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Abstract: Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) has the potential to
detect single molecules in a non-invasive, label-free manner with high-throughput. SM-SERS can
detect chemical information of single molecules without statistical averaging and has wide application
in chemical analysis, nanoelectronics, biochemical sensing, etc. Recently, a series of unprecedented
advances have been realized in science and application by SM-SERS, which has attracted the interest of
various fields. In this review, we first elucidate the key concepts of SM-SERS, including enhancement
factor (EF), spectral fluctuation, and experimental evidence of single-molecule events. Next, we
systematically discuss advanced implementations of SM-SERS, including substrates with ultra-high
EF and reproducibility, strategies to improve the probability of molecules being localized in hotspots,
and nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS are
proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the challenges
and future of SM-SERS. We hope this literature review will inspire the interest of researchers in
more fields.

Keywords: surface-enhanced Raman spectroscopy; single-molecule detection; surface plasmon
resonance; nanoparticle

1. Introduction

Raman scattering arises from the interaction between photons and molecules [1].
The molecular transition energy can be obtained by measuring the wavelength of Raman
scattered photons. Thus, the Raman spectrum is also known as the chemical fingerprint
spectrum [2]. Raman spectroscopy has the advantage of being label-free and non-invasive,
so it is widely used in material and life science. However, spontaneous Raman scattering
is very weak, with only 1 in 107 photons involved, which limits the sensitivity of Raman
spectroscopy.

Surface-enhanced Raman spectroscopy (SERS) significantly enhances the Raman signal
beyond the sensitivity limit of Raman spectroscopy [3]. In general, surface-enhanced
Raman scattering occurs on molecules adsorbed on the rough surface or nanostructure
of noble metal substrates. It is generally accepted that SERS enhancement is the result of
electromagnetic mechanisms (EM) and chemical mechanisms (CM) [4,5]. EM enhancement
is the dominant contribution of SERS. Surface plasmon resonance (SPR), the collective
oscillation of free electrons excited by photons, localizes the electromagnetic field on the
surface of the substrate. The strong, localized electromagnetic field amplifies the Raman
signal of molecules adsorbed on the substrate. CM, providing less enhancement than EM,
is employed as a complementary approach. The Raman polarizability tensor of analyte
molecules is modified by charge transfer between molecules and hot electrons.

Single-molecule SERS (SM-SERS), the Raman spectrum from a single molecule, is the
ultimate goal of SERS in terms of sensitivity (Figure 1). SM-SERS is an unprecedentedly

Sensors 2022, 22, 4889. https://doi.org/10.3390/s22134889 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134889
https://doi.org/10.3390/s22134889
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3833-3113
https://doi.org/10.3390/s22134889
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134889?type=check_update&version=1


Sensors 2022, 22, 4889 2 of 16

high-throughput and ultra-sensitive method for chemical analysis. More importantly, subtle
spectroscopic phenomena from single molecules are observed without a statistical average.
In application, SM-SERS has been widely used in various fields, including chemical analysis,
nanoelectronics, and biochemical sensing [6–9]. For example, in situ monitoring of catalytic
reactions could be achieved by SM-SERS. Monitoring at the single-molecule level reveals
the mechanism of the reaction, thus guiding the design of highly efficient catalysts.
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Figure 1. Schematic diagram of SM-SERS. Center: SPR effect of nanoparticles; Inset: (a) dimetric
nanostructure; (b) plasmonic single-molecule junction; (c) plasmonic tip; (d) plasmonic nanopore.

It has been more than 20 years since SM-SERS was first reported in 1997 [10,11]. In these
two decades, the theory of SM-SERS has undergone several changes, but some experimental
phenomena have yet to be fully explained. A series of sophisticated schemes for SM-SERS
has been proposed, with a strong localized electromagnetic field, high-reproducibility sub-
strates, strategies for localizing molecules in hotspots, etc. Researchers are also extending
SM-SERS to a variety of environments to accommodate more applications. In practice,
some critical challenges still exist. In this review, we clarify the concepts of SM-SERS,
evaluate the progress and challenges in SM-SERS, and illustrate applications of SM-SERS.
We hope this literature review will inspire the interest of researchers in various fields.

2. Single-Molecule SERS

Measuring the structure and behavior of single molecules has attracted great atten-
tion in various fields. Several single-molecule detection techniques have been imple-
mented [12,13], including transmission electron microscopy (TEM), scanning tunneling
microscopy (STM), atomic force microscopy (AFM), tunneling sensing, single-molecule
fluorescence microscopy, etc. SM-SERS detects the vibrational modes of single molecules,
providing high-throughput structural information. SM-SERS could be flexibly applied
in various environments, from ultra-high vacuum at cryogenic temperature to in a so-
lution at room temperature [14,15]. In addition, SM-SERS plays an important role in
catalysis, nanoelectronics, sensing, etc. SM-SERS has demonstrated exciting prospects in
science and application. However, when the concentration of the analyte is decreased to a
single-molecule level, extraordinary phenomena and problems appear. Several concepts of
SM-SERS are worth clarifying.



Sensors 2022, 22, 4889 3 of 16

2.1. Enhancement Factor

The enhancement factor (EF) of SERS is the ratio of Raman signal with and without
substrates in the same measurement conditions, normalized for the number of molecules
probed. The EF is defined as:

EF =
ISERS/Nsur f

IRS/Nvol
, (1)

where IRS and ISERS are the Raman intensity for Nvol molecules and SERS intensity for
Nsur f molecules.

EM-induced enhancement comes from two multiplicative effects: one results from
enhancement of the local excitation field; the other is due to enhancement of the re-emitted
Raman scattering [16].

G(r) = [
Eloc(ω0, r)
E0(ω0, r)

]
2

[
Eloc(ωR, r)
E0(ωR, r)

]
2

, (2)

where r is the spatial coordinate, ω0 and ωR are the frequency of excitation and Raman
photons, E0(ω, r) is the electric field of excitation light, and Eloc(ω, r) is the enhanced local
electric field. Ignoring the frequency difference between the excitation and Raman photons,
EM-induced enhancement is approximately proportional to the fourth power of the local
electric field enhancement, which is known as the E4 approximation [17].

CM-induced enhancement relies on modification of the Raman polarizability tensor of
the analyte molecules by charge transfer. The overall SERS intensity I(ωR) can be expressed
as:

I(ωR) = AG(r)|α(ωR, ω0)|2 I0(r, ω0) (3)

where A is the collection efficiency of the setups, α(ωR, ω0) is the Raman polarizability of
the molecule, and I0(r, ω0) is the intensity of excitation light.

The EF required to observe single-molecule events is critical but controversial. When
SM-SERS was first observed, single-molecule events were observed when the molecules
were adsorbed in the Ag colloid. It was claimed that an EF of 1014 is essential for single-
molecule detection [11]. A series of subsequent studies revised the value to 107–108 [18,19].

Indeed, SERS intensity depends not only on the SERS substrates, it is also related to
the analytes and optical setups. For analytes, various molecules differ in Raman scattering
cross sections. In the same excitation conditions, the larger the differential cross sections,
the more intense the Raman scattering [20]. Especially when the excitation wavelength
corresponds to the electronic transition of a molecule, resonance enhancement of Raman
scattering occurs. The excited electrons transition to the excited electronic state rather than
a virtual state, significantly increasing the cross section, providing the EF of 102–106 [21].
As for optical setups [22], a high numerical aperture (NA) objective enables high Raman
collection efficiency. The sensitivity of the spectrometer determines the lowest detectable
intensity coupled to the spectrometer. In particular, when the wavelength and polarization
of the excitation beam match the SPR of the SERS substrates, the highest EM-induced EF is
obtained.

It is worth mentioning that the mechanism of some experimental phenomena of
SM-SERS has not yet been fully explained. Several reports have proposed that some
previously ignored physical mechanisms, such as Rayleigh scattering, discrete interaction,
and quantum interaction need to be considered in SM-SERS [23–26].

2.2. Experimental Evidence of Single-Molecule Event

In earlier studies, the ultra-low concentration of the analyte was considered evidence
for single-molecule detection, with less than one molecule in the probed volume on aver-
age [10]. However, due to the sparse distribution of hotspots, it is highly probable that no
molecules are present in the hotspot in most events. Moreover, contamination, dilution
errors, wall adsorption, and overestimation of hotspots affect the demonstration in such
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a low concentration. Consequently, direct experimental evidence is required to prove the
existence of a single-molecule event.

Fluctuations of SERS both in intensity and spectral shape were once considered the
experimental evidence of single-molecule events [10,11]. In single-molecule level con-
centration, the dynamic movement of molecules in hotspots causes signal fluctuations.
Nevertheless, later studies showed that the fluctuations are an intrinsic property of SERS
rather than adequate evidence for SM-SERS [27]. Similar fluctuations were observed at
higher concentrations [28]. More evidence was considered based on statistics. When the
average number of molecules in the probed volume is one or less, the statistical distribution
of the Raman signal changes from Gaussian to Poisson and is quantized to correspond to
zero, one and two molecules in the probed volume [10,11]. It has been noted that inade-
quate sampling (e.g., 100) following a log-normal distribution often exhibits oscillations
similar to a Poisson distribution [27]. More than 104 samplings are required for a rigorous
argument [29].

Bianalyte’s approach [30] provides direct experimental evidence for SM-SERS without
relying on ultra-low concentration. In this approach, a mixture of two analytes with
distinguishable Raman spectra are adopted for SERS measurement. With more than one
molecule in the hotspot, the SERS is a mixture spectrum of both analytes. If only one
molecule on average exists in the hotspot, the measured SERS signal comes from either one
of the two analytes.

2.3. Spectral Fluctuation and Data Analysis

To retrieve chemical information from recorded Raman spectrum, many classification
and dimensionality reduction algorithms are adopted to deal with SERS data, including
support vector machine (SVM), principal component analysis (PCA), cluster analysis, and
deep learning [31–33]. However, spectral fluctuations in SM-SERS inevitably disturbs data
analysis, even though some digital signal processing methods are used to suppress the
effects of fluctuation [27].

In contrast, spectral fluctuations and blinking imply single-molecule information.
Lindquist et al. [34] proposed high-speed super-resolution imaging to capture the temporal
and spatial features of fluctuation. The physical and chemical properties of molecules
and substrates, including molecular adsorption and desorption, molecular reorientation,
surface diffusion, and metal surface reconstruction [35,36], have been resolved through
spectral fluctuation and blinking. Weber et al. [37] mapped the shape of hotspots from
the fluctuation and studied the molecular motion of the nanoparticles. Furthermore,
environmental factors such as temperature, pressure, light intensity, and charge transfer
have been proven to influence spectral fluctuations [38–41]. So far, the principle of spectral
fluctuation and blinking has not been fully understood. Therefore, the study of spectral
fluctuation is not only conducive to the understanding of the single-molecule system, but
also to the development of an analysis algorithm based on SM-SERS data.

3. Advanced Implementation of SM-SERS

According to the reports by Kneipp and Nie [10,11], SM-SERS measurements rely on
the random adsorption of analyte molecules to the hotspots in colloidal silver solution. A
series of surveys revealed that only the aggregation of multiple nanoparticles could provide
enough EF for SM-SERS [28,42]. When the analyte molecule is localized at the gap between
the nanoparticles, the Raman scattering is greatly amplified. Although single-molecule
sensitivity has been realized in such a scheme, some drawbacks still exist. First, EF is highly
sensitive to interparticle distance, which cannot be precisely controlled in colloidal silver.
Second, the aggregation of nanoparticles is extremely heterogeneous, and few SM-SERS
hotspots are generated, which makes analyte molecules in hotspots a rare event. Therefore,
an advanced SM-SERS scheme has been developed around two aspects: SERS substrate
with ultra-high EF and reproducibility, and improving the probability of analyte molecules
in hotspots. On the other hand, conventional SERS substrate material is dominated by a
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noble metal. The development of nonmetallic and hybrid substrates is beneficial to broaden
the application of SM-SERS.

3.1. Substrates with Ultra-High EF and Reproducibility

Single nanoparticles typically do not provide enough EF for SM-SERS, and only
the gaps between nanoparticles are active sites. The nanoscale error of gaps causes an EF
difference up to several orders of magnitude. Nevertheless, such sites are sparse in colloidal
silver. Less than 5% of sites contribute more than 80% of the overall SERS intensity [43].
Thus, constructing highly reproducible substrates is crucial for SM-SERS.

Dimer, as a simple and effective nanostructure, is widely adopted in SM-SERS due
to its ultra-high EF in the nanogap. Lim et al. [44] reported a reproducible dimetric
nanostructure, called gold–silver core–shell nanodumbbell (GSND) (Figure 2a). GSND
consists of two Au nanoparticles with an Ag shell linked by DNA strands. A dye molecule
attached to the DNA strand is located in the gap between nanoparticles. The size of the gap
is precisely controlled on the nanometer scale by tuning the Ag shell thickness. The EF of
GSND with a 5 nm Ag shell is 2.7 × 1012 and ensures a yield of 73%. Li et al. [45] achieved
SM-SERS with a nanoparticle-on-mirror (NPoM) (Figure 2b) [46,47] configuration, in which
the gap between the nanoparticle and the metallic surface is determined by the length of
the adsorbed molecules. The configuration could detect a distinguishable signal in 10 nM
and achieve single-molecule sensitivity as proven by the bianalyte approach. Further,
Carnegie et al. [48] observed the optically induced formation of picocavities in NPoM,
which further focused the local field down to the subnanometer scale. The picocavities were
stabilized at room temperature by chemically modifying the self-assembled monolayers.
When SERS is combined with nonlinear optical processes, such as stimulated Raman
spectroscopy (SRS) and coherent anti-Stokes Raman scattering (CARS), more complex
nanostructures are utilized [49]. Zhang et al. [50] demonstrated a Fano-resonant quadrumer
substrate (Figure 2c) to achieve single-molecule surface-enhanced CARS. Pump light, Stokes
scattering, and anti-Stokes scattering are simultaneously enhanced with the quadrumer
substrate. An EF of 1011 over spontaneous Raman scattering was realized, which is capable
of single-molecule detection.

DNA origami [51], a powerful nanoengineering tool, offers an elegant approach to
designing sophisticated nanostructures. In DNA origami, a long scaffold single strand and
a set of short artificial staple strands are self-assembled in various 2D and 3D structures.
Thacker et al. [52] assembled two 40 nm Au nanoparticles with gaps of 3.3± 1 nm on a DNA
origami platform. The innovative structure ensures ultra-high EF between nanoparticles
without occupying the gaps between them. Further, a series of functional complicated
nanostructures were assembled on DNA origami platform, including heterodimers [53],
nanostar dimers [54], bowties [55], nanocavities [56], nanoforks [57] (Figure 2d), etc.

Tip-enhanced Raman spectroscopy (TERS) [58–60], an extension of SERS, enhances the
Raman signal of the analyte on the substrate by a plasmonic tip. The apex of a tip with a
high aspect ratio induces the lighting rod effect and localizes the electromagnetic field into a
tightly confined space [61]. With a sophisticated mechanical system, precise coupling of the
tip and plasmonic substrate enables much larger EF, similar to the NPoM. Zhang et al. [14]
realized single-molecule TERS in an ultra-high vacuum and low temperature (Figure 2e).
The plasmonic tip and substrate form a nanocavity. By spectrally matching the SPR of
the nanocavity and the electronic transition of the molecule, both Raman excitation and
emission are enhanced. The chemical mapping of a single molecule with subnanometer
spatial resolution was achieved. Furthermore, nonlinear TERS pushed the spatial resolution
down to 0.5 nm [62]. Two adjacent molecules of very similar structure with van der Waals
contact can be distinguished. Although single-molecule TERS is typically implemented
at cryogenic temperature, recently, several reports have shown that TERS can achieve
single-molecule sensitivity at room temperature [48]. Park et al. [63] performed variable
temperature (90–300 K) single-molecule TERS of malachite green. From temperature-
dependent line narrowing and splitting, the ultrafast vibrational dephasing, conformational
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heterogeneity, and intramolecular coupling were quantified. Liu et al. [64] proposed fishing-
mode TERS (FM-TERS) to study single-molecule junctions in different conduction states
(Figure 2f). A bias voltage is applied between the tip and substrate to tune the conduction
states of the single-molecule junction. Single-molecule conductance and Raman spectrum
are simultaneously acquired at room temperature by FM-TERS.

Limited by the optical diffraction limit, the focal spot of the excitation beam is much
larger than the hotspot. Improving coupling efficiency from far-field to near-field is a
complementary approach to increase EF. Ahmed et al. [65] proposed a nanoantenna for
directional SM-SERS. Wang et al. [66] fabricated a nanoantenna chip containing more than
103 nanoantennas with top-down fabrication methods (Figure 2g). Each nanoantenna
consists of a Ag dimer with a 5 nm gap and a Ag ring, all on a SiO2 spacer layer on a Ag
mirror. The Ag mirror supports the SPR excited on the dimer, and the Ag ring converges the
surface plasmon polaritons (SPPs) on the mirror to the dimer. The Ag mirror and Ag ring
provide an extra two orders of magnitude EF. Chen et al. [15] demonstrated a plasmonic
device consisting of a sub-10 nm wide and 1 µm long nanoslit, a cavity, and two Bragg-
mirror gratings for single-molecule nucleobase sensing (Figure 2h). The cavity efficiently
couples the excitation light into SPPs and guides them into the nanoslit. Two Bragg-mirror
gratings reflect SPPs back into the slit-cavity to further strengthen the enhanced field. In
TERS, a spiral tip fabricated by metal deposition and direct laser writing is proposed [67,68].
Through the spiral design, the mirror symmetry of the plasmonic tip is broken, avoiding
destructive interference of the coupled SPPs, achieving 30% greater EM enhancement than
the conical tip.
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Figure 2. High-reproducibility substrates for SM-SERS. (a) Nanogap-engineered SERS-active GSND.
(b) NPoM configuration. Figure reproduced from [46]. (c) The enhancement map of the quadrumer
substrate. (d) Nanoparticle dimer assembled on the DNA origami nanofork. Figure reproduced
from [57]. (e) Tunneling-controlled TERS. (f) Schematic diagram of FM-TERS. Figure reproduced
from [64]. (g) Nanoantenna chip for SM-SERS. Figure reproduced from [66]. (h) The SEM image of the
nanoslit device. Scale bar, 1 µm. Scanning electron microscopy, SEM. Figure reproduced from [15].

Reproducible SM-SERS experiments and data rely on the plasmonic nanogap with
precise size control. So far, fabricating such a precise nanostructure is still a challenge in a
variety of environments.

3.2. Strategies for Improving the Probability of Molecules in Hotspots

As mentioned above, in SM-SERS experiments based on random adsorption, it is
a rare event that molecules are located in hotspots due to ultra-low concentration and
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narrow hotspots with sparse distribution. Long observation time is required for statistical
confidence, suffering from free diffusion of molecules. An approach is to chemically bind
the molecule into the gap. In TERS, the hotspot generated by the tip is scanned along
the substrate with scanning probe microscopy (SPM). All of the analytes on the substrate
are present in the hotspot in one scan. However, single-molecule TERS is still limited by
environment and imaging speed.

Expanding the volume of hotspots directly improves the probability of molecules in
hotspots. Langmuir–Blodgett assembly is a powerful technique for assembling a large-area
monolayer of anisotropic blocks [69]. Tao et al. [70] assembled Langmuir–Blodgett mono-
layers of aligned Ag nanowires covering over 20 cm2 as a SERS substrate. Zhang et al. [71]
reported a wrinkled, nanoporous Au film containing a high density of hotspots with EF of
109. Mao et al. [72] designed a warped substrate instead of a flat substrate for NPoM by
transformation optics, resulting in broadband enhancement in both magnitude and volume
(Figure 3a). Single-molecule detection with only 60 s soaking time was achieved.
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Another approach is to deliver molecules to the hotspots instead of random adsorption.
Lin et al. [73] proposed a SERS substrate with programmable localized electrodynamic
precipitation (Figure 3b). By applying a bias voltage to the substrate, analytes as far as
centimeters away can be directed to the hotspots. Chen et al. [15] separated the electrolyte
solution into two chambers by a nanoslit chip (Figure 3c). By applying a positive bias
voltage, the nanoslit provides the only path from the cis to the trans chamber. Adsorption
and translocation of molecules is manipulated by modulating the transmembrane voltage
to match the slow sampling speed of SERS. Huang et al. [74] trapped the analyte molecules
adsorbed on Au nanoparticles to the sidewall of a nanopore for minutes through a combina-
tion of electroosmotic force, electrophoretic force, and plasmonic gradient force (Figure 3d).
In addition, localized optical heating, plasmonic optical trapping, and magnetic wells have
been used for single-molecule manipulation in nanopore-based systems [75–77].
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3.3. Nonmetallic and Hybrid Substrate

Conventional SERS substrates are dominated by noble metals, such as Au and Ag.
However, Au and Ag typically suffer from high cost, heterogeneity, lack of stability, and
bio-incompatibility. Nonmetallic materials, such as semiconductors, insulators, organic
materials and 2D materials [78,79], can serve as alternatives or as complements to noble
metal substrates. A range of nonmetallic SERS substrates has been proposed based on
different principles, including total internal reflection [80], interference [81], optical am-
plification [82], Mie resonance [83], charge-transfer resonance [84], etc. CM is a common
strategy for nonmetallic SERS substrates. However, CM-induced enhancement is relatively
low; thus reports of SM-SERS with nonmetallic substrate are relatively rare.

Cong et al. [85] reported a sea urchin-like W18O49 nanowire as a SERS substrate,
and realized a detection limit concentration of 10−7 M and EF of 3.4 × 105. The oxygen
deficiencies strengthen the substrate–analyte interactions and enable significant Raman
enhancement. Keshavarz et al. [86] proposed a Si@SiO2 quantum probe as a SERS probe
for biomolecular and intracellular sensing due to its chemical stability and biocompatibility.
Superior EF of 107 at pM concentration was achieved. On the other hand, a combination of
metal and nonmetal has also been adopted for SM-SERS. CM-induced enhancement can
relax requirement on EM-induced enhancement. He et al. [87] coupled Ag nanoparticles
with Si nanowires to achieve an EF of 1010. Shell-isolated nanoparticle-enhanced Raman
spectroscopy (SHINERS) [88], coating Au nanoparticles with ultra-thin and pinhole-free
Si shells, eliminated the influence of adsorbing analytes and has been widely used to
investigate chemical reactions. In summary, it is still a challenge to develop nonmetallic
substrates with single-molecule sensitivity to extend SM-SERS to more applications.

4. Application of SM-SERS
4.1. In Situ Monitoring of Catalytic Reactions

The rational design of highly efficient catalysts depends on understanding the structure–
activity relationship and reaction mechanism at the single-molecule level. SM-SERS, with
its ultra-high surface sensitivity, is a powerful tool for in situ monitoring and elucidating
the mechanisms of catalytic reactions [89–92].

Noble metal nanoparticles can act as catalysts on which plasmon-induced hot electrons
are transferred to reactants [93]. Zhang et al. [94] discovered a new plasmon catalyzed
reaction of p-nitrothiophenol (pNTP) by SM-SERS. In previous studies, dimerization of
pNTP to 4,4-dimercaptoazobenzene (DMAB) was thought to occur on the surface of Au
nanoparticles. Nevertheless, dissociation of pNTP to thiophenol (TP) was observed at
an ultra-low concentration (10−9 M), and plasmon-induced hot electrons provided the
activation energy for the dissociation. Zhang et al. [95] reported direct SERS tracking of
the catalytic reactions at a 13 nm Au nanoparticle. Spatially isolated Au dimers, consisting
of two nanoparticles sized 200 nm and 13 nm, integrate catalytic activity and SERS into a
single entity (Figure 4a). Further, combining SM-SERS with electrochemistry could drive
the reactions by applying the bias voltage to inject or extract electrons from the analytes [64].
Nijs et al. [96] studied hot-electron reduction and oxidation dynamically with a NPoM
configuration by SM-SERS (Figure 4b).

Generally, the catalytic activity of noble metals is relatively low. To expand SERS to
a catalytically active transition metal, Tian et al. [97] employed Au nanoparticles coated
with ultra-thin shells of a transition metal such as Pt, Pd, Ni, or Co. In such a scheme, the
Raman signal of analytes adsorbed on the transition metal shell is enhanced by the Au
core. SHINERS [88], already mentioned in the previous section, improve the chemical and
thermal stability of the noble metal core, enabling in situ monitoring of catalytic reactions
in harsh conditions (Figure 4c).
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4.2. Characterization of Molecular Nanoelectronics

Molecular nanoelectronics use single molecules as building blocks of logic units, elec-
tronic devices, and circuits, with small size, low power consumption, and unconventional
properties [98]. However, poor reproducibility limits the application of molecular nano-
electronics. The molecular structure in nanoelectronic devices is not clear by conventional
conductance measurements [99]. SM-SERS, as a complementary characterization method,
could study molecular conformation and metal–molecule interface structure and charge
transfer at room temperature.

Liu et al. [64] observed voltage-dependent peak splitting due to the different bonding
interactions occurring on the Au–4bipy–Au junction (4,4′-bipyridine, 4bipy) by FM-TERS
(Figure 5a). Kaneko et al. [100] studied the selectivity of adsorption sites in a single-molecule
junction by simultaneous SERS and conductance measurements (Figure 5b). The conduc-
tance response revealed the coexistence of three metastable states in 1,4-benzenedithiol
(BDT) junctions. The SERS results showed selectivity of adsorption site toward “bridge
sites”. Han et al. [101] studied the influence of SPR on interfacial charge transfer in TiO2–
MBA–Au assemblies (MBA, mercaptobenzoic acid) by SERS. Li et al. [102] studied voltage
tuning of vibrational mode in C60 junctions (Figure 5c). Applying a bias to the junction,
vibrational mode softening approximately quadratic in the bias voltage occurs. This stark
effect alone cannot explain the phenomenon, but alteration of the molecular charge state is
responsible for the effect.
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Figure 5. Characterization of molecular nanoelectronics by SM-SERS. (a) The schematic of the Au–
4bipy–Au junction with low/high bias voltage. Figure reproduced from [64]. (b) Simultaneous SERS
and conductance measurements for single-molecule junction. Figure reproduced from [100]. Right:
three metastable states in BDT junctions. (c) SERS of C60 in an electromigrated junction. Figure
reproduced from [102]. Inset: an SEM image of an electromigrated junction.
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4.3. Single-Molecule Sensing

Single-molecule sensing is an important subject in biochemical analysis. In single-
molecule sensing, observation of each molecule is an independent event, revealing infor-
mation that is drowned out by statistical average, such as sample heterogeneity, molecular
mechanism, and complex kinetic rate [8]. For fluorescence or conductance measurements,
one-dimensional data provide limited information that different molecules may yield sim-
ilar signals. SM-SERS provides rich spectral information conducive to distinguishing a
variety of similar analytes [75,103,104], which is of great significance in DNA sequencing,
protein identification, etc. Further, Zhou et al. [105] utilized the rich spectral information to
probe the orientation and oxygenation of single molecules.

TERS can achieve both single-molecule sensitivity and subnanometer spatial reso-
lution. After depositing the analytes on the substrate, the chemical structure of single
molecules can be imaged [14,62]. Viruses [106], single-stranded DNA [107], and RNA [108]
have been identified by single-molecule TERS (Figure 6a).

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16 
 

 

three metastable states in BDT junctions. (c) SERS of C60 in an electromigrated junction. Figure re-
produced from [102]. Inset: an SEM image of an electromigrated junction. 

4.3. Single-Molecule Sensing 
Single-molecule sensing is an important subject in biochemical analysis. In single-

molecule sensing, observation of each molecule is an independent event, revealing infor-
mation that is drowned out by statistical average, such as sample heterogeneity, molecular 
mechanism, and complex kinetic rate [8]. For fluorescence or conductance measurements, 
one-dimensional data provide limited information that different molecules may yield sim-
ilar signals. SM-SERS provides rich spectral information conducive to distinguishing a 
variety of similar analytes [75,103,104], which is of great significance in DNA sequencing, 
protein identification, etc. Further, Zhou et al. [105] utilized the rich spectral information 
to probe the orientation and oxygenation of single molecules. 

TERS can achieve both single-molecule sensitivity and subnanometer spatial resolu-
tion. After depositing the analytes on the substrate, the chemical structure of single mole-
cules can be imaged [14,62]. Viruses [106], single-stranded DNA [107], and RNA [108] 
have been identified by single-molecule TERS (Figure 6a). 

 
Figure 6. Biochemical sensing by SM-SERS. (a) Identification of single-stranded DNA by single-
molecule TERS. Figure reproduced from [107]. The DNA molecules are deposited on the Au sub-
strate. (b) The schematic of the plasmonic nanopore in the nanoporous film. NPG, nanoporous gold. 
Figure reproduced from [109]. (c) DNA sequence trapped in plasmonic nanopore. The base pairs 
are numbered in ascending order from tail to front of the molecule. Figure reproduced from [110]. 

A plasmonic nanopore is a single-molecule sensor widely used in solution at room 
temperature. The electrolyte solution is divided into two chambers by an electrically in-
sulating membrane on which the nanopore is a nanoscale aperture. A bias voltage applied 
across the membrane drives the charged analyte through the nanopore [111]. The ionic 
current and SERS signal are detected when the analytes pass through the nanopore, which 
can be used for single-molecule sensing. Translocation of amino acids, nucleobases, and 
DNA has been probed through plasmonic nanopores [112,113]. Nevertheless, in SERS 
measurement based on nanopores, translocation time is on the order of microseconds, 
which is insufficient for the spectrum acquisition on the order of milliseconds. Zong et al. 
[114] utilized dynamic SERS to improve the signal-to-noise ratio (SNR) even when the 
acquisition time cannot catch up with the diffusion time of molecules. With insufficient 
acquisition time, SERS was extracted via data processing from time-dependent spectral 
series. Hubarevich et al. [109] fabricated a plasmonic nanopore in a thick nanoporous film 
and added hydrogel at the bottom of the nanoporous membrane, which significantly re-
duced the velocity of translocation (Figure 6b). Single-molecule trapping has been 
adopted to prolong the residence time of molecules within nanopores [15,74–77], as de-
scribed in Section 3.2. Although a series of single molecules have been identified in na-
nopore by SM-SERS, more delicate operations, such as stepwise displacement of DNA 
strands through the nanopore, have not been realized in experiments (Figure 6c) [110]. 

  

Figure 6. Biochemical sensing by SM-SERS. (a) Identification of single-stranded DNA by single-
molecule TERS. Figure reproduced from [107]. The DNA molecules are deposited on the Au substrate.
(b) The schematic of the plasmonic nanopore in the nanoporous film. NPG, nanoporous gold. Figure
reproduced from [109]. (c) DNA sequence trapped in plasmonic nanopore. The base pairs are
numbered in ascending order from tail to front of the molecule. Figure reproduced from [110].

A plasmonic nanopore is a single-molecule sensor widely used in solution at room tem-
perature. The electrolyte solution is divided into two chambers by an electrically insulating
membrane on which the nanopore is a nanoscale aperture. A bias voltage applied across the
membrane drives the charged analyte through the nanopore [111]. The ionic current and
SERS signal are detected when the analytes pass through the nanopore, which can be used
for single-molecule sensing. Translocation of amino acids, nucleobases, and DNA has been
probed through plasmonic nanopores [112,113]. Nevertheless, in SERS measurement based
on nanopores, translocation time is on the order of microseconds, which is insufficient for
the spectrum acquisition on the order of milliseconds. Zong et al. [114] utilized dynamic
SERS to improve the signal-to-noise ratio (SNR) even when the acquisition time cannot
catch up with the diffusion time of molecules. With insufficient acquisition time, SERS was
extracted via data processing from time-dependent spectral series. Hubarevich et al. [109]
fabricated a plasmonic nanopore in a thick nanoporous film and added hydrogel at the
bottom of the nanoporous membrane, which significantly reduced the velocity of translo-
cation (Figure 6b). Single-molecule trapping has been adopted to prolong the residence
time of molecules within nanopores [15,74–77], as described in Section 3.2. Although a
series of single molecules have been identified in nanopore by SM-SERS, more delicate
operations, such as stepwise displacement of DNA strands through the nanopore, have not
been realized in experiments (Figure 6c) [110].

5. Several Challenges in SM-SERS

As mentioned in the previous sections, with vigorous development in recent years,
SM-SERS has achieved great success in various fields. However, SM-SERS has not been fully
developed yet. Several challenges still need to be overcome to further boost advancement.
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First, although EM and CM have explained a lot of SERS phenomena in the past two
decades, some experimental events are still confusing. Indeed, the mechanism of SERS
is not completely clear, especially for single-molecule events. It has been proposed that
some previously ignored physical effects such as Rayleigh scattering, discrete interaction,
and quantum interaction deserve to be considered in the mechanism [23–26]. Thus, it is
necessary to extend the SERS theory to take physical effects into account. Further, the
extended SERS theory can also provide insights into the design of advanced SERS systems.

Second, the intrinsic fluctuation of SM-SERS disturbs the data analysis algorithm, but
on the other hand also implies single-molecule information. An algorithm for extracting
single-molecule chemical information from SM-SERS data has not been developed. The
study of spectral fluctuation and blinking could deepen the understanding of SM-SERS
data and develop advanced data analysis algorithm for SM-SERS.

Third, in airborne environments and solutions at room temperature, the reproducibility
of SM-SERS experiments is still poor, which is attributed to two aspects. On the one hand,
the Brownian motion of molecules in the hotspot induces spectral fluctuations. Delicate
single-molecule manipulation techniques are required to localize molecules to the same
position of the hotspot or even drive molecules stepwise through the hotspot [110,115,116].
On the other hand, fabrication of SM-SERS substrates is also important to obtain high-
reproducibility substrates.

Fourth, nonmetallic substrates greatly broaden the application of SERS. However,
due to the poor SERS activity of nonmetal, nonmetallic substrates with single-molecule
sensitivity have rarely been reported. Material structural and hotspot engineering may
lead to the development of SM-SERS with nonmetallic substrates [78].

Fifth, ultrafast SERS, incorporating SERS with an ultrafast technique, has opened a
new direction due to its fs and ps time resolution and higher sensitivity [49,117]. Ultrafast
SERS can provide real-time monitoring of molecular structure and bond breaking and
forming, enabling elucidation of mechanisms of plasmon-induced photochemical and
photophysical processes.

6. Conclusions

In this review, we first elucidate the key concepts of SM-SERS, including EF, spectral
fluctuation, and experimental evidence of single-molecule events. Next, we systematically
discuss advanced implementations of SM-SERS, including substrates with ultra-high EF
and reproducibility, strategies to improve the probability of molecules in hotspots, and
nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS
are proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the
challenges and future of SM-SERS. We hope this literature review will inspire the interest
of researchers in more fields. SM-SERS is expected to make more progress in science and
application in the near future.
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