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Abstract
Background: A recent study identified DCHS1 as a causal gene for mitral valve

prolapse. The goal of this study is to investigate the presence and frequency of

known and novel variants in this gene in 100 asymptomatic patients with moder-

ate to severe organic mitral regurgitation.

Methods: DNA sequencing assays were developed for two previously identified

functional missense variants, namely p.R2330C and p.R2513H, and all 21 exons

of DCHS1. Pathogenicity of variants was evaluated in silico.

Results: p.R2330C and p.R2513H were not identified in this cohort. Sequencing

all coding regions revealed eight missense variants including six considered dele-

terious. This includes one novel variant (p.A2464P) and two rare variants

(p.R2770Q and p.R2462Q). These variants are predicted to be deleterious with

combined annotation-dependent depletion (CADD) scores greater than 25, which

are in the same range as p.R2330C (CADD = 28.0) and p.R2513H

(CADD = 24.3). More globally, 24 of 100 cases were carriers of at least one in

silico-predicted deleterious missense variant in DCHS1, suggesting that this single

gene may account for a substantial portion of cases.

Conclusion: This study reveals an important contribution of germline variants in

DCHS1 in unrelated patients with mitral valve prolapse and supports genetic test-

ing of this gene to screen individuals at risk.
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1 | INTRODUCTION

Targeted sequencing of a locus linked to mitral valve
prolapse (MVP) on chromosome 11p15.4 in four affected
members of an extended family revealed protein-altering

variants in the DCHS1 gene (Durst et al., 2015) (OMIM
#603057). A loss-of-function variant, labeled p.R2513H,
in exon 21 segregated with the disease in this large
pedigree. In two additional families, a second protein
damaging variant, p.R2330C, in DCHS1 segregated with
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mitral valve prolapse. Mitral valve interstitial cells
transfected with cDNA constructs demonstrated reduced
protein stability of mutants (p.R2513H and p.R2330C)
compared to wild-type alleles. In the same study,
Dchs1-deficient mice (Dchs1+/�) exhibited mitral valve
prolapse confirming that loss of function of this gene
results in disease.

Mitral valve prolapse is a common disease affecting
approximately 2.4% of the population (Freed et al., 1999).
The contribution of rare DCHS1 genetic variants to spo-
radic form of MVP remains to be determined. The goal of
this study is to investigate the presence of p.R2513H and
p.R2330C in a series of unrelated French Canadian patients
with MVP and also to comprehensively screen the coding
regions of DCHS1 to find other potentially deleterious
variants.

2 | MATERIALS AND METHODS

2.1 | Ethical compliance

All patients provided written informed consent and the
study was approved by the ethics committee of the Institut
universitaire de cardiologie et de pneumologie de Qu�ebec
(IUCPQ) (20758 and 20341).

2.2 | The Quebec City MVP cohort

One hundred asymptomatic patients with MVP and at least
moderate organic mitral regurgitation (MR) (defined as an
effective regurgitant orifice area ≥20 mm² and/or a regurgi-
tant volume ≥30 ml) (Enriquez-Sarano, Akins, & Vaha-
nian, 2009), preserved left ventricular (LV) ejection
fraction (>60%), and normal LV end-systolic diameter
(<45 mm) were prospectively recruited at the IUCPQ, Que-
bec, Canada. Patients with the following criteria were
excluded: (1) MR due to ischemic heart disease or car-
diomyopathy; (2) >mild mitral stenosis, aortic regurgitation,
aortic stenosis, or pulmonary stenosis; (3) previous valve
operation; (4) history of myocardial infarction or angio-
graphically documented coronary artery stenosis; (5) con-
genital or pericardial heart disease; and (6) endocarditis.
All patients underwent an electrocardiogram and Doppler
echocardiography examinations. The quantification of MR
was assessed by proximal isovelocity surface area (PISA)
method and by two volumetric quantitative Doppler meth-
ods based on the principle of the continuity equa-
tion (Enriquez-Sarano, Seward, Bailey, & Tajik, 1994;
Enriquez-Sarano et al., 2005; Magne et al., 2007, 2014).
No patients were carriers of mutations in the FLNA gene
(G288R, P637Q, V711D, and the 1,944-bp deletion)
known to cause isolated nonsyndromic mitral valve pro-
lapse (Kyndt et al., 2007).

2.3 | DNA sequencing of DCHS1

DNA was extracted from 200 ll of frozen whole blood using
QIAamp� DNA Blood Mini kit (Qiagen). The DNA quality
and concentration was assessed by the UV absorbance ratio
260/280 nm and UV absorbance 260 nm, respectively. DNA
fragments containing the p.R2330C and p.R2513H variants
were amplified and read by Sanger sequencing in 100
patients. The DNA sequences of all coding and untranslated
regions (i.e., exons 1–21) of the DCHS1 gene were then
obtained by Sanger sequencing in a randomly selected subset
of 12 patients. Coding regions identified with deleterious
variants in this subset of patients were sequenced in the
remaining 88 samples. Primer sequences to evaluate the
selected regions of DCHS1 are provided in Table S1. PCR
was performed in a final volume of 25 ll containing 100 ng
of genomic DNA, 1 U of HotStar Taq DNA polymerase
(Qiagen), PCR buffer 19, Q-Solution 19, 160 lmol/L of
each dNTP, and 0.2 lmol/L of each primer. Exons 1 and 10
required the addition of 160 lmol/L of 7-deaza-dGTP and
5% DMSO, respectively. The PCRs were carried out on either
GeneAmp� PCR system 9700 or Veriti Thermal Cycler
(Applied Biosystems�). Cycling conditions were adapted to
the size and GC content of each amplicon (Table S1). A modi-
fied touchdown cycling method was used for some coding
regions consisting of 11–15 cycles where the annealing tem-
perature was decreased by 0.5°C every cycle from 67 to 58–
62°C followed by 20–35 additional cycles with a fixed anneal-
ing temperature. Exon 1 was amplified using a slowdown
cycling method for GC-rich region (Bachmann, Siffert, &
Frey, 2003). The sequencing reaction was then performed
using standard procedures and the product was run on the ABI
3730xl DNA Analyzer (Applied Biosystems�). Sequencing
files were assembled and analyzed using the EMBL-EBI Clus-
tal Omega Multiple Alignment Tool (http://www.ebi.ac.uk/
Tools/msa/clustalo). Newly identified variants were named
based on standard gene mutation nomenclature (den Dunnen
et al., 2016) with nucleotide number based on the reference
sequence NG_033858.1.

2.4 | In silico functional analysis of genetic
variants

Pathogenicity of genetic variants was evaluated using Poly-
Phen (Adzhubei et al., 2010), the combined annotation-
dependent depletion (CADD) framework (Kircher et al.,
2014), an unsupervised spectral approach (Eigen) (Ionita-
Laza, McCallum, Xu, & Buxbaum, 2016), the CONsensus
DELeteriousness score of missense mutations (Condel)
(Gonzalez-Perez & Lopez-Bigas, 2011), the Mendelian Clin-
ically Applicable Pathogenicity (M-CAP) score (Jagadeesh
et al., 2016), and the Protein Variation Effect Analyzer
(PROVEAN) (Choi, Sims, Murphy, Miller, & Chan, 2012).
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Allele frequencies of identified variants were compared to
publically available databases including the 1000 Genomes
Project (The 1000 Genomes Project Consortium, 2015), the
Exome Aggregation Consortium (ExAC) and the Genome
Aggregation Database (gnomAD) (Lek et al., 2016), the
Human Longevity Inc (HLI) 10,000 genomes (Telenti et al.,
2016), and the variant browser Bravo from the NHLBI’s
TOPMed program (https://bravo.sph.umich.edu/).

3 | RESULTS

The clinical characteristics of patients are indicated in
Table 1. Two DNA fragments containing the p.R2513H
and p.R2330C variants were amplified and sequenced
among the 100 patients with MVP. No patient was carrier
of these two variants. In exon 19, one missense variant
(rs7924553, p.V2331I) was identified in three heterozygote
patients. Interestingly, this variant occurs at one amino acid
residue next to the loss of function p.R2330C identified by
Durst et al. (2015), but was considered benign based on
bioinformatics tools to evaluate pathogenicity. In exon 21,
one synonymous variant (rs149685502, p.V2470V) and
two missenses were identified including p.R2462Q
(rs117140835) and p.A2464P found in 5 and 1 heterozy-
gote patients, respectively. p.A2464P has never been
observed before and is characterized by a G to C substitu-
tion (c.7390G>C) resulting in a proline instead of an ala-
nine at position 2,464 of the protein (Figure 1a). This new
variant as well as p.R2462Q are predicted to be protein
damaging at the same extent as p.R2513H and p.R2330C
(Table 2 and Table S2). Together, by sequencing exon 19
and part of exon 21 of DCHS1, we confirmed the absence
of p.R2513H and p.R2330C in our population, but revealed
two additional in silico-predicted deleterious variants:
p.R2462Q (rs117140835) and p.A2464P.

All coding and untranslated regions of the DCHS1 gene
were then sequenced in a subset of 12 patients in order to
have a more comprehensive understanding of the mutational
burden of this gene in patients with MVP. Six additional syn-
onymous variants were identified in exons 3, 7, 8, 10, and 21
(Figure 1b, Table 2 and Table S2). In addition, one rela-
tively frequent insertion (rs376287018) in exon 2 and 5 mis-
senses were identified. Missenses include p.S415R
(rs117368891) on exon 2 classified as probably damaging,
p.T1949M on exon 14 (rs4758443) benign, and p.R2827P
(rs35599968) and p.A2867T (rs146233988) on exon 21 that
are potentially pathogenic with CADD score greater than 15.
Finally, a rare missense variant (p.R2770Q) was identified in
one heterozygote patient characterized by a G to A substitu-
tion (c.8309G>A) resulting of a glutamine instead of an argi-
nine at position 2,770 of the protein (Figure 1a). This rare
variant is also considered pathogenic to the same extent as

p.R2513H and p.R2330C (Table 2). Taken together, by
sequencing all coding regions of DCHS1 in 12 patients, we
identified four additional in silico-predicted deleterious

TABLE 1 Clinical characteristics of patients with mitral valve
prolapse

Characteristics Cases (n = 100) Subset (n = 12)

Age (years) 61.1 � 14.7 58.3 � 13.1

Gender (% male) 54 58

Diabetes (%) 4 0

Hypertension (%) 35 25

BMI (kg/m2) 24.3 � 3.8 24.2 � 3.1

Cholesterol (mmol/L) 5.1 � 1.1 (2) 5.4 � 1.0

Triglycerides (mmol/L) 1.2 � 0.7 (2) 1.2 � 0.4

LDL (mmol/L) 2.8 � 1.0 (2) 3.1 � 0.9

HDL (mmol/L) 1.7 � 0.5 (2) 1.8 � 0.5

Effective regurgitant
orifice area (mm2)

29.0 � 14.5 29.8 � 17.3

Regurgitant volume (ml) 54.5 � 28.1 60.0 � 47.9

Valve leaflet prolapse or flail

Anterior leaflet prolapse (%) 12 17

Posterior leaflet prolapse (%) 26 25

Bileaflet prolapse (%) 30 25

Posterior leaflet flail (%) 17 25

Valve leaflet remodeling
with no prolapse or flail (%)

12 8

Parachute valvea (%) 1 0

Unknown (%) 2 0

Clinical events during follow-upb

Cardiac arrest (%) 1 0

Heart failure (%) 2 0

Atrial fibrillation (%) 9 8

Ventricular arrhythmia (%) 2 0

None (%) 86 92

Surgery during follow-upb

Mitral valve repair (%) 33 33

Mitral valve replacement (%) 14 17

None (%) 52 50

Unknown (%) 1 0

Concomitant coronary artery
bypass grafting (%)

3 0

Concomitant implantation of
a defibrillator (%)

1 0

Continuous variables are M � SD. Number of missing values is shown in
parenthesis when applicable.
aCongenital abnormality, all chordae tendineae of both leaflets are inserted in a
single papillary muscle.
bAll patients were asymptomatic and free of previous surgery at baseline. Clini-
cal events and surgeries have occurred during the follow-up.
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variants: p.S415R (rs117368891), p.R2827P (rs35599968),
p.A2867T (rs146233988), and p.R2770Q. Amplicons with
these four variants (exon 2 part 2–1,218 bp and exon 21 part
1–1,883 bp, see Table S1) were then sequenced in the

remaining 88 samples to obtain a more accurate estimate of
their frequencies (Table 2 and Figure 1b). The location of
identified variants in exons and corresponding protein
domains is illustrated in Fig. S1.

FIGURE 1 Identification and characterization of genetic variants in the DCHS1 gene in patients affected by mitral valve prolapse. (a) Sequence
chromatograms of the novel (p.A2464P) and rare (p.R2462Q and p.R2770Q) missense in silico-predicted deleterious variants identified in this study
with two-dimensional echocardiographic long-axis view of a representative heterozygote patient for each variant. The blue line denotes the mitral
annulus. (b) The exon–intron structure of the DCHS1 gene and the localization of the identified genetic variants. The coding exons are shown in
black (or red) and the untranslated regions in gray. The regions of the gene sequenced among the 100 patients are in red. Genetic variants are
illustrated with their rs numbers if available with genotyping counts in parentheses for 12 or 100 patients. Red dots illustrate the six in silico-
predicted deleterious variants. The two functional variants identified by Durst et al. (2015) on exons 19 and 21 are illustrated on top in black with an
asterisk. Missense and synonymous variants identified in this study are indicated in red and black, respectively. Newly and rare identified variants
with no rs number are illustrated in green and named based on standard gene mutation nomenclature (den Dunnen et al., 2016). (c) Summary of
patients carrying at least one of six variants identified and considered deleterious in this study. Heterozygote carriers are identified by a yellow box
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Figure 1c summarizes patients carrying at least one of
six variants identified and considered deleterious in this
study. In total, 24 variant carriers are illustrated including
one patient with two variants, suggesting an important con-
tribution of germline variants in DCHS1 in unrelated
patients with mitral regurgitation.

4 | DISCUSSION

Two loss-of-function variants (p.R2513H and p.R2330C) in
DCHS1 were identified as causing nonsyndromic MVP in
three families (Durst et al., 2015). Whether these variants are
restricted to few families or in individuals from specific geo-
graphic region had to be determined. In this study, the two
variants were absent in 100 sporadic cases of MVP. How-
ever, the present work underscores that other and similarly
pathogenic variants in DCHS1 are frequently observed in
patients with MVP. A total of 24 of 100 cases were carriers
of at least one in silico-predicted deleterious missense variant
in DCHS1. The frequencies of these individual variants are
rare in populations of reference, which suggests a clear
enrichment among cases. In addition, by performing our full
21-exon screening in 12 patients, we cannot exclude the pos-
sibility that other rare damaging DCHS1 variants are present
in the remaining 88 patients. Variants in this single gene may
thus account for a substantial portion of patients with MVP.
Overall, this study identified inherited variants likely causing
MVP in sporadic cases and further supports the role of
DCHS1 in the disease pathogenesis. The variety of variants
also emphasized for a more comprehensive evaluation of this
gene to screen individuals at risk.
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