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Abstract: Conventional taxanes are used as cornerstone of the chemotherapeutical treatment 
for a variety of malignancies. Nevertheless, a large proportion of patients do not benefit from 
their treatment while they do suffer from severe adverse events related to the solvent or to the 
active compound. Cremophor EL and polysorbate 80 free formulations, conjugates, oral 
formulations and different types of drug delivery systems are some examples of the several 
attempts to improve the treatment with taxanes. In this review article, we discuss recent 
clinical developments of nanomediated drug delivery systems of taxanes for the treatment of 
cancer. Targeting mechanisms of drug delivery systems and characteristics of the most 
commonly used taxane-containing drug delivery systems in the clinical setting will be 
discussed in this review. 
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Introduction
Taxanes are widely used anti-mitotic drugs in the treatment of a variety of tumor 
types. Within this class of drugs, paclitaxel, docetaxel and cabazitaxel are approved 
by the FDA.1–3

In the early 1960s, paclitaxel was the first to be discovered. Paclitaxel is 
a natural taxoid extracted from the North American pacific yew tree, taxus 
brevifolia.4 Later, in the 1980s, docetaxel, a semisynthetic taxoid derived from 
the inactive compound 10-deacetylbaccatin III – which is found in the needles of 
the European yew tree, taxus baccata – was discovered.5 Most recently, in 2010, 
cabazitaxel, which is also a semisynthetic taxoid derived from 10-deacetylbaccatin 
III, was approved by the FDA to treat prostate cancer.3,6

The target of taxanes is free tubulin which is found intracellularly and plays an 
important role during mitosis. Binding of taxanes leads to unusually stable micro
tubules, thereby blocking DNA segregation and thus cell division eventually lead
ing to cell death.7

The application of taxanes in the clinical setting is characterized by severe side 
effects as (potentially life-threatening) hypersensitivity reactions (ie, respiratory 
distress, hypotension, angioedema, urticaria and rash), peripheral neuropathy and 
hematological toxicity while a substantial part of patients receiving taxanes unfor
tunately do not benefit from their treatment.8–10 Ineffectiveness might (partly) be 
caused by insensitivity of the tumor or ineffective concentrations at the target site.11
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Docetaxel and paclitaxel are pharmacologically char
acterized by their hydrophobicity with an aqueous solu
bility of 3 µg/mL and <10 µg/mL, respectively.12,13 

Because of their poor solubility, they have to be dissolved 
in a solvent with a surfactant. In the current formulation 
of docetaxel, polysorbate 80 (PS80) is used to increase 
the solubility while in the case of paclitaxel, Cremophor 
EL (polyethoxylated castor oil; CrEL) is used for this 
purpose. Despite the wide use of the current formula
tions, serious problems are ascribed to the used surfac
tants. PS80 and CrEL are suggested to contribute to 
a variety of adverse events related to the infusion of 
docetaxel and paclitaxel, including peripheral neuropa
thy, fluid retention, taxane related cardiovascular adverse 
events, and severe hypersensitivity reaction during intra
venous infusions.14–18 Corticosteroids are prescribed as 
premedication prior to the infusion of taxanes to reduce 
the incidence of allergic reactions. In the case of pacli
taxel, histamine is also added to the prescribed premedi
cation for the same purpose. This premedication could 
potentially cause side-effects as hyperglycemia and 
increases the risk of peptic ulcers.19 Despite the admin
istration of premedication, a part of the patients receiving 
paclitaxel still experience a hypersensitivity reaction.9

In addition, also the pharmacokinetic profile is influ
enced by these solvents causing non-linear pharmacoki
netics and changes in drug distribution.16,20,21 At higher 
doses, CrEL entraps paclitaxel in micelles which makes 
paclitaxel less available for metabolic pathways and 
tumor distribution, which results in a higher systemic 
exposure and therefore higher probability of severe 
toxicity.20 PS80 is associated with a reduced clearance 
of unbound docetaxel, which leads to increased unbound 
docetaxel systemic exposure and eventually possibly 
toxicity.22 Moreover, CrEL and PS80 inhibit OATP1B- 
type transporters which are involved in the uptake of 
taxanes into cells.23 OATP1B transporters are widely 
expressed by a variety of tumor types and therefore 
inhibition of these transporters by these solvents could 
lead to a reduced tumor exposure to taxanes.23

Because of all the drawbacks of conventional taxane 
formulations, there is an increasing interest in novel for
mulations. These new formulations aim to improve drug 
efficacy and try to deliver the drug more selectively to the 
tumor while reducing the incidence and severity of adverse 
events. Several approaches have been explored, for exam
ple, surfactant-free intravenous formulations, oral formu
lations and drug delivery systems.24–26 Examples of these 

drug delivery systems are liposomes, micelles, polymeric 
nanoparticles, and other nanoparticles.

In this review, we aim to discuss the recent clinical 
developments and global characteristics of nanomediated 
drug delivery systems of taxanes for the treatment of 
cancer. Furthermore, we will discuss if the proposed 
approaches and expectations raised in preclinical studies 
result in the desired reduced toxicity, increased efficacy, 
optimized pharmacokinetic profile and selective delivery 
of taxanes in clinical practice.

Targeting
Targeting the tumor site by changing the chemical proper
ties and thereby the pharmacokinetic profile of the drug is 
a relatively new strategy to improve the risk–benefit ratio. 
Two ways of tumor targeting are known to selectively 
target the tumor and deliver the drug at that specific loca
tion; active and passive targeting, respectively.

An active targeting nanoparticle uses tumor cell- 
specific characteristics to selectively attack the tumor. All 
(malignant) cells are covered with markers on the surface 
which are essential for a wide variety of processes. The 
profile of these markers varies between different types of 
tissue, and these differences in expression of surface mar
kers offer a chance for nanoparticles to actively and spe
cifically target the tumor (Figure 1).27 Coupling 
a cytostatic drug with an antibody, ligand, or small mole
cule offers a possibility for a drug delivery system to 
selectively bind to tumor cells and direct their payload 
towards the site of action (Figure 1).28–30 These conju
gated antibodies can target a marker such as HER2, EGFR 
and CD-19, which are expressed on the surface of the 
cell.30,31 Ligand conjugated drug delivery systems are 
using receptors on the surface of a cancer cell to target 
the tumor via their ligand. Examples of ligands used are 
folate which targets the folate receptor, and transferrin 
which targets the transferrin receptor.31 Another possible 
approach is targeting the tumor via small molecules such 
as PSMA.32

BIND-014 is an example of a polymeric nanoparticle, 
which encapsulates docetaxel and actively targets the 
tumor via PSMA.32 It is 100 nm in size and consists of 
a hydrophobic polylactic acid polymeric core and 
a hydrophilic polyethylene glycol shell covered with 
Prostate-Specific Membrane Antigen (PMSA) targeting 
ligands.29 PSMA is expressed by prostate cancer cells, as 
well as on the neovascularization of solid tumors, while 
very little types of healthy tissue express PSMA.27,33 In 
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a preclinical trial, BIND-014 was found to have a different 
pharmacokinetic profile compared to conventional 
docetaxel.32 The in vivo systemic exposure (area under 
the curve; AUC) to docetaxel was 46- to 670-fold higher 
after administration of the nanoparticle.32 After up to 50 
hours, almost all of the docetaxel measured in plasma was 
still encapsulated by the particle.32 The nanoparticle pre
vented rapid distribution of docetaxel from the systemic 
compartment which resulted in a lower distribution 
volume compared to conventional docetaxel.32 The intra
tumoral concentration of docetaxel after the administration 
of the nanoparticle was 7-fold higher with a significantly 
improved efficacy compared to conventional docetaxel in 
mice.32 The administration of the nanoparticle was well 
tolerated in vivo and no hypersensitivity reactions were 
found.32 Recently, the results of a Phase II study investi
gating BIND-014 dosed at 60 mg/m2 every three weeks 
(without premedication), combined with prednisone 5 mg 
twice daily in metastatic castration-resistant prostate can
cer were published.28 The overall response rate at this 
dosing regimen is 32% with a progression-free survival 
of 9.9 months.28 Neutropenia, fatigue, neuropathy, diar
rhea, nausea and mucositis are the most commonly 
reported clinical adverse events of BIND-014.28,29 

Contrary to the improved toxicity profile in preclinical 

studies, the toxicity profile of BIND-014 in clinical prac
tice seems to be similar to conventional docetaxel. The 
observed pharmacokinetic characteristics in the clinical 
trials showed similarities with the preclinical data; eg, 
higher AUC, lower distribution volume and high 
stability.28,29,32

In contrast to active targeting, passive targeting uses 
characteristics of the microenvironment in the tumor to 
deliver the payload of a nanoparticle at the aimed site of 
action. The “enhanced permeability and retention” (EPR) 
effect is a generally accepted concept, explaining the 
passive targeting of nanoparticles based on 
a combination of the tissue and location characteristics 
(Figure 2).34 The tumor angiogenesis and vasculature 
substantially differ compared to vasculature in healthy 
organs (Figure 2).35,36 Most malignant cells divide at 
a higher rate, and in a more chaotic manner compared 
to healthy cells. To maintain the growth rate, tumor cells 
require nutrients which are supplied by the vascular cir
culation. Aggregates of tumor cells which are 150–200 
µm (or larger) also need neovascularization to acquire 
enough blood supply for their maintenance.37 The angio
genesis rate, with elevated VEGF expression, is therefore 
high.38 Leaky vessels are formed due to the high rate of 
neovascularization (Figure 2).39 The tumor vasculature is 

Figure 1 Schematic impression of active targeting drug delivery systems. Surface markers varies between healthy and tumor tissue. An targeting drug delivery system has 
one specific target which causes a release of the payload if the drug delivery system is bound to the target. When the target is not expressed or not bound the drug delivery 
system will not release its payload and will be transported to others locations. This figure was created with BioRender.com.
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characterized by poorly aligned endothelial cells resulting 
in wide fenestrations, lack of a smooth muscle layer, loss 
of auto-regulated homeostatic blood flow control and loss 
of angiotensin II receptors.34,35,38,39 Moreover, elevated 
levels of bradykinin, nitric oxide, peroxynitrite and vas
cular permeability factor are found in solid tumors which 
results in an even higher permeability of the local tumor 
vessels.34 A reduced intratumoral lymphatic drainage 
also contributes to the EPR effect.38 As a result of the 
increased permeability and lack of lymphatic drainage, 
drug delivery systems – ranging in size from 50 to 500 
nm – can cross the endothelial barrier of the vasculature 
and be retained in the tumor (Figure 2).37,38,40 

Nevertheless, in clinical practice, a wide heterogeneity 
in EPR effect exists. Various tumor characteristics such 
as oxygenation, necrosis, fibrosis, levels of EPR related 
effectors or enzymes, tumor size and vasculature all con
tribute to the variability of the effect.41 It is widely 
known that the vascularization differs between tumor 
types. The heterogeneity in EPR effect could be reduced 
by coadministration of drugs modulating the levels of the 
enzymes or effectors related to the EPR effect such as 
bradykinin and nitric oxide.41

Targeting the tumor passively can also be achieved by 
using small differences in pH or temperature between 
tumor and healthy tissue.42 Nanoparticles such as lipo
somes, micelles and polymeric nanoparticles can be mod
ified to be sensitive to a certain pH or temperature.43,44 If 
the pH or temperature-sensitive nanoparticles reach the 
target site by passive diffusion, the equilibrium of the 
nanoparticle with the encapsulated drug may shift and 
the drug may be released.42

Drug Delivery Systems
Each type of drug delivery system has its own characteristics 
in composition, structure, size and surface characteristics 
(Table 1). All these factors affect the stability, solubility, 
drug distribution, delivery mechanism, drug release, efficacy, 
toxicity profile and clearance of the nanoparticle. Drug deliv
ery systems containing taxanes can be found in Table 2.

Liposomes
Liposomes as drug delivery systems have been investi
gated for several drugs. For some of these drugs, liposo
mal formulations are even already approved for clinical 
use.45,46

Figure 2 Schematic impression of EPR effect and nanoparticles. The fenestrae in the vascular wall of the tumor are wider than in normal tissue and the smooth muscle cells 
in the vascular wall are arranged in a chaotic manner compared to healthy tissue. Nanoparticles and conventional taxanes can easily pass the vascular wall inside the tumor. In 
contrast, the endothelial cells and smooth muscle cells are good aligned in the vascular wall of healthy tissue, which makes it hard for nanoparticle to cross the wall while 
conventional taxanes can still penetrate inside healthy tissue. This figure was created with BioRender.com.
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Liposomes are spherical-formed vesicles which consist 
of one (unilamellar) or multiple (multilamellar) phospho
lipid bilayer(s) and mainly use the EPR effect to increase 
intratumoral exposure (Figure 2).12,30,47–49 Cholesterol and 
phosphatidylcholine are often used lipids for the phospho
lipid bilayer.30,47 In the core of this bilayer, an aqueous 
compartment is formed which can encapsulate hydrophilic 
drugs (Figure 2).47,49 Hydrophobic substances such as 
paclitaxel and docetaxel can be incorporated in the phos
pholipid bilayers (Figure 2).47 This gives liposomes an 
amphipathic (ie, having hydrophobic and hydrophilic 
groups) character. A wide range of sizes is described for 
liposomes; ranging between 50–400 nm.47 The ability to 
modify the surface of the liposome is very important. 
Conventional liposomes are rapidly cleared from the 
bloodstream.50 This rapid clearance is caused by the 

Table 1 Types of Most Used Drug Delivery Systems Containing 
Taxanes and Their Characteristics

Nanoparticle Composition Characteristics

Liposome Spherical formed 

vesicles which 

consist of 
phospholipid 

bilayers

50-400 nm
Water soluble

Biodegradable
Use of EPR effect

Modifiable surface

Actively targeting by surface 
modification

Protection of the payload
Formed out of lipids

Amphiphile

Possibility to form 
multilamilarity

Prolonged systemic 

exposure
Rapid clearance by RES (if 

not pegylated)

Potency to modify drug 
resistance

Possible immune reactions

Limited stability
Difficulties in drug loading

Micelle Spherical formed 
drug delivery 

system with a 

hydrophobic core 
and a hydrophilic 

shell

10-100 nm
Water soluble

Biodegradable
Use of EPR effect

Modifiable surface

Actively targeting by surface 
modification

Protection of the payload

Formed out of polymers or 
lipids

Prolonged systemic 

exposure
Small uptake by RES

Initial burst of drug release

Highly permeable shell
Low sustained controlled 

drug release

Low immunogenicity

(Continued)

Table 1 (Continued). 

Nanoparticle Composition Characteristics

Polymeric 

Nanoparticle

Matrix of 

polymers which 

binds drugs to a 
side chain of a 

polymer with a 

linker

10-1000 nm

Water soluble

Biodegradable

Use of EPR effect

Modifiable surface
Actively targeting by surface 

modification

Protection of the payload
Formed out of synthetic or 

natural polymers

Variety of composition 
possibilities

(ie, wide variation in 

polymers and copolymers)
Possibility to form double 

walled particles

Prolonged systemic 
exposure

Initial burst of drug release

Sustained controlled drug 
release

Low immunogenicity

Stable during storage
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reticuloendothelial system (RES) in the systemic 
circulation.51 This drawback can be overcome by coating 
highly hydrophilic chains such as PEG to the surface of 
liposomes.42,50 Pegylated liposomes are also called 
“stealth” (sterically stabilized) liposomes.12,42 These 
stealth liposomes are characterized by a lower accumula
tion in healthy tissue, preferential uptake by the tumor and 
favorable pharmacokinetics, caused by a reduced uptake 
by the reticuloendothelial system and a smaller distribu
tion volume leading to a slower clearance.12,30,52,53 

Nevertheless, earlier research also described an “acceler
ated blood clearance” (ABC effect) during repeated infu
sions of stealth liposomes, which might be caused by 
serum IgM activating the complement system.54 This 
could eventually lead to increased liver uptake and clear
ance of the liposomes which possibly results in liver 
toxicity and decrease of efficacy.54 Liposomes could also 
be coated with monoclonal antibodies which permits them 
to actively and selectively target a certain type of cells.50,55 

Moreover, components of liposomes are described to mod
ify multidrug resistance caused by P-glycoprotein.56 

Consequently, liposomes might increase drug concentra
tions inside the tumor and increase the permeability of the 
blood–brain barrier.56 On the other hand, potential draw
backs of liposomes are batch-to-batch variation, poor sta
bility, insufficient drug loading, immune reactions and 
accelerated blood clearance.12,13,30,50 During clinical trials, 
immune reactions were observed which needed to be trea
ted with routine administration of antihistamines and ster
oids as premedication.57,58 EndoTAG-1 is one of the 
taxane-containing liposomes in which a large proportion 
of the treated patients required premedication.59 1,2 dio
leoyl-3-trimethylammonium-propane (DOTAP) and 1,2 
dioleoyl-sn-glycero-3-phosphocholine (DOPC) are used 
to construct EndoTAG-1 which encapsulates 
paclitaxel.60,61 The size of the EndoTAG-1 typically 
ranges between 180 and 200 nm.60 Cationic liposomes 
have been proven to selectively accumulate within the 
tumor vascularization.62 In line with this, EndoTAG-1 
showed a 4-fold selectivity compared with surrounding 
healthy tissue in vivo.63 A preclinical study with 
EndoTAG-1 demonstrated that it impairs the vasculariza
tion of the tumor by reducing vessel diameter and func
tional vessel density.60 EndoTAG-1 reduced the tumor 
growth significantly compared to conventional paclitaxel 
in vivo.63,64 Several treatment regimens have been tested 
clinically in Phase I and II trials (Table 2).59,61,65,66 When 
premedication was not routinely given to patients still 

approximately 60% of the included patients required sys
temic corticosteroids.59 The most common toxicities were 
hypersensitivity, fatigue and chills.59,66 Other commonly 
reported adverse events were nausea, vomiting, abdominal 
pain and dyspnea.59,66 The combination of EndoTAG-1 
plus paclitaxel led to a higher incidence of neutropenia 
but a lower incidence of neuropathy compared to conven
tional paclitaxel monotherapy.59 In the phase II trial, the 
response rate of first-line EndoTAG-1 monotherapy 
observed in triple-negative breast cancer was 25% with 
a median PFS of 3.0 months and OS of 11.9 months which 
was lower than the response rate and PFS of paclitaxel 
monotherapy.59 The combination of EndoTAG-1 plus 
paclitaxel led to a response rate of 45% with a median 
PFS of 3.7 months and OS of 13.0 months.59 Currently, 
two Phase III trials are ongoing; one is investigating the 
combination of EndoTAG-1, gemcitabine and paclitaxel in 
triple-negative breast cancer with visceral metastasis (trial 
number: NCT03002103), the other investigates EndoTAG- 
1 and gemcitabine in patients with locally advanced or 
metastatic adenocarcinoma of the pancreas who failed on 
FOLFIRINOX (trial number: NCT03126435). The phar
macokinetic profile of EndoTAG-1 is characterized by 
a Cmax at the end of the infusion, low intravascular stabi
lity of the particle, rapid clearance from the plasma com
partment, and a low distribution volume compared to 
conventional paclitaxel.66

Another liposome containing a taxane is LEP-ETU, 
which is an acronym of “Liposome Encapsulating 
Paclitaxel – Easy To Use”. LEP-ETU consists of 1.2- 
dioleoyl-sn-glycero-3-phosphocholine (DOPC), choles
terol, and cardiolipin, and it is 150 nm in diameter with 
a drug-entrapment efficiency of >90%.67 In vitro, less than 
6% of the payload was released during the first 120 hours 
at physiologic temperatures.67 The in vivo Cmax and AUC 
of LEP were, respectively, 1.4- to 3-fold and 2-fold higher 
compared to conventional paclitaxel.68 The distribution 
volume was equal between the two formulations.68 The 
pharmacokinetic profile of LEP was linear. In vivo, no 
significant differences in efficacy were observed between 
LEP and conventional paclitaxel.68 The maximum toler
able dose of LEP-ETU in patients is 150 mg/m2 weekly or 
3-weekly 325 mg/m2, both without premedication.58,69,70 

In clinical trials, the most reported adverse events were 
myelosuppression, fatigue, alopecia, myalgia and 
neuropathy.69,70 However, the neuropathy observed was 
not worse than the neuropathy caused by conventional 
paclitaxel.69 The pharmacokinetic profile of LEP-ETU 
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and conventional paclitaxel were bioequivalent.58,70 

Therefore, the overall pharmacological advantages and 
increased tolerability of the liposome seem to be marginal, 
which is contrary to the suggested improved pharmacoki
netic profile and toxicological characteristics of LEP in the 
preclinical study. No phase II trial has been published yet 
publicly.

Micelles
Micelles are spherically formed with a hydrophobic core 
and a hydrophilic shell (also called corona) (Figure 2).47 

A less commonly used formation is the reverse micelle 
(Figure 2).71 The hydrophilic head of the polymers forms 
the core, while the hydrophobic nonpolar tail forms the 
outside of the shell of the reverse micelle.44,47,48 The shell 
of a micelle consists of polymeric molecules such as 
amphiphilic polymers (eg, block-polymers) or 
surfactants.44,47,48 The most widely used hydrophilic poly
mer (to create the shell of the micelle) is PEG.72 PLA and 
PCL are commonly used as hydrophobic block.30 The 
sizes of micelles range between 10 and 100 nm which is 
relatively small.44,47 The advantages of micelles include 
increased solubility, protection of the payload against 
degradation, ability to inhibit drug efflux transporters, 
highly permeable shell, relatively small uptake by the 
RES system, ability to modify the composition (ie, surface 
and size), use without premedication and enhanced use of 
the EPR effect.44,47,48,73 Micelles are also described to 
have a favorable drug release. Nevertheless, avoiding pre
mature (burst) drug release, controlling the amount of drug 
released over time and tumor selectivity, remains 
challenging.49,74 Several methods have been attempted to 
address this among which controlling the surface charge 
and covalently binding of the nanoparticle shell and 
core.24,75 CPC634 is a docetaxel encapsulating polymeric 
micelle which uses the technique of covalently binding. 
The polymeric micelle is 65 nm in size and consists of 
monomethoxy poly(ethylene glycol) (mPEG) and N 
−2-hydroxypropyl methacrylamide mono- or dilactate 
(HPMAmLacn).76,77 Covalently binding of the payload 
to the micelle resulted in vivo in a decrease of premature 
drug release and a sustained drug release over time. In 
vivo CPC634 administration resulted in a significantly 
higher intratumoral docetaxel concentration at different 
time-points up to 4 days.76 Moreover, in vivo, the doce
taxel remained entrapped in the particle for several days in 
the bloodstream.76 CPC634 revealed to be superior com
pared to a conventional formulation of docetaxel in 

efficacy as well as in tolerability in rats.76 The recom
mended phase II dose of CPC634 is 60 mg/m2 three 
weekly, and dexamethasone is given as premedication.77 

The toxicity profile observed in patients mainly consists of 
rash, stomatitis, fatigue and neuropathy.24,77 Neuropathy 
was seen in more cases after CPC634 administration than 
after conventional docetaxel.24 However, the incidence of 
neutropenia during CPC634 administration is lower.24 Our 
research group performed an extensive intrapatient head-to 
-head pharmacokinetic analysis, comparing CPC634 to 
conventional docetaxel.24 The Cmax and AUC of total 
docetaxel –which is docetaxel in the nanoparticle plus 
unbound docetaxel– and released docetaxel (unbound doc
etaxel) were significantly higher after CPC634 infusion, 
compared to conventional docetaxel.24 In addition, the 
intrapatient intratumoral exposure was compared between 
CPC634 and conventional docetaxel.24 CPC634 resulted in 
an equal intratumoral released docetaxel concentration, 
while the exposure to total docetaxel was 4-fold higher 
after CPC634 administration, compared to conventional 
docetaxel.24 Currently, a phase II study is ongoing, evalu
ating the response rates of platinum-resistant ovarian can
cer (trial number: NCT03742713).

Recently two other taxane containing polymeric 
micelles were investigated in phase III trials. The first 
one is NANT-008 which consists of a shell formed by 
monomethoxy poly-(ethylene glycol) (mPEG) and a core 
consisting of poly-(D,L-lactic acid) (PDLLA).78 The 
in vivo concentrations of paclitaxel in tissues were 2- to 
3-fold higher for NANT-008 in comparison with conven
tional paclitaxel.78 Compared to conventional paclitaxel, 
the plasma Cmax and AUC of NANT-008 were lower while 
the distribution volume of NANT-008 was higher in 
mice.78 In vivo data indicated that NANT-008 was well 
tolerated and the MTD was 3-fold higher for NANT-008 
with an improved antitumor efficacy.78 During the phase 
III clinical trial in patients diagnosed with recurrent or 
metastatic HER2-negative breast cancer,79 NANT-008 
was administered at 260 mg/m2 every three weeks.79 

Premedication was not obliged.79 However, during the 
study hypersensitivity reactions were frequently observed 
which resulted in 83% of the patients receiving 
premedication.79 Frequently observed adverse events 
were neuropathy, neutropenia, anorexia and myalgia.80–83 

However, no differences in the incidence of neuropathy 
and myalgia were observed between the micelle and the 
conventional formulation.79 The overall response rate was 
39% with a progression-free survival of 8.0 months and an 
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overall survival of 28.8 months compared to a response 
rate of 24% for conventional paclitaxel.79 Survival (PFS 
and OS) was not significantly different between the 
micelle and conventional formulation.79 The AUC and 
Cmax of NANT-008 are lower compared to conventional 
paclitaxel, which is probably a result of a rapid 
distribution.83

The second polymeric micelle tested in phase III also 
encapsulates paclitaxel, and is called NK105.84 The hydro
philic part of the micellar shell consists of PEG.85 The 
hydrophobic part of the particle consists of modified 
polyaspartate.85 NK105 is approximately 85 nm in dia
meter. In vivo, the systemic exposure was 50- to 86-fold 
higher than the exposure to conventional paclitaxel.85 The 
distribution volume was approximately 15 times smaller.85 

The intratumoral Cmax and AUC in mice were, respec
tively, 3 and 25 times higher, compared to conventional 
paclitaxel.85 The intratumoral concentrations accumulated 
up to 72h.85 The in vivo antitumor efficacy was signifi
cantly better for NK105 compared to conventional 
paclitaxel.85 The peripheral nerves of the mice were less 
affected by NK105 than by conventional paclitaxel.85 

During the clinical phase III trial, including patients with 
metastatic or recurrent breast cancer, weekly 65 mg/m2 

NK105 (administration on days 1, 8 and 15 of a cycle of 
28 days) was given, while NK105 was dosed at 150 mg/m2 

every 3 weeks in a phase II trial in gastric cancer.84,86 

Only 22% of the patients in the phase III trial needed 
premedication with a hypersensitivity incidence of 4%.84 

The safety profile of NK105 was roughly the same com
pared to conventional paclitaxel.86,87 The incidence of 
neuropathy was significantly lower after NK105 adminis
tration, while no differences were seen in hematological 
toxicity.84 The observed response rate was 32% with 
a PFS of 8.4 months and OS of 31.2 months, respectively, 
while conventional paclitaxel resulted in a response rate of 
39% with a PFS of 8.5 months and an OS of 36.2 
months.84 The pharmacokinetic profile was remarkably 
different compared to the pharmacokinetic profile of con
ventional paclitaxel. NK105 displayed a linear pharmaco
kinetic profile with a 7-fold higher Cmax, 9- to 50-fold 
higher AUC and 10- to 25-fold lower distribution 
volume.86–88 Of the total paclitaxel exposure, 5% was 
released from the micelle.88

Polymeric Nanoparticles
Polymeric nanoparticles are solid particles which encapsu
late drugs in a polymeric matrix with a size ranging 

between 10 and 1000 nm (Figure 2).30,48 Because of the 
variety of polymers and copolymers that can be used to 
composite the particle, structure and characteristics of 
polymeric nanoparticles are highly variable. Poly(lactic- 
co-glycolic acid) (PLGA) is the most widely used polymer 
because of its biodegradability.30 Nevertheless, other nat
ural (ie, albumin, chitosan, etc.) and synthetic (ie, PEG, 
PLA, PGA, etc.) polymers are also widely used.30 It is 
even possible to blend different polymers and create 
a double-walled particle which results in a lower initial 
release of the payload or the ability to store different types 
of payload in the particle.30,89 Polymeric nanoparticles are 
commonly coated with nonionic surfactants to reduce 
opsonization by the RES system, hydrophobic interactions 
and hydrogen bonding.90 The payload inside a polymeric 
nanoparticle could be released by diffusion through the 
matrix of polymers, erosion of the particle or as a response 
to the target location.30,48 The advantages of this type of 
drug delivery system are their high stability during sto
rage, protection of the payload against degradation, con
trolled drug release, multiple administration routes and 
generally low toxicity profile and systemic clearance.48

To date, nanoparticle-albumin-bound paclitaxel (nab- 
paclitaxel or Abraxane®) is the only FDA approved 
example of a taxane-loaded polymeric nanoparticle.91 Nab- 
paclitaxel is 130 nm in diameter and consists of particles 
formulated of human serum albumin loaded with 
paclitaxel.92 Paclitaxel is not covalently bound to the albu
min. In vivo, differences in pharmacokinetic profiles exist 
between nab-paclitaxel and conventional paclitaxel. The 
distribution volume of nab-paclitaxel was approximately 
50% higher.92,93 Nab-paclitaxel is hypothesized to lead to 
a higher intratumoral paclitaxel exposure by enhancing 
albumin mediated transcytosis (ie, transcellular transport) 
and the EPR effect.92 In vivo, Nab-paclitaxel was rapidly 
partitioned into the tissue with an absorption constant which 
was 3.3-fold higher.92 The endothelial binding and crossing 
through the endothelial monolayer of paclitaxel were, 
respectively, 10-fold and 4-fold increased in vitro after 
administration of nab-paclitaxel, while the in vivo intratu
moral paclitaxel exposure was 33% higher after nab- 
paclitaxel administration.92 Nab-paclitaxel was less toxic 
in vivo, and still, the efficacy was improved compared to 
conventional paclitaxel.92 The recommended dose for 
metastatic breast cancer is 260 mg/m2 every three 
weeks.91 Nab-paclitaxel is dosed at 100 mg/m2 for non- 
small cell lung cancer (NSCLC) and 125 mg/m2 for pan
creatic carcinoma (regimen showed in Table 2).91 No 
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premedication is needed.91 The most commonly seen 
adverse events of nab-paclitaxel are myelosuppression, alo
pecia, sensory neuropathy, fatigue, myalgia, nausea and 
diarrhea. In NSCLC patients, significantly more thrombo
cytopenia and anemia were observed after nab-paclitaxel 
administration, while grade ≥3 sensory neuropathy, neutro
penia, arthralgia and myalgia were observed less.94 In con
trast, in breast cancer patients, grade ≥3 fatigue was more 
described after nab-paclitaxel while the incidence of severe 
neutropenia and sensory neuropathy was equal between the 
groups.95 Response rates in NSCLC patients were signifi
cantly higher for nab-paclitaxel compared to conventional 
paclitaxel, while survival did not significantly differ.94 

According to a meta-analysis, the overall response rate 
and progression-free survival in the metastatic breast cancer 
group were significantly higher for nab-paclitaxel com
pared to conventional paclitaxel.95 However, overall survi
val was not significantly different.95 In the pharmacokinetic 
profiles, some differences exist between the two formula
tions. The fraction of unbound/free paclitaxel was signifi
cantly higher for nab-paclitaxel compared to conventional 
paclitaxel. The Cmax of unbound paclitaxel is 10-fold higher 
and Cmax of total paclitaxel 3.8- to 6.5-fold higher after nab- 
paclitaxel.93,96 The AUC of unbound paclitaxel is 2.7-fold 
higher while the AUC is equal between the 
formulations.93,96 The distribution volume of nab- 
paclitaxel is significantly higher for total paclitaxel.93 

During the infusion of nab-paclitaxel, nanoparticles dis
solve and albumin-paclitaxel complexes are formed.97 

Following this, paclitaxel can bind and unbind albumin in 
the bloodstream.96 Because of this transient systemic bind
ing and unbinding of paclitaxel with albumin, it can be 
questioned whether nab-paclitaxel is a true nanoparticle. 
Despite that, a paclitaxel formulation without CrEL is 
a huge advantage.

Conclusions
Over the last years, several new drug delivery systems 
containing taxanes have been developed to improve the 
tolerability and the efficacy of the treatment with taxanes. 
Based on the EPR effect, drug delivery systems should 
lead to a higher drug exposure in the tumor which could 
possibly increase efficacy. The tumor selectivity of drug 
delivery systems (by passive or active targeting the tumor) 
should lead to an increased tolerability profile compared to 
the conventional formulation. An important additional 
advantage of the nanoparticle formulation is that they do 
not require toxic surfactants such as CrEL or PS80. In 

preclinical studies, drug delivery systems containing tax
anes improved efficacy, tolerability and had a favorable 
pharmacokinetic profile with higher intratumoral taxane 
exposure compared to the classic drugs. Nevertheless, 
few of the – in a preclinical setting – promising taxane- 
containing drug delivery systems have reached clinical 
practice. Nab-paclitaxel is an example of a taxane- 
containing drug delivery system which is widely used in 
the daily clinical care. Several other taxane-containing 
drug delivery systems failed to improve the efficacy in 
the clinical setting, while others even failed to improve 
the tolerability of the treatment. Commonly, side effects 
described to the drug delivery systems are similar to the 
toxicity profile of conventional taxanes; however, its 
severity might be lower. Clinical evidence, proving the 
hypotheses of nanoparticles leading to an accumulated 
intratumoral drug exposure, is largely lacking for taxane- 
containing drug delivery systems, while the development 
of these systems is based on the assumption that the 
intratumoral exposure is increased. Furthermore, disap
pointing results observed in the clinical setting could be 
caused by the urge of investigators to enhance accumula
tion of anticancer drug concentrations in the tumor, while 
in the meantime, the stability of drug delivery systems in 
the circulation has to be high. However, it should be noted 
that given the relatively small differences in the physical 
environment between the tumor and healthy tissue, high 
stability in the circulation or healthy tissue probably also 
means a high intratumoral stability. The relatively small 
difference in the physical environment may also hinder the 
triggering of stimuli-sensitive drug delivery systems and 
therefore also their added value over normal drug delivery 
systems. More recently, several investigations using multi
functional stimulus-responsive drug delivery systems (or 
nanoreactors) were published.98,99 These systems aim to 
specifically upregulate stimuli inside the physical environ
ment of the tumor to create an amplified intratumoral 
stimulus compared to the healthy tissue. This will even
tually lead to a release of active drug from the multifunc
tional stimulus-responsive drug delivery system and 
therefore intratumoral accumulation of the anticancer 
drugs.

Another explanation for the disappointing results seen 
in clinical trials with taxane-containing drug delivery sys
tems might be the focus of most of the currently published 
manuscripts on total drug exposure, while no data is col
lected regarding released drug exposure. Nevertheless, 
only the released drug has antitumor efficacy, and 
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therefore increase of total drug exposure without increas
ing the released drug could lead to unexpected disappoint
ing results regarding efficacy later on in the drug 
development.

Further research on these drug delivery systems is 
necessary and should (also) focus on intratumoral drug 
exposure of released drugs since this knowledge might 
explain the reason why improved efficacy could (or 
could not) be demonstrated in the clinical setting. In con
clusion, the development of novel formulations or new 
drug delivery systems to solve the problem of excessive 
adverse events and ineffectiveness of the widely used 
conventional taxanes is still warranted.
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