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Mitochondrial dysfunction has been recognized as a key player in neurodegenerative

diseases, including Alzheimer’s disease (AD) and Niemann–Pick type C (NPC) disease.

While the pathogenesis of both diseases is different, disruption of intracellular cholesterol

trafficking has emerged as a common feature of both AD and NPC disease. Nutritional

or genetic mitochondrial cholesterol accumulation sensitizes neurons to Aβ-mediated

neurotoxicity in vitro and promotes cognitive decline in AD models. In addition to the

primary accumulation of cholesterol and sphingolipids in lysosomes, NPC disease is

also characterized by an increase in mitochondrial cholesterol levels in affected organs,

predominantly in brain and liver. In both diseases, mitochondrial cholesterol accumulation

disrupts membrane physical properties and restricts the transport of glutathione into

mitochondrial matrix, thus impairing the mitochondrial antioxidant defense strategy. The

underlying mechanisms leading to mitochondrial cholesterol accumulation in AD and

NPC diseases are not fully understood. In the present manuscript, we discuss evidence

for the potential role of StARD1 in promoting the trafficking of cholesterol to mitochondria

in AD and NPC, whose upregulation involves an endoplasmic reticulum stress and a

decrease in acid ceramidase expression, respectively. These findings imply that targeting

StARD1 or boosting the mitochondrial antioxidant defense may emerge as a promising

approach for both AD and NPC disease.
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INTRODUCTION

Neurodegenerative diseases encompass a wide range of neurological disorders caused by different
causes, most notably genetic mutations in specific genes. Alzheimer’s disease (AD) is one of the
most prevalent neurodegenerative diseases in which the progressive loss of neurons is associated
with the upregulation of peptides and activation of proteins, such as amyloid beta (Aβ) or
tau phosphorylation, that trigger specific signaling pathways that ultimately contribute to the
progression of the disease. In addition, accumulation of other cellular components, such as specific
types of lipids, can cause neuronal death and mitochondrial dysfunction in the brain and in
peripheral organs. The role of mitochondrial dysfunction in neurodegenerative diseases remains
to be fully elucidated. Recent studies have provided evidence that alterations in lipid metabolism
can have a deleterious impact on mitochondrial function, which can contribute to the progression
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not only of AD but also of the lysosomal storage disorder
Niemann–Pick type C (NPC) disease, a neurovisceral disorder
primarily characterized by the accumulation of lipids in
intracellular organelles, most predominantly in lysosomes.
Here, we briefly summarize evidence indicating that increased
cholesterol trafficking to mitochondria has emerged as a putative
key player in AD and NPC disease through the disruption of
mitochondrial routine performance, leading to oxidative stress
and cell death.

MITOCHONDRIAL CHOLESTEROL
TRAFFICKING IN NEURODEGENERATIVE
DISEASES

Cholesterol is an essential component of membrane bilayers,
which determines their physico-chemical and functional
properties. Cholesterol is particularly enriched in the brain,
where it regulates key biological functions, such as signal
transduction pathways, myelin formation, and synaptogenesis
(1). In the central nervous system (CNS), cholesterol is
synthesized de novo from acetyl-CoA in the mevalonate pathway
in the endoplasmic reticulum (ER) (2). Since cholesterol does
not cross the blood–brain barrier (BBB), to ensure steady-state
turnover, cholesterol synthesis is matched by its metabolism
to 24S-hydroxycholesterol (24-OHC), which crosses the BBB
and is delivered to peripheral organs and hence constitutes an
intrinsic mechanism to prevent cholesterol accumulation in the
brain. During the perinatal period, cholesterol accumulation
in the brain is mainly determined by oligodendrocytes due
to their key role in myelination, while neurons synthesize
their own cholesterol de novo needed for neuronal plasticity
and function (3). In the adult life, however, the rate of de
novo cholesterol synthesis declines, forcing neurons to acquire
cholesterol from a cross-talk between neurons and astrocytes
(1, 4). Although the regulation of cholesterol homeostasis
in brain diseases has been reviewed elsewhere (2), here we
discuss the specific role of mitochondrial cholesterol in
neurodegenerative diseases.

While much of what it is known about the trafficking
of cholesterol into mitochondria has been elucidated in the
context of steroidogenesis, the relevance of mitochondrial
cholesterol in neurodegeneration has been less recognized.
Emerging evidence indicates that mitochondrial cholesterol
loading can influence mitochondrial function independently
of its conversion to pregnenolone or oxysterols, arising as a
key factor in the pathology of several neurological diseases
associated with mitochondrial dysfunction, such as AD and
NPC disease (5). Although the physiological levels of cholesterol
in mitochondrial membranes are low compared to other
membrane bilayers (e.g., plasma membrane), the limited content
of mitochondrial cholesterol is essential for the maintenance
of mitochondrial membrane physical properties and synthesis
of neurosteroids. The key regulatory enzymes responsible for
steroid synthesis in the CNS include the cytochrome P450 side-
chain cleavage (P450scc), and the steroidogenic acute regulatory
protein StARD1, the founder member of a family of lipid

transporting proteins that contain StAR-related lipid transfer
(StART) domains. The rate-limiting step in the synthesis of
neurosteroids is the availability of mitochondrial cholesterol in
the mitochondrial inner membrane (MIM) for metabolism by
P450scc. Cholesterol is imported to mitochondrial membranes
by the action of lipid transfer multiprotein complex acting at
membrane contact sites. StARD1 plays an essential role in the
transfer of cholesterol to the MIM, as inferred from the outcome
of mice with global StARD1 deletion, which undergo a lethal
adrenal lipoid hyperplasia, indicating that other members of the
StAR family cannot replace its function in intramitochondrial
cholesterol trafficking (6, 7). StARD1 contains a mitochondrial
localization sequence and a steroid-binding domain. The exact
location of StARD1 in mitochondria has been much discussed,
but among StARD1 forms, the 30 kDa phosphorylated form has
been described to be localized on the MIM (8). MLN64 (also
known as StARD3) provides cholesterol to the mitochondrial
outer membrane (MOM) from endosomes (5, 9) and together
with StARD1 work in tandem in the net import of cholesterol
to the MIM for metabolism.

In the last decade, significant progress has been made
on the impact of cholesterol accumulation in mitochondrial
function and routine performance in AD and NPC disease
using genetic mouse models, such as the APP/PSEN1 transgenic
mice overexpressing SREPB-2 (APP/PSEN1/SREBP2) and the
Npc1−/− knockout mice (10–14). While much of the deleterious
effects of mitochondrial cholesterol accumulation in both
diseases is accounted for by the depletion of mitochondrial GSH
(mGSH), unfortunately the underlying mechanisms whereby
cholesterol accumulates in mitochondria in AD and NPC are
not fully understood. Our hypothesis posits that StARD1 is a
critical player in mitochondrial cholesterol loading and hence
emerges as a putative novel target for intervention in both
diseases (Figure 1).

INTRACELLULAR CHOLESTEROL
HOMEOSTASIS AND MITOCHONDRIAL
FUNCTION IN AD

AD is one of the most common neurodegenerative disorders in
older adults. The pathological hallmark of AD is the cognitive
impairment and associated dementia due to neuronal death
caused in part by the accumulation of amyloid plaques in
the cortex and hippocampus (15–18). Currently, there is no
cure for AD, which reflects our incomplete understanding of
AD pathogenesis. AD is a multifactorial disease and several
players contribute to its progression, including the disruption of
cholesterol homeostasis. In this regard, epidemiological findings
showed that hypercholesterolemia is a major risk factor for AD
development (19). However, in spite of the association between
hypercholesterolemia and AD, the role of cholesterol in AD is
controversial and not fully understood. In this regard, a body of
literature supports a link between increased cholesterol levels in
the brain with the progression of AD. For instance, the specific
presence of the enzymes involved in the generation of toxic Aβ

peptides in lipid rafts, specific domains of membrane bilayers
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FIGURE 1 | Schematic representation of the putative mechanisms of StARD1 upregulation in AD and NPC. Mitochondrial cholesterol accumulation and subsequent

mGSH depletion is a common feature of AD and NPC and its correlates with increased expression of StARD1. Since StARD1 is critical for mitochondrial cholesterol

trafficking, it is conceivable that StARD1 is located in the MAM interface between ER and mitochondria. While in AD, ER stress by Aβ may contribute to StARD1

upregulation, this event does not seem to play a role in NPC. Given the repression of StARD1 by ACDase, we propose that ACDase downregulation may contribute to

StARD1 induction in NPC disease, which requires further investigation. In both diseases, mitochondrial cholesterol accumulation disrupts membrane physical

properties and impairs the transport of GSH into mitochondria, via the 2-oxoglutarate carrier (OGC), disrupting the mitochondrial antioxidant defense and subsequent

oxidative stress. Chol, cholesterol; mGSH, mitochondrial glutathione; ROS, reactive oxygen species.

highly enriched in cholesterol, provides a strong association
between high cholesterol levels with Aβ generation and AD
development (20, 21). Moreover, in the CNS, cholesterol is
transported between different cell types by a multicellular
trafficking process largely regulated by ApoE (22–24). Consistent
with its function in cholesterol trafficking within the brain, ApoE
polymorphisms, particularly APOEε4 allele, have emerged as a
risk for AD development and correlate with higher levels of Aβ

in the serum (25, 26). Moreover, experimental models fed diets
enriched in cholesterol have been shown to develop AD-like
pathology [(27); reviewed in (28)]. Quite interestingly, besides
the association between the increase in cholesterol levels with
AD, there is also evidence indicating that low cholesterol levels
in the brain can contribute to the AD progression (2). This
inverse relationship is of particular significance during aging, as
low levels of cholesterol in hippocampus are characteristic of the
aged human brain (29). Furthermore, as cholesterol metabolism
in the brain to 24-OHC by the action of CYP46A1 represents

a unique mechanism to control brain cholesterol homeostasis,
CYP46A1 polymorphisms correlate with lower brain cholesterol
levels and increased risk of AD (30, 31). In addition, hippocampal
cholesterol loss has been shown to contribute to the poor
cognition in old rodents, and hence, cholesterol replenishment
in aging animals improves hippocampal-dependent learning and
memory (32).

In the early stage of AD development, mitochondria undergo
significant functional deficits, which correlate with accumulation
of neurotoxic Aβ (33–36). Interestingly, it has been shown that
Aβ can target mitochondria to stimulate ROS generation, thus
contributing to Aβ toxicity in neurons (37, 38). Immunoelectron
microscopy analysis indicated the association of APP with
mitochondrial protein translocation components, TOM20 and
TIM23, which correlated with decreased import of respiratory
chain subunits, lower cytochrome oxidase activity, and increased
ROS generation (39). Moreover, functional complexes with
γ-secretase activity have been found in mitochondria while
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insulin-degrading enzyme (IDE), which is known to contribute
to Aβ removal, can be targeted to mitochondria (40, 41).
Thus, mitochondrial dysfunction is associated with increased Aβ

generation and AD progression.
In line with the potential relevance linking intracellular

cholesterol to mitochondrial dysfunction in AD, mitochondrial
cholesterol enrichment has been shown to sensitize to Aβ-
mediated neurotoxicity through depletion of mGSH levels
(10). Moreover, APP/PS1/SREBP-2 mice, which exhibit an
early mitochondrial cholesterol loading and mGSH depletion,
exhibited an accelerated β-secretase activation, Aβ accumulation,
and cognitive decline compared to APP/PS1 mice (11), further
supporting the correlation between mitochondrial cholesterol
accumulation and the subsequent mGSH depletion in AD.
Consequently, in vivo treatment of APP/PS1/SREBP-2 mice
with the cell-permeable GSH ethyl ester, which restored mGSH
levels, attenuated synaptic degeneration and improved cognition,
suggesting that therapeutic strategy to prevent mitochondrial
cholesterol accumulation or the restoration of mGSH levels
may represent a relevant approach in the treatment of AD.
Further evidence indicated that ER stress acts as a link
between Aβ generation and cholesterol upregulation and
subsequentmitochondrial cholesterol trafficking due to increased
expression of StARD1 (12). Furthermore, administration of
chemical chaperones that prevent ER stress ameliorates StARD1
upregulation and cognitive decline in APP/PS1/SREBP-2 mice.

In line with this sequence of events, recent findings provided
evidence that StARD1 is an ER stress target gene, as tunicamycin-
mediated ER stress induces StARD1 upregulation in primary
hepatocytes that was prevented by tauroursodeoxycholic acid
(42). Additional evidence linking ER stress and StARD1
upregulation derived from studies on acetaminophen (APAP)
hepatotoxicity in which APAP-induced ER stress causally led to
StARD1 induction that primed to APAP-induced liver injury
(43). Thus, these studies provide strong evidence to support
the hypothesis that Aβ-induced ER stress may be a key
mechanism for AD pathology by promoting increased brain
cholesterol content as a result of enhanced SREBP-2 processing,
while stimulating cholesterol trafficking to mitochondria via
StARD1 upregulation. Indeed, it has been reported that in
the early stage of AD development, Aβ-induced ER stress is
indirectly involved as an effector of Aβ-mediated neurotoxicity
(44). Furthermore, AD human brains exhibit evidence for
increased ER stress markers accompanied by APP accumulation
and activation of β-secretase (45). In addition, Aβ peptides
are reported to cause alterations in mitochondria-associated
membranes (MAMs) (46, 47). In this regard, MAMs act like
ER/mitochondria contact sites, transferring stress signals from
the ER to mitochondria during the early adaptive phases of
ER stress and in the regulation of steroidognesis (Figure 1)
(48). In addition, different studies have shown a relationship
between ER chaperones and StARD1 in MAMs that correlates
with an increase in expression of GRP78 in AD patients (45, 49).
In line with these findings, elevated STARD1 levels have been
reported in the cytoplasm of hippocampal pyramidal neurons
from brain samples of AD patients (50), suggesting a mechanistic
link between StARD1 and mitochondrial cholesterol loading in

human AD. Further work will be needed to critically establish a
cause-and-effect relationship between StARD1 upregulation and
the mitochondrial cholesterol accumulation and its contribution
to AD, which will require the generation of cell-type-specific
StARD1 deletion models in brain to examine the sensitivity to
AD pathology (Garcia-Ruiz et al., manuscript in preparation).

MITOCHONDRIAL CHOLESTEROL
ACCUMULATION IN NPC DISEASE

Lysosomal lipid accumulation is the hallmark of NPC disease,
which is characterized by neuronal and visceral symptoms,
spleen dysfunction, hepatosplenomegaly, deficits in motor
coordination, and premature death (51, 52). NPC disease is
caused by mutations in genes encoding NPC1 and NPC2,
two lysosomal-resident proteins responsible for the egress of
cholesterol from lysosomes to cytosol. Most NPC cases are
due to loss of function of NPC1, and consequently, mice
with NPC1 deletion (Npc1−/− knockout mice) reproduces
many of the deficits seen in NPC patients, including the
neurological symptoms, ataxia by 6–7 weeks of age, and reduced
maximal life span to about 10–12 weeks (52, 53). Consistent
with the crucial role of NPC1/2 in intracellular cholesterol
trafficking, the primary biochemical feature of NPC disease is
the accumulation of cholesterol in lysosomes. However, due
to the mutual regulation of cholesterol and sphingolipids to
maintain a constant ratio in membrane bilayers, which is crucial
for the maintenance of their physical properties, the increase of
lysosomal cholesterol loading in NPC disease is accompanied
by accumulation of specific sphingolipids species (54–56). In
addition to the accumulation of cholesterol/sphingolipids in
lysosomes, cholesterol also has been reported to accumulate
in mitochondria in affected organs from Npc1−/− mice,
particularly liver and brain and in fibroblasts from NPC
patients (57, 58). As recent findings have demonstrated that
diet-induced mitochondrial cholesterol enrichment impairs
mitochondrial routine performance and disrupts the assembly of
respiratory supercomplexes (59), the increase in mitochondrial
cholesterol seen in NPC models can contribute to the
reported mitochondrial dysfunction and subsequent oxidative
stress associated with NPC disease, which is largely due to
mGSH depletion and subsequent disruption of mitochondrial
antioxidant defense (10, 57, 58, 60–63). In line with these
findings, defective ATPase activity has been reported in brain
mitochondria from Npc1−/− mice, and this outcome has been
causally linked to cholesterol accumulation in mitochondrial
membranes as its extraction with methyl-β-cyclodextrine (βCD)
restored ATP activity (57). Moreover, mGSH replenishment with
GSH ethyl ester (GSHEE) in cerebellum of Npc1−/− mice was
able to reverse mitochondrial dysfunction and improve oxidative
phosphorylation. GSHEE treatment enhanced neurological
performance and motor activity and, more importantly, resulted
in increased median survival and maximum life span of NPC1
null mice, similar to treatment with βCD (13). However,
combination of GSHEE with βCD had no additive effects,
suggesting that both agents act in a common pathway affecting
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mitochondrial function. Furthermore, liver samples from 8week-
old NPC null mice exhibited increased protein carbonylation,
decreased ATP levels, and activated caspase 3 activity, whereas
isolated mitochondria revealed increased MitoSox fluorescence
and reducedmitochondrial membrane potential, effects that were
reversed by GSHEE therapy. Liver injury, inflammatory foci, and
hepatosplenomegaly increased in liver of Npc1−/− mice, and
these signs of liver disease were attenuated by GSH-EE treatment.
In contrast to the therapeutic effects of GSHEE, N-acetylcysteine
(NAC) did not restore mGSH and failed to improve NPC
pathology, although NACwas effective in increasing cytosol GSH
pool. These findings illustrate the relevance of mGSH depletion
in NPC disease and the need to implement specific strategies
to bypass the block of GSH transport in mitochondria imposed
by the accumulation of cholesterol and subsequent decrease in
membrane fluidity.

As mitophagy stands as a specific mechanism to maintain
mitochondrial quality control, the increase in lysosomal
cholesterol, which has been shown to impair mitophagy, could
contribute to the perpetuation of mitochondrial dysfunction
in NPC disease due to impaired mitochondrial turnover,
as illustrated in drug-induced liver injury (64). Besides the
impact in quality control, recent findings have provided
evidence for impaired mitochondrial biogenesis in NPC
disease by a mechanism involving transcriptional repression
of mitochondrial biogenesis (65). This outcome is mediated
specifically by the transcription factors KLF2 and ETV1. Both are
induced in NPC cells and their silencing restored mitochondrial
biogenesis. Increased expression of ETV1 is regulated by
KLF2, while the increase in KLF2 levels is caused by impaired
signaling downstream of sphingosine-1-phosphate receptor
1, which normally represses KLF2 (65). Quite intriguingly, as
mitochondrial respiratory chain deficiency regulates lysosomal
homeostasis and hydrolysis (66), it is tempting to speculate that
mitochondrial cholesterol-mediated dysfunction and lysosomal
cholesterol accumulation engage in a mutual regulatory cycle
that is of relevance to NPC disease.

Although mitochondrial cholesterol is recognized to
contribute to mitochondrial dysfunction and has emerged
as a putative player in NPC pathogenesis, the molecular
mechanism involved in the stimulated trafficking of cholesterol
to mitochondria remains poorly understood. In this regard,
increased expression of StARD3 (MLN64) has been reported
in NPC cells, which correlated with enhanced cholesterol
accumulation in mitochondria and mitochondrial depolarization
(63). In parallel with these observations, StARD1 upregulation
has been observed in affected organs of Npc1−/− mice and in
fibroblasts from NPC patients (67). Since StARD3 is thought to
transfer cholesterol from endosomes to the MOM, the increased
expression of StARD1/StARD3 suggests that both proteins work
together in the intramitochondrial trafficking of cholesterol, with
StARD1 playing a key role in the transfer to MIM. Consistent
with this possibility, hepatocyte-specific StARD1 deletion has
been shown to prevent cholesterol accumulation in MIM and
protect against APAP-mediated liver failure despite unchanged

MLN64 expression (43). Thus, in view of the crucial role
of StARD1 in mediating mitochondrial cholesterol loading,
understanding the molecular mechanisms involved in StARD1
induction may be of relevance for NPC pathogenesis and could
emerge as a druggable target for the treatment of NPC disease.

DISCUSSION

Although current evidence indicates that mitochondrial
cholesterol emerges as a common event in both AD and NPC,
the molecular mechanisms contributing to its accumulation
in mitochondria are not well-understood. In both models,
we observed increased expression of StARD1 and enhanced
MLN64 expression (70–90%) (12, 63, 67). In spite of the
shared upregulation of StARD1 in AD and NPC disease, the
putative mechanisms underlying its induction appear to be
different in both diseases (Figure 1). In this regard, although
ER stress is known to induce the upregulation of StARD1
and AD is characterized by ER stress, there is no evidence
for induction of ER stress markers in NPC (68), dissociating
the relationship between ER stress and StARD1 upregulation
in NPC and AD. Alternatively to the onset of ER stress, we
hypothesized that acid ceramidase (ACDase) may be involved
in the upregulation of StARD1, as its expression is decreased
in liver and brain of Npc1−/− mice (67). As ACDase has
been shown to repress StARD1 expression through binding
to the nuclear receptor steroidogenic factor-1 (69), it remains
to be established whether decreased ACDase in NPC disease
contributes to the upregulation of StARD1 and subsequent
mitochondrial cholesterol accumulation. Thus, based on
these findings, StARD1 upregulation in AD and NPC disease
could account for the increased mitochondrial cholesterol
loading. Hence, we propose that ER stress determines StARD1
upregulation in AD, while in NPC, ACDase downregulation
may stand as the trigger to induce StARD1 induction (67).
In conclusion, we propose that StARD1 may be crucial for
the mitochondrial cholesterol accumulation, characteristic of
AD and NPC. Further research is required to determine that
targeting this process may be of relevance for both AD and
NPC disease.
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