more extensive studies.

3.4. Benralizumab

We reviewed four articles focused on benralizumab therapy against asthma. Benralizumab
is a monoclonal antibody that specifically binds the IL5Rα, producing antibody-dependent
cell-mediated cytotoxicity by natural killer cells and inducing apoptosis of eosinophils.

Sridhar et al. [25] investigated the effects of benralizumab subcutaneous 100 mg every
eight weeks on blood inflammatory markers through proteomic and gene expression analy-
ses during two Phase II studies of patients with eosinophilic asthma. Results demonstrated
that only two protein analytes, eotaxin-1 and eotaxin-2, were significantly upregulated
following treatment with benralizumab in both asthma and chronic obstructive pulmonary
disease (COPD), with higher levels in eosinophil-high patients than in eosinophil-low
patients in both studies. Benralizumab was also associated with a significant reduction
in the expression of genes related to eosinophils and basophils, such as CLC, IL5RA, and
PFSS33; immune signaling complex genes (FCER1A); G-protein-coupled receptor genes
(HRH4, ADORA3, P2RY14); and other immune-related genes (ALOX15 and OLIG2).
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Another transcriptomic study of 41 patients with variable clinical responses to benral-
izumab focused on biomarkers related to responsiveness to treatment [24]. Gene expression
analysis levels in peripheral blood were compared at baseline and after four months of
therapy with benralizumab, showing significant reductions in the expression of 33 genes
associated with eosinophilic inflammatory responses, such as PTGDR2, ALOX15, IL5RA,
SMPD3, CLC, HRH4, CYSLTR2, and RAB44. On the contrary, 29 upregulated genes were
related to neutrophils, such as serine hydrolase activity, neutrophilic degranulation, and
neutrophilic activation. This analysis provided four distinct clusters in patients with severe
eosinophilic asthma with variable responsiveness to benralizumab.

Severe asthma patients can show a steroid-resistant asthma phenotype. Benralizumab
reduces the oral corticosteroid dosage while maintaining control in severe asthmatics with
peripheral eosinophilia [31]. To elucidate whether benralizumab modified corticosteroid
sensitivity by suppressing type-2 inflammation, Hirai et al. [23] analyzed the gene expres-
sion changes on T cells from patients with severe asthma treated with benralizumab. The
study demonstrated that treatment with benralizumab in patients with severe corticode-
pendent asthma could restore the expression levels of key molecules involved in steroid
response through the PI3K pathway inactivation.

A transcriptomic study of 15 severe eosinophilic asthma patients treated with benral-
izumab was conducted to find new biomarkers as microRNAs that predict the response
of benralizumab [22]. Serum miRNAs were analyzed before and after eight weeks of
treatment, showing deregulation of miR-1246, miR-5100, and miR-338-3p in severe asth-
matic patients after treatment, and suggesting that these miRNAs could be used as early
response markers.

3.5. Mepolizumab and Benralizumab

A couple of studies by the same authors compared patients treated with mepolizumab
and patients treated with benralizumab [26,27]. Both studies compared serum proteomic
profiles from patients with severe eosinophilic asthma at baseline and after one month
of treatment.

In the first study [26], ten patients were treated with mepolizumab and eight with
benralizumab. Four HCs were also included. The authors reported 38 differences among
patient proteomic profiles. Two spots were exclusively found at baseline, while ten spots
only appeared after one month of benralizumab treatment and five spots were only de-
tected after one month of mepolizumab treatment. Benralizumab-treated patients showed
increased plasmin, alpha-1-antitrypsin, plasminogen, alpha-2-macroglobulin, and ceru-
loplasmin levels, while mepolizumab patients showed increases in albumin, fibrinogen
gamma, and factor B levels, among others. The most significant change related to benral-
izumab treatment was the increase of full-length ceruloplasmin, which was associated with
lower serum oxidation levels in those patients.

Vantaggiato et al. [27] compared the serum proteomic profiles of patients with severe
asthma before and after one month of treatment with mepolizumab or benralizumab since
both treatments suppress IL-5 signaling pathways. In this preliminary study, the authors re-
cruited five patients treated with benralizumab and five patients treated with mepolizumab.
In addition to the molecular analysis, these patients were clinically evaluated after six
months of therapy for lung function test parameters (FEV1, FEV1/FVC ratio) and asthma
control test scores. Comparisons between before and after one month of treatment revealed
a total of 22 differentially abundant spots corresponding to 17 protein species. Three pro-
teins were significantly modified after both biological treatments: calcyphosin (CAYP1) was
downregulated, and A1AT (alpha1-antitrypsin) and A2M (alpha-2-macroglobulin) were
upregulated. In addition, different isoforms of ceruloplasmin were upregulated in patients
treated with benralizumab, whereas haptoglobin was downregulated in patients treated
with mepolizumab. These proteins emerge as potential biomarkers for therapy-induced
responses and could be valuable to establish the most suitable biological treatment, i.e.,
mepolizumab or benralizumab, for a given patient.
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3.6. Other Biologicals

Rial et al. studied serum miRNAs after anti-IL-5 biological treatment of severe asthma
as possible response-biomarkers [28]. After eight weeks, sera of ten severe asthmatic
patients treated with reslizumab and six patients treated with mepolizumab were analyzed.
miR-338-3p, which is involved in essential pathways in asthma, such as MAPK and TFGβ
signaling pathways, was dysregulated after treatment independently of the biological
treatment. Authors concluded that miR-338-3p could be used as a biomarker of early
response to reslizumab and mepolizumab in severe eosinophilic asthmatics and could be
involved in airway remodeling and targeting genes related to MAPK and TGFB.

Badi et al. [29] proposed a different but interesting approach in their study. Taking ad-
vantage of a previously reported genetic signature of atopic dermatitis (AD) in patients who
responded to anti-IL-22 (fezakinumab, FZ), they searched for such transcriptomic signa-
tures in adults with severe asthma to determine whether they could be successfully treated
with this biological. AD patients were classified as per their clinical response to FZ after
12 weeks of treatment, identifying those genes that changed significantly upon FZ treat-
ment (FZ-DOWN). The FZ-DOWN signature included inflammation, Th2 response, and
Th17/Th22 activation genes. Interestingly, the FZ-DOWN signature was also significantly
enriched in the blood of severe asthmatics, mainly those with neutrophilic (adj.p = 0.0002)
and mixed granulocytic asthma (adj.p = 0.0098) when compared with HC. Thus, the en-
richment score of the FZ-DOWN signature in sputum of severe asthma patients was used
for categorizing them into predicted-responders and predicted-non-responders to FZ. This
approach could suggest that FZ might benefit T2-low severe neutrophilic asthmatics.

4. Discussion

In the present systematic review, we intended to gather all the published information
about the effects of biological therapy on the gene and protein expression of asthmatic
patients to identify potential biomarkers of response to treatment that could contribute to
improving the management of severe asthma patients and selecting the best biological for
each subject.

The first therapeutic antibody approved by FDA and EMA for persistent allergic
asthma was the anti-IgE omalizumab (2003 and 2005, respectively). Anti-IL-5 monoclonal
antibodies -mepolizumab and reslizumab- were approved by EMA for severe asthma with
peripheral eosinophilia in 2015 and 2016, respectively. Dupilumab, an anti-IL4Rα, was
approved in Europe in 2017 for atopic dermatitis and in 2019 for T2 asthma, while the anti-
IL-5Rα benralizumab was approved for eosinophilic asthma in 2018 [32]. Therefore, their
use for severe uncontrolled asthma is now usual, and many studies have been published
regarding efficacy, safety, asthma control, and economic impact of all five biologicals in
clinical settings [32–34].

Despite being widely used, few molecular studies have been conducted up to date in
this field, and most of them refer to the expression of a specific gene or protein either in
blood or airway tissues. Since our main goal was to seek biological markers of response
to therapy, we limited our search to those articles using an ‘omics’ approach, such as
RNASeq, transcriptomics, or proteomics. Being the therapeutic antibodies directed against
crucial molecules, such as IL-4, IL-5, or IgE, it is expected that a plethora of genes and
proteins rather than a single one would be affected by the therapeutic antibody. Thus, a
gene/protein signature, including both up and downregulated species, would constitute a
more accurate measurement of response to treatment.

Thus, we selected 12 articles about the effects of 1 or 2 of the approved biologicals on
gene/protein expression. A summary of main outcomes is shown in Table 4. Most studies
compared pre- and post-treatment expression, although we also found articles comparing
asthmatic patients to healthy controls [26,27,29] or placebo versus biological treatment [21].
Regarding the quality of evidence and risk of bias, our analysis concluded that the selected
studies have a low risk of bias, and most are of a high quality of evidence. Regarding
those articles funded by the industry or whose authors stated some conflict of interest, the
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bias risk was well controlled during the peer-review process and did not invalidate the
published results.

Table 4. Summary of potential biomarkers of response to treatment. All molecules/pathways are
upregulated upon treatment unless otherwise indicated (↓).

Treatment Genes/miRNAs Proteins Pathways

Omalizumab CD3E
Th2 response (CSF3,

IL4, IL5, IL18 and
SPI1)

CD79
Th1 response (STAT1,

STAT4, IL2 and
SMARCR4)

↓ Suppression of
inflammation

(TWIST1, FOXO1,
FOXO3, TP53,

CTNNB1, and SIM 1)

Benralizumab ↓miR-21-5p plasmin
PI3K-associated genes

(HDAC2, NFE2L2,
GLCCI1, and PTEN)

↓miR-1246 α-1antitrypsin

↓miR-5100 plasminogen
α-2 macroglobulin

↓miR-338-3p ceruloplasmin

eotaxin-1

eotaxin-2

Mepolizumab ↓miR-195-5p
Tight junction
function (TJP3,

ACTN4, and AMOT)

↓miR-27b-3p

miR-1260a

miR-193a-5p

miR-338-3p

Two articles based on data of asthmatic patients treated with omalizumab were se-
lected. Both extracted data from a dataset publicly available in Gene Expression Om-
nibus (GEO) (https://www.ncbi.nlm.nih. gov/geo/; checked on 1 November 2021), i.e.,
GSE134544, that was uploaded by Upchurch et al. [18]. This particular dataset is of great
interest since it includes gene expression profiles from responders and non-responders
to omalizumab treatment. CD3E was identified as a suitable biomarker for evaluating re-
sponse to therapy since an increase in its expression was observed in responders compared
with non-responders. CD3E is expressed on the surface of T cells and plays an essential role
in T cell development and activation [19]. Another potential response biomarker raised
from this study was Galectin-3. This protein binds to IgE impeding the formation of the
complex IgE-FcεRI, and therefore, reinforcing the action of omalizumab [35]. The contribut-
ing authors, Upchurch et al., performed a clustering analysis of global gene signatures of
responders and non-responders to omalizumab, finding eight clusters of genes involved
in protein synthesis, T cell regulation and activation, and inflammation, among others.
Interestingly, both responders and non-responders showed signature differences between
baseline and first weeks of omalizumab treatment. However, these differences disappeared
in non-responders by the end of the monitoring time (week 26), while responders exhibit

https://www.ncbi.nlm.nih
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significant differences between 0 and 26 weeks, being more similar to healthy controls at
the final time point [18].

Current treatment guidelines for patients with severe, uncontrolled asthma with
eosinophilia recommend anti-IL-5 therapy [1]. The mechanism of response to these anti-IL-
5 antibodies, i.e., mepolizumab and reslizumab, has been mainly attributed to inhibition
of IL-5 response on eosinophils. However, a recent study using dexpramipexole, which
completely depletes all eosinophils, failed to show any significant improvement of symp-
toms [36], suggesting that eosinophils are not the only effector cells, and other cell types
may also be involved. Also, targeting the IL-5 may not completely deplete eosinophils,
leading to a poor response to therapy. Conversely, anti-IL-5Rα (benralizumab) rapidly
depleted eosinophils and significantly reduced the rate of exacerbations for patients with
uncontrolled eosinophilic asthma [37].

Two studies focused on mepolizumab therapy, showing contradictory results. The
earlier one reported no genetic changes upon mepolizumab treatment on severe asthma
patients [21]. At the same time, the latter described a reduction in inflammatory mediators,
such as prostaglandins (PG) D2 and F2α, leukotrienes E4 and B4, and thromboxane B2
when comparing mepolizumab-treated AERD patients with AERD patients upon other
treatments [20]. Also, mepolizumab proved to increase the expression of the PGD2 receptor
(CRTH2) on the surface of eosinophils and basophils, although total counts were reduced.
Since these two studies were performed in patients with different pathologies, it is likely
that AERD patient gene expression was differentially affected by the treatment, as the AERD
gene expression profile is known to diverge from that of aspirin-tolerant asthmatics [38].

Rial et al. compared both anti-IL-5 antibodies’ effects on gene expression in two
groups of severe eosinophilic patients [28]. They found differences in miR-338-3p be-
tween the baseline and eight weeks of treatment, although both biologicals got the same
effect, at least concerning this miRNA. That study introduces epigenetic granges as in-
volved in response to biologics. Further comparative studies between mepolizumab and
reslizumab could reveal differences that facilitate the assignment of patients to one or the
other anti-IL5 treatment.

While mepolizumab and reslizumab target the same molecule and are likely to behave
similarly, evaluation of anti-IL-5 (mepolizumab) and anti-IL-5Rα (benralizumab) in parallel
may raise significant differences in gene expression. A couple of studies conducted by the
same group compared serum proteomics of a severe asthmatic treated with mepolizumab
or benralizumab and healthy controls [26,27]. When comparing the baseline with one
month of treatment, an increase in ceruloplasmin was seen in the benralizumab-treated
group but not in the mepolizumab-treated patients. Ceruloplasmin is a ferroxidase enzyme
that forms free radicals [39], contributing to the antioxidant effect of treatment. The authors
confirmed this result in a later article, and proposed ceruloplasmin as a potential biomarker
for monitoring benralizumab treatment.

Besides ceruloplasmin, other potential biomarkers of response to benralizumab have
been proposed in the reviewed articles. Thus, Nakajima et al. [24] identified four transcrip-
tional clusters in blood from severe asthmatics, cluster 2 being the one that agglutinated
most of the super-responders. These patients had the highest numbers of eosinophils,
higher numbers of basophils, and higher expressions of genes related to eosinophil activi-
ties. Conversely, cluster 1 included poor responders to benralizumab. It was characterized
by the upregulation of genes related to neutrophils, such as OLFM4, which is produced
by neutrophils and has been associated with asthma inflammation [40], and CTSG, the
neutrophil protease cathepsin G, which has been involved in neutrophilic asthma [41]. In
this sense, it has been described that increased sputum neutrophils can be associated with
exacerbations in patients treated with benralizumab [42]. Sridhar et al. also reported a
significant reduction in the eosinophil signature upon benralizumab treatment, mainly in
genes, such as CLC, OLIG2, and FCER1A [25]. CLCs are known as a classical hallmark of
eosinophilic inflammation [43], OLIG2 is expressed in eosinophils and associated with the
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control of SIGLEC 8 expression [44], and FcεR1A (FCER1A) is the high affinity receptor for
IgE and expressed on eosinophils and basophils [45].

Benralizumab treatment seemed to alter the expression level of genes and miRNAs
related to the PI3K/Akt signaling pathway [23], which is known to have a regulatory
role in allergic asthma [46]. Also, the inactivation of this pathway could modify the
response to steroids, supporting the reduction of oral corticosteroid dosage observed in
benralizumab-treated patients [33]. Other miRNAs have been proposed as biomarkers
of response to treatment, i.e., miR-1246, miR-5100, and miR-338-3p [22], opening a new
window of monitoring of the patient evolution.

Finally, we would like to highlight an article that used a completely different approach.
Taking advantage of the use of anti-IL-22 (fezakinumab) in atopic dermatitis patients,
Badi et al. built an FZ-response gene expression signature and evaluated whether it could
be identified in severe asthmatic patients [29]. IL-22 is involved in atopic dermatitis and may
be relevant in the atopic march [47]. Interestingly, they found that the FZ-response signature
was enriched in neutrophilic (low T2) asthma patients, and therefore, they could benefit
from fezakinumab treatment. It is worth noting that to date, there is no approved biologic
for T2-low asthma [33], so this approach may open a new opportunity for these patients.

The present systematic review has been conducted following GRADE recommenda-
tions. A thorough search of published data yielded over 100 articles, but only 12 met the
criteria we set for analyzing the effects of therapeutic monoclonal antibodies for severe
asthma on gene/protein expression at the genome- or proteome-wide level. The scarcity of
studies addressing this topic is a limitation of the present review, but we have to consider
that most treatments have been used in real settings for just a few years and further clinical
trials are expected in the short term (NCT04565483, NCT04641741, NCT03476109). There-
fore, our review may contribute to setting the criteria and outcomes for these potential
future trials. Regarding the current studies, our main concerns relate to the links with
the industry of some of the authors that could bias the published results. In fact, only
one out of the 12 articles reported negative results, finding no genetic association with
mepolizumab efficacy.

On the other hand, this review has some strengths we would like to highlight. Our
main goal was to provide clinicians with some potential biomarkers of efficacy that could
contribute to better monitoring of biological therapy against severe asthma. By comparing
the approved treatments and tabulating the main outcomes, we offer a comprehensive
overlook of the state-of-the-art knowledge on these treatments for severe asthma from
the molecular point of view. We have also included clustering information that may
help stratify patients and select the best treatment for each group. Finally, we included
a study that explored an innovative strategy by searching for gene signatures of atopic
dermatitis in severe asthmatic, trying to identify who could benefit from anti-IL-22 antibody
treatment. Thus, the comparison between genetic profiles of responders to other therapies
in related diseases and those of severe asthmatics might discover new applications for
already approved biologicals.

5. Conclusions

Although limited, data about changes on genomic and proteomic upon biological
treatments for asthma published to date are very promising and may set the path for the use
of biomarkers in response to these therapeutic antibodies. New trials that go deeper into the
subject are mandatory to contrast and validate the current information, and some clinical
trials aiming at studying the effects of benralizumab, omalizumab, and mepolizumab on
transcriptome and proteome of patients are currently ongoing. Studies focused on the
molecular aspects will be conducted and published in the coming years, as more and
more patients benefit from this type of treatment. Multicenter, multiethnic, multiage trials
including such a perspective would provide comprehensive information about the effects
of biological therapies in a diverse population, allowing for a more accurate clustering
of patients according to their molecular background. Strict inclusion criteria, exhaustive
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clinical characterization of patients, and best procedural and analytical practices will permit
comparison between treatments, which stands out as a requirement for the efficient and
cost-effective management of severe asthma.
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