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Complex I is bypassed during high intensity
exercise
Avlant Nilsson 1, Elias Björnson 1,2, Mikael Flockhart 3, Filip J. Larsen 3 & Jens Nielsen 1,4*

Human muscles are tailored towards ATP synthesis. When exercising at high work rates

muscles convert glucose to lactate, which is less nutrient efficient than respiration. There is

hence a trade-off between endurance and power. Metabolic models have been developed to

study how limited catalytic capacity of enzymes affects ATP synthesis. Here we integrate an

enzyme-constrained metabolic model with proteomics data from muscle fibers. We find that

ATP synthesis is constrained by several enzymes. A metabolic bypass of mitochondrial

complex I is found to increase the ATP synthesis rate per gram of protein compared to full

respiration. To test if this metabolic mode occurs in vivo, we conduct a high resolved

incremental exercise tests for five subjects. Their gas exchange at different work rates is

accurately reproduced by a whole-body metabolic model incorporating complex I bypass. The

study therefore shows how proteome allocation influences metabolism during high intensity

exercise.
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In the context of human endurance performance, high sus-
tained ATP synthesis is one of the most important competitive
advantages. It is increasingly recognized1,2 that there is an

evolutionary conserved trade-off between maximum-power out-
put (using fermentative pathways) and maximum metabolic
efficiency (using complete oxidative phosphorylation), which is
rooted in differences in catalytic capacity of the different path-
ways (ATP produced per gram protein). The phenomenon is
known as overflow metabolism. Human muscles can deploy the
maximum-power strategy by producing lactate3, but in contrast
to microorganisms the human body is a closed system with
regards to lactate and it must be metabolized elsewhere in the
body under steady-state conditions.

A cells capacity to produce ATP depends on its protein com-
position. Microbes optimize their allocation of protein to their
particular growth condition4, enabling high specific growth rates.
Similarly, physical exercise increases the levels of metabolic
enzymes in human muscles5. However, few adjustments can be
made to a muscle’s protein composition during the course of an
exercise bout, and it must be allocated so that it supports a wide
range of ATP synthesis rates using different carbon sources, e.g.,
glycogen, glucose, and fat. The phenotypes of multicellular
organisms do not only depend on the metabolic capacities of
individual cells; while the maximal oxygen uptake rate in humans
(VO2max) is proportional to the oxidative capacity of the muscle
fibers6, it may also be limited by cardiopulmonary oxygen sup-
ply7. A number of potential limiting factors have been proposed,
including the uptake capacity of oxygen by the lungs, the oxygen
delivery due to the rate of blood flow, and the diffusion rate of
oxygen into the cell8. To avoid overcapacity, most interacting
components are expected to align, assuming that they are under
selective pressure.

Cells must regulate the rate of ATP synthesis to match the
demand. To avoid exhaustion of the ATP pool, ATP must be
synthesized at the same rate as it is consumed, and metabolism
therefore operates at steady-state during physical activity that
lasts longer than a few minutes9. During exercise at varying work
rates, the concentrations of key metabolites such as ATP and
NADH barely change, despite large differences in ATP synthesis
rates9. Some researchers argue that subtle changes in substrate
concentrations are sufficient to regulate metabolism10, others find
them insufficient and propose that both supply and demand of
ATP must be under the regulatory control9. Regardless of which
regulatory mechanism may be at play, the metabolic states of the
muscle are ultimately constrained by the catalytic capacity of the
metabolic enzymes. The range of possible phenotypes that can be
attained in muscle through regulation may therefore be investi-
gated using constraint-based modeling.

Metabolic models are useful tools to study biological systems.
They may largely be divided into kinetic models, which use
ordinary differential equations, and stoichiometric models, which
use linear equations and constraints11. Kinetic models are well
suited to study the interactions between metabolite concentra-
tions and fluxes and the roles of different regulatory elements.
They have been used to study the biophysical mechanisms
underlying experimental data in cells and isolated mitochondria,
as well as the theoretical requirements on the regulatory
system9,10,12. A kinetic model has also been developed on the
whole-body level to simulate dynamics in substrate utilization13.
Stoichiometric models are, on the other hand, well suited to study
the metabolic steady states that cells may attain. They have been
used to study the mechanisms behind overflow metabolism in
microorganisms14–17, as well as humans3,18,19. Unlike the
microbial models that are constrained on the level of individual
enzymes, the models3,19 of human muscles have so far only been
constrained by an estimated crowding constraint on the level of

each cellular compartment. Metabolic interactions between
multiple tissues have also been studied using a stochiometric
model20, but was not applied to study fluxes during exercise.

We have previously shown that an enzyme-constrained model
of yeast is able to capture shifts in metabolism across different
metabolic regimes14. Here, we develop two metabolic models of
human muscles, a small-scale enzyme-constrained model and a
genome-scale, multi-tissue model. We use the small-scale model
to simulate the optimal metabolic strategies at different ATP
synthesis rates for different carbon sources. We find that meta-
bolic bypass of complex I is an optimal strategy at high ATP
synthesis rates. We integrate protein abundance measurements
with the model to generate condition-specific constraints, and
find that the capacity of complex I is constraining ATP synthesis.
We incorporate these constraints into the multi-tissue model and
fit the gas exchange of the model to experimental data from five
subjects. A metabolic model without complex I bypass is unable
to fit the fluxes. We use the model to study metabolic interactions
between different muscle fiber types and peripheral tissue. We use
the model to predict the maximum sustainable ATP synthesis
rates at different exercise durations, and find that they correspond
well to the data on world-record running speeds. Using these
model systems, we were able to recapitulate known metabolic
phenomena as well as predict previously unknown metabolic
strategies in the working muscle during high-intensity exercise.

Results
There are four optimal metabolic strategies in muscle fibers.
Different metabolic strategies will be optimal depending on the
type of physical activity, some strategies make efficient use of
nutrients, whilst others favor rapid ATP synthesis. The optimal
allocation of a finite pool of enzymes can be formulated as a linear
optimization problem and studied using an enzyme-constrained
model14. The model relies on estimating the mass of enzyme
required for each biochemical reaction based on the specific
activities of the enzymes (µmol [mg purified protein]−1 min−1).
We reconstructed a small-scale model of intermediary metabo-
lism (including 66 enzyme-mediated reactions) and para-
meterized it with specific activity values from literature
(Supplementary Tables 1, 2). The model (Fig. 1a) covered all key
ATP synthesizing reactions included glycolysis, TCA cycle, beta-
oxidation, and oxidative phosphorylation (OXPHOS) and two
routes for the oxidation of cytosolic NADH, the canonical
malate–aspartate (mal-asp) shuttle and the glycerol phosphate
(gly-phos) shuttle, which has previously been implicated in
muscles21. Unlike the mal-asp shuttle which transports electrons
from cytosolic to mitochondrial NADH, gly-phos transfers the
electrons directly to ubiquinone (QH2) that enter the electron
transport chain at complex III. Fatty acids have a higher energy
density than glycogen, and it has been hypothesized that muscles
attempt to minimize glycogen utilization (glycogen sparing) by
utilizing fatty acid synthesis when possible22. We configured the
model to minimize the amount of carbon required for the
synthesis of ATP (per cmol), to simulate the optimal utilization of
nutrients.

The optimal enzyme allocation was simulated at different ATP
synthesis rates. It showed four distinct metabolic modes that
differed in catalytic capacity and substrate efficiency that together
formed a Pareto front with the maximum attainable substrate
efficiency at each ATP synthesis rate (Fig. 1b). A large share of the
front consisted of mixtures of oxidative and fermentative ATP
synthesis as is observed in human muscles. Interestingly, the gly-
phos route for oxidizing cytosolic NADH, was predicted to be
more catalytically efficient than the canonical mal-asp shuttle,
which however, was more substrate efficient. Both the high
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substrate efficiency of oxidation and the high catalytic efficiency
of fermentation were expected results that align with previous
models and observations in microbes and human3,16,18,19. The
concept of a partially coupled mode, through the bypass of
complex I was less expected. However, this fits well with
observations in rat23, where differences in oxidative coupling,
P/O ratio (ATP produced per molecular oxygen consumed) have
been observed among different tissues respiring on substrates of
complex I. It is also in agreement with the observed shift to
isoforms of complex I with lower proton stoichiometry in
Escherichia coli at high growth rates24, and the absence of a
proton-pumping complex I in Saccharomyces cerevisiae, as we
noted in a previous study14.

Since reducing the P/O ratio is expected to decrease the total
amount of ATP synthesized, we were interested in how this
became an optimal mode. We analyzed the model and found that
the effect was driven by the low specific activity of complex I
(Supplementary Table 3) emerging from its high-molecular mass,
980 kDa25. The main advantage over the fully oxidative mode is
its high catalytic capacity; to synthesize equal amounts of ATP the
fully oxidative mode would require a larger investment in
proteins, with direct ATP costs for production and maintenance
or opportunity costs in the form of reduced concentrations of
other proteins if the total protein content is conserved. The main
advantage over fermentation is the high substrate efficiency,
which allows sustained ATP synthesis, additionally it does not
result in the production of lactate, which cannot be sustained
indefinitely. Complex I bypass thus enables a balance between
ATP synthesis, protein allocation, and substrate efficiency, and
constitutes a middle ground between the fully fermentative and
the fully aerobic mode.

In the absence of complex I, mitochondrial NADH must be
oxidized through a different route. We found that our model
achieved this through transporting NADH to the cytosol via the
reversed mal-asp shuttle and then using the gly-phos shuttle to
transfers electrons from NADH to QH2. While the gly-phos
shuttle seems like a plausible mechanism for the oxidation of
cytosolic NADH, it seems improbable that mitochondrial NADH
would be routed to the cytosol, only to be taken up by the
mitochondria again in the form of QH2. A more sophisticated
metabolic route for transferring electrons from NADH to QH2

may exist in the living cell. One possibility may be to bypass the
proton-pumping step of complex I, while retaining the NADH
dehydrogenase activity. Such a switch has previously been
proposed26 and was recently experimentally demonstrated in
Yarrowia lipolytica27. In S. cerevisiae, the enzyme NADH
Dehydrogenase (NDI1) transfers electrons from mitochondrial
NADH to QH2 without pumping protons with a specific activity
hundred times higher than for complex I14. To test if the model
would favor a non-proton-pumping NADH Dehydrogenase, we
temporarily added NDI to the model and found that complex I
bypass was even more accentuated in the hybrid model
(Supplementary Fig. 1). However, we were hesitant to introduce
a hypothetical reaction into the model in the absence of direct
evidence of a proton-slipping mode of complex I in human. For
the rest of the simulations, the route over gly-phos was retained.
This was not expected to constitute an active constrain in the rest
of the analysis, since the specific activities of these reactions were
comparably high.

Muscle proteome allocation supports the four strategies. Unlike
microbes, human muscles cannot adjust their proteome during
ATP synthesis. They must therefore be disposed to handle a range
of different metabolic tasks. We evaluated if all four metabolic
strategies would be reflected in the protein concentrations in
muscle, as the protein concentrations together with their specific
activities determine the flux capacities (vmax) of the different
reactions. We investigated the published proteome of skeletal
muscles (vastus lateralis) from eight healthy subjects (four males
and four females)28. The proteome was dominated by motor
proteins and metabolic enzymes (Fig. 2a), among the OXPHOS
enzymes, complex V required more mass than the others com-
bined, which is consistent with our analysis of yeast metabo-
lism14. We then used the protein mass data to calculate the
maximal flux capacity of each enzyme (vmax= [protein con-
centration] × [specific activity]). The reactions were constrained
to half max capacity to account for different effects, e.g.,
incomplete enzyme saturation, thermodynamically driven back-
ward fluxes29, effectively scaling the maximum flux to the
expected biological range.

We simulated the optimal fluxes at various ATP synthesis rates
using the constrained model. The carbon utilization was
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minimized for each ATP synthesis rate, which is equivalent to
maximizing the amount of ATP per carbon consumed. The
simulations showed that the proteome of muscle is allocated in
such a way that all four metabolic modes could be used,
depending on the ATP synthesis rate (Fig. 2b). The predicted
exchange fluxes agreed with known physiology30, where meta-
bolism is fully aerobic at low ATP synthesis rates, and
fermentative at high rates. The maximum attainable ATP
synthesis rate in the model was around 3.6 times higher than
the rate at which oxygen uptake attained its maximum capacity.
This is in good agreement with the relatively higher (3.2 times)
maximum work rate on an exercise bike (1130W) compared with
the maximum aerobic steady-state rate (350W)31.

The capacity of the enzymes is expected to be dimensioned to
align with the fluxes. A strong correlation (Pearson) was found
between the flux capacity and maximum predicted fluxes among
enzymes from glycolysis, TCA, and OXPHOS (Fig. 2c), suggest-
ing that the protein composition of muscle is tailored toward ATP
production. However, when also including fatty acid metabolism,
the correlation vanished (p= 0.88). It is possible that enzymes
from the beta-oxidation cycle require unusually high capacity to

overcome backward fluxes, since the cycle is found to be close to
the equilibrium32. Fatty acid reactions aside, most reactions had
an effective enzyme usage of between 10 and 100% (Supplemen-
tary Fig. 2). The enzyme usage of glycerol-3-phosphate
dehydrogenase (GPD) from gly-phos was around 60%, confirm-
ing the assumption that it would not constitute an active
constraint in the simulations.

Some metabolic fluxes were rate limiting in the model. It was
possible (Fig. 2c) to directly identify which of the interior
constraints were active by comparing the predicted fluxes with
the flux constraints (vi= 0.5[vmax]i). By setting up simulations so
that these constraints could not be overcome, it was possible to
predict the maximum oxygen uptake rates in different metabolic
context that were in good agreement with the corresponding
literature data33 from permeabilized muscle fibers (Fig. 2d). The
much higher oxygen flux observed in the presence of complex II
is in favor of a capacity constraint in complex I, and assumes that
complex I bypass is not induced in the muscle fibers, e.g., directly
by the complex I substrates. This type of the experiment is
commonly performed with carbon sources that are optimized for
the assay and not necessarily physiological relevant, e.g.,
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octanoate instead of palmitate and glutamate instead of glucose.
We therefore selected the carbon source in our simulations to
mimic the experimental setup.

The oxygen usage per watt increases at high work rates. We
were interested in if complex I bypass could affect whole-body
metabolism during exercise. The metabolic rate of muscles can be
experimentally controlled during physical activity on an exercise
bike (ergometer) by adjusting the resistance34. The efficiency
between power output measured on the ergometer and ATP
production in the cell is expected to be ~35–50% based on
experiments and biophysical simulations35–38, which is in good
agreement with an experimentally estimated output of 27 J per
mmol ATP found for active muscle performing high-intensity
aerobic exercise39.

A bypass of complex I is expected to increase the oxygen
expenditure at high work rates. Compared with the fully aerobic
mode at low work rates, the oxygen expenditure per watt
produced at high work rates is expected to increase up to 43%,
assuming that all muscle fibers bypass complex I simultaneously
and that glycogen is the sole carbon source. In the literature
data40, the median increase in oxygen expenditure is ~30%
(Fig. 3a). But from these experiments, it is not possible to assess if
attenuating factors, such as an accumulation of lactate or a switch
in carbon source at high work rates also may be influential.

To be able to study these processes closer, we measured the
gas-exchange fluxes in a cohort of five well-trained subjects
(Supplementary Data 1). The increase in oxygen expenditure was
similar to the increase found in the literature (Fig. 3b). The fine-
grained incremental exercise protocol was designed to be able to
pinpoint (CImax), where the excess increase in oxygen expenditure
would begin (Supplementary Fig. 3a). For most subjects, this
occurred at ~40% of VO2max (Fig. 3c), which was consistent with
42% for the switch in the simulated muscle (Fig. 2b). It is possible
to quantify which carbon source is used through indirect
calorimetry. The respiratory exchange ratio (RER) is the quotient
of CO2 over O2, the value depends on if fat (RER= 0.7) or
glycogen (RER= 1) or a mixture (0.7 < RER < 1) is used as carbon
source. The exchange of CO2 and O2 were quantified, and the
RER was significantly higher at high work rates (Supplementary
Fig. 3b), consistent with an attenuated increase in VO2 through
shifts in carbon source.

Metabolic strategies in a multi-tissue model. A number of
metabolic factors influence the oxygen expenditure at the whole-
body level. The rate depends on the carbon source as well as the
mixture of oxidative and fermentative ATP. Prolonged lactate
production at high work rates is unsustainable, it is, however,
actively metabolized during exercises41, primary to CO2

42, i.e., for
ATP synthesis. At low exercise rates, only the oxidative type I
fibers are activated, while type II fibers are found to activate at
~40% of VO2max43. To take all of these factors into account, we
constructed a multi-tissue model of the human body (Fig. 4a) that
was parameterized (Supplementary Table 4) to fit the pulmonary
exchange fluxes of CO2 and O2 for each of the subjects. The
maximum uptake of O2 was constrained to the observed VO2max
of the subject, while CO2 as well as palmitate and glycogen were
allowed to exchange freely over the boundary. To be able to
accurately fit the CO2 fluxes and thus the RER values, the capacity
for fatty acid utilization (the ETF constraint) was fitted for each
subject. Beyond a critical work rate, the RER exceeds 1, which is
driven by the release of CO2 from bicarbonate ðHCO�

3 Þ due to
buffering of lactate44. Under steady-state conditions, this effect is
zero, but during lactate accumulation there is a 1:1 relation
between the CO2 and the lactate flux. To accommodate RER

values exceeding 1, we allowed a manually fitted lactate accu-
mulation flux.

The predictions from the multi-tissue model were in good
agreement with experimental measurements. Optimal fluxes were
simulated at increasing work rates in the multi-tissue model. For
each ATP synthesis rate, the use of glycogen and oxygen as well as
production of lactate was minimized. The simulated exchange
fluxes of CO2 and O2 as well as the RER fitted the experimental
data well (Fig. 4b that shows the results for one representative
subject, see Supplementary Fig. 4a for the remaining four
subjects). The capacity constraint on complex I was crucial for
the model to fit the fluxes, also the best-fit parametrization of the
model without complex I bypass failed to describe the experi-
mental data (Supplementary Fig. 4b). The oxygen usage by the
model was attenuated by a shift towards glycogen as carbon
source, which is more oxygen efficient than fat (Fig. 4c). The
experimentally determined shift in RER was consistent with a
saturated fat consumption rate occurring at ~100W, diluted by
increasing glycogen usage (Supplementary Fig. 6, and simulated
fluxes in Supplementary Data 2). Much of the variance in dVO2

per dW observed for different subjects (Fig. 3a) could be
explained (Supplementary Fig. 5) by perturbing parameters in
the model. This confirmed that complex I bypass is a plausible
cause of the increased oxygen expenditure at high work rates.

At the highest work rates, the model predicted the excretion of
lactate by m2 (type II fibers) and metabolism of lactate by m1
(type I fibers). This occurred when complex IV attained its
maximum capacity in m2; it then became optimal for the model
to abandon fatty acid consumption and replace it with glycogen
consumption (since only glycogen can be fermented). Simulta-
neously, m1 was forced to switch from palmitate as a carbon
source, to act as a sink for the excess lactate. Since our model
assumes steady-state, it cannot capture dynamic effects when
lactate begins to accumulate. This may explain why our predicted
RER values are lower than observed around the lactate threshold.
This may also explain the slow component phenomenon45 that
involves a slow increase in oxygen consumption at high work
rates over several minutes until the steady-state oxygen
consumption is reached. It has previously been linked to lactate
dynamics, since the effect disappears in the presence of saturating
lactate concentrations. It was indeed possible to explain the
literature data45 using a simple dynamic model (Supplementary
Fig. 7) that described the shift in carbon source from glycogen to
lactate as a response to increased lactate flux from type II to type I
muscle fibers.

The model is predictive of world-record running speeds. The
maximum work rate of a muscle depends on the carbon source.
We used the model to investigate the maximum steady-state ATP
synthesis rate on different carbon sources (Fig. 5a). The rate on
intracellular glycogen was higher than on glucose, i.e., liver gly-
cogen converted to glucose and released into blood, due to the
lower ATP yield from glycolysis on glucose (two ATPs per glu-
cose) compared with glycogen (three ATPs per glycogen), arising
from the additional ATP consumption by hexokinase compared
with glycogen phosphorylase. This under the assumption that
glycogen is being depleted, as re-synthesis of glycogen requires
one ATP per glucose. Under fermentative conditions, this results
in 50% more lactate produced per ATP synthesized, leading to
saturating lactate fluxes at lower work rates. The lower work rate
on lactate and fat was was due to the lower P/O ratio and lack of
fermentative capacity. For fat, we noticed a marked discrepancy
in uptake rate if ETF was unconstrained (~1.8 g per min) com-
pared with when it was empirically constrained to fit the RER
values (~0.6 g per min). The low empirical utilization of fat may
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suggest a proteomic adaptation to the lower catalytic efficiency of
fat (Fig. 1b) and low capacity for fat oxidation in muscle fibers
(Fig. 2d).

The steady-state solutions identified by the model become
invalid if substrate pools are depleted (Fig. 5b). Glycogen reserves
are a known limiting factor for athletes exercising for long
durations, while for shorter durations the accumulation of lactate
is limiting46. We simulated the maximum work rate that could be
sustained for different durations of exercises by constraining the
uptake rate of different carbon sources by the pool size divided by
the duration of the exercise. For lactate, we assumed that it
accumulated in blood and tissues (a total volume of around 37 l)
with a final lactate concentration of around 15 mmol per l43,
allowing high lactate efflux at short durations. With these
constraints, we arrived at a map of the metabolic capacities in
exercise bouts of different durations (Fig. 5c). At short durations,
a large fraction of the glycogen was diverted toward lactate
production, while fluxes are high, the increase in ATP synthesis is
modest, due to the order of magnitude lower ATP synthesis rates
for fermentation compared with OXPHOS. At durations above
20 min, glycogen reserves become limiting and other carbon
sources were introduced and at durations above 40min the
carbon resources became too scarce to justify lactate
accumulation.

To verify our predictions, we compared them with the world-
record running speeds. The average running speed in exercising
humans decreases as a function of the distance (and hence
duration) of the race, which is related to the decreasing power
output47. Professional athletes are highly motivated and are

expected to perform near optimally, which has previously been
exploited by mathematical models that predict world-record
performance47. We compared the current world-record running
speeds at various durations48 with the predicted optimal-specific
power output of one of our subjects for the same durations
(Fig. 5d) and found a close linear relationship (R2 0.995). This
corroborates our model predictions and suggests that much of the
decrease in running speed at longer distances may be understood
from the optimal utilization of different carbon sources with
limited pool sizes. Other factors, including air drag, and
differences in protein allocation and body composition between
runners are expected to attenuate the effect, and may explain the
larger dynamic range for the predicted values compared with the
observed.

Discussion
We investigated the metabolic fluxes in muscle fibers at different
work rates using metabolic modeling. A metabolic model con-
strained with protein concentrations from muscle predicted that
complex I is bypassed at high ATP synthesis rates. The oxygen
fluxes predicted by the model were in good agreement with the
literature data for muscle fibers. The bypass of complex I is
predicted to increase the catalytic capacity of the muscle at the
expense of substrate efficiency, an effect that emerges from the
low specific activity of complex I. While the model predicted that
complex I is bypassed through the well-established21 gly-phos
shuttle, it is, however, not impossible that it is bypassed through
another mechanism in vivo, e.g., disengagement of the proton
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pumps in complex I27. This seems particularly probable for
NADH of mitochondrial origin. Regardless of mechanism, a
whole-body model that included complex I bypass showed a good
fit to exchange fluxes of O2 and CO2 from human subjects, while
the fit for a model without complex I bypass was poor. Fur-
thermore, taking the pool sizes of different carbon sources into
account, the model was able to predict a decreasing trend in
power output with increasing durations, that was consistent with
the trend for world-record running speeds.

To maximize performance, the muscle must allocate the pro-
tein composition for the tasks it is likely to encounter. A coarse-
grained adaptation appears to occur through the composition of
muscle fibers, by tuning the ratio of glycolytic type II fibers and
the more oxidative type I fibers. But the body is also capable of
adjusting the catalytic capacity of individual fibers5. From this
perspective, it is interesting to note how different forms of doping
may improve performance, e.g., the maximum work rate and
VO2max can be increased in response to drug erythropoeitin
EPO, which is intended to increase oxygen delivery. In a recent
randomized controlled trial49, the placebo group experienced a
2% increase in both maximum work rate and VO2max (12.5
dVO2 per dW), while the increase was 5% in maximum work rate
and 9% in VO2max for the EPO-group (20.8 dVO2 per dW).
Again suggesting that a linear relation between oxygen expendi-
ture and work rate may be a too simple model.

Regarding optimal substrate utilization, the model predicts a
switch from mixed oxidation of fatty acids, glucose, and glycogen
to exclusive glycogen oxidation at high work rates. This is due to
the extra ATP gained from glycolysis compared with beta-
oxidation. This is in agreements with dynamic models of muscle
tissues that predicts that most (70–90%) of ATP originates from
carbohydrates at high work rates, out of which most (~80%)
originate from muscle glycogen13, as well as experimental values at
~66% and 70%, respectivly50. The low empirical utilization of fat
as a substrate may be due to an impaired ability to deliver fatty
acids to the muscle, as was previously proposed50. The composi-
tion may also reflect an adaptation to a high carbohydrate diet, as
the utilization of fat is shown to increase on a high-fat diet51,
however, this also reduced their maximum work rate. Further-
more, postprandial effects may influence the disposition toward
carbohydrate metabolism. It is also interesting to notice that
glucose is predicted to be a suboptimal fuel compared with gly-
cogen since glycogen bypasses the first ATP-demanding step of
glycolysis. This emphasizes the value of glycogen loading52 in
favor of carbohydrates from exogenous sources. The later should,
however, be optimal at longer distances, as the uptake rate has
been observed at a maximum of 100 g per h using a mixture of
glucose and fructose53. At high work rates, lactate produced by
one muscle fiber may be consumed by another, allowing a division
of labor, but since lactate is a less oxygen efficient substrate than
glycogen, it will increase the overall oxygen expenditure by the
muscle. At the highest work rates, lactate accumulates, and the
associated physiological disturbance quickly results in exhaustion.

Complex I bypass may play an important role in many
pathological and paraphysiological conditions. Complex I is
implicated in tumorigenesis, but there are conflicting observa-
tions with regards to its role. Many studies suggest that several
subunits of complex I act as tumor suppressors and that muta-
tions promote cancer progression, yet inhibition of complex I is
the proposed mechanism of action for many anticancer com-
pounds54. This conflict may potentially be resolved by the con-
cept of complex I bypass, assuming that it occurs through the
disengagement of the proton pumps; mutations may induce
complex I bypass and increase the catalytic activity of the cancer,
increasing its proliferation, inhibitors of complex I may on the
other hand also inhibit the NADH to QH2 reaction, effectively

blocking complex I bypass. The relative expression of glycolytic
and OXPHOS proteins shift under many paraphysiological
conditions55,56. Here, complex I bypass may play an important
role, given its intermediary location between oxidative and fer-
mentative metabolism (Supplementary Discussion).

While the model has demonstrated merits in predicting phe-
notypes and providing systems-level insight, the phenomena that
have been described herein, e.g., complex I bypass, require
additional experiments and dynamic modeling to elucidate their
mechanisms and regulation. Steady-state modeling is a useful
paradigm, but many biological phenotypes are transient or rely
on finite resources, e.g., the transient peaks in lactate con-
centration observed during moderate exercise57. We have been
able to overcome these limitations to some degree through the use
of duration-dependent uptake rates and a simple dynamic model.
But most of the results depend on the steady-state assumption. In
our simulations, we also assume that all enzymes operate at half
their maximum rate, which is an apparent simplification and new
types of models are under development that will allow the
saturation of each enzyme to be estimated58. Nevertheless, steady-
state modeling of metabolism may, thanks to the low number of
parameters required and its intuitive application, serve as a fra-
mework to further our understanding on metabolic adaptations
to exercise and limitations to human performance.

In conclusion, the model developed here recapitulates long
known metabolic strategies during high-intensity exercise, such as
lactate production and a switch toward glycogen as carbon
source. It also makes several predictions of metabolic strategies
during high-intensity exercise, including complex I bypass and
lactate accumulation. These metabolic strategies explain several
observations relating to altered oxygen expenditure during
exercise.

Methods
Genome-scale model. A genome-scale metabolic model of the muscle59 was used
with some additional manual curation (as specified in Supplementary Methods).
The model originates from a generic GEM60 that has been reduced to a muscle
model by removing reactions without experimental support in the proteomics and
transcriptomics data. Simulations using flux balance analysis (FBA) were carried
out using the RAVEN Toolbox61.

Reduced muscle model. A reduced stoichiometric model was constructed by
simulating ATP production in the genome-scale model and removing the reactions
that did not carry flux. To ensure that multiple metabolic strategies would be
available also in the reduced model, multiple simulations were conducted where
flux through important enzymes were blocked, e.g., enzymes from the respiration
chain (Supplementary Methods).

Enzyme-constrained model. The reduced model was expanded to an enzyme-
constrained model. Enzyme-specific activity values were collected for each meta-
bolic reaction from an online database62 and literature (Supplementary Tables 1,
2). An assumed saturation of 0.5 was used to calculate the estimated sum of enzyme
mass required for each flux distribution. The sum of mass was then constrained to
a finite value. By increasing the ATP synthesis rate in the simulations, the catalytic
capacity and substrate efficiency can be calculated (pseudo code in Supplementary
Methods).

Proteomics analysis. The mean spectral count from eight subjects was calculated
for each protein in a published data set28. The mass fraction of each protein was
calculated by multiplying the average spectral count by the molecular weight of
each protein and dividing by the sum. The mass fraction was then converted to
absolute protein abundance through multiplication with the protein content of
muscle63. Proteins were binned to metabolic processes based on the gene anno-
tation in the GEM. Proteins without annotation were manually binned to the
category “myosin” (containing myosin, actin, and similar proteins) or binned as
“other”. Myoglobin and albumin were given their own category due to their high
abundance.

Proteome-constrained simulations. The vmax of each enzyme-catalyzed reaction
of the reduced model was calculated from the relationship vmax= [protein mass
concentration] × [specific activity]. The flux of each reaction was constrained to an
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estimated effective vmax as v ≤ η × vmax, were the factor η (0 ≤ η ≤ 1), which
represents incomplete enzyme usage, was taken as η= 0.5 for all reactions. The
uptake of oxygen, glycogen, and octanoic acid was left unconstrained. The ATP
synthesis rate was fixed at incrementally increasing values, and the optimal flux
distribution was calculated using FBA by minimizing the influx of carbon, subject
to the effective vmax constraints. To simulate oxygen expenditure in muscle fibers in
different metabolic contexts, the ATP synthesis was maximized. A reaction that
provided glutamate and removed aspartate was added to simulate the complex I
substrates, and a reaction that provided succinate and removed fumarate was
added to simulate complex II substrates. To simulate the oxygen flux in absence of
complex I bypass, the gly-phos reaction was blocked. For the enzymes TPI and
PFK, no measurements were found in the proteomics data, and these reactions
were therefore not constrained. For TPI, the specific activity was sufficiently high to
not be limiting even if protein levels were below the limit of detection. For PFK,
there was a “PFK like protein” detected, but this was not used in the simulations
(Pseudo code in Supplementary Methods).

dVO2 per dW calculations from literature. The dVO2 per dW metric at high and
low work rates was calculated from a published data set (21 subjects) from an
incremental exercise protocol on bike40. For low work rates (work rates below the
lactate threshold), the reported slope of regression was used. No slope was reported
for high work rates so there dVO2 per dW was calculated from the difference in
reported VO2 and W at the lactate threshold (LT) and at max. The p-value was
calculated using Wilcoxon rank-sum test.

Incremental exercise measurements. The experiments on human subjects were
approved by the Swedish Ethical Review Authority and conformed to the
declaration of Helsinki. Five male subjects (age 38 ± 5 y, height 181 ± 3 cm, weight
76 ± 11 kg, VO2max 62 ± 11 ml kg−1min−1, Wmax 5.2 ± 1W per kg, ± s.d.) com-
pleted a high-resolution incremental test to measure VO2 and CO2 gas exchange in
expired air at a variety of work rates. The subjects were all experienced cyclists, and
refrained from the training (36 h), caffeine (6 h), and food (3 h) preceding test and
received information and gave written consent before test. All cycling during the
submaximal test was performed at 70 rpm on an ergometer (SRM international,
Jülich Germany) with continuously breath by breath measurement of VO2 and
CO2 (Oxycon Pro, Erich Jaeger GmbH, Hoechberg, Germany). Due to technical
limitations of the bike and the need for steady-state O2 consumption, low work
rates (rest to 100W) was measured at durations of 2–5 min at increasing work rates
of 10–20W per step. At higher work rates (80W up to a power output eliciting ≤
1.00 RER), the work rate was increased in steps of 5W per 90 s. The power- and
gas-exchange data were time aligned and 15 s means were calculated. After the
submaximal test, a short incremental test to exhaustion was performed for deter-
mining VO2max. On a separate occasion lactate was sampled (EKF-diagnostic
GmbH, Germany) at 5 min long intervals for one of the subjects during a standard
LT-test with increments of 30W (rest to 330W) used at the laboratory. It is
assumed that the experimentally determined fluxes were at steady-state, since the
increments in work rate were small and each work rate target was maintained for a
long time.

dVO2 per dW calculations in this study. The point at which the derivative of
VO2 changed and its 95% confidence interval was calculated using nonlinear least
squares curve fitting on the experimental data from five subjects. The slopes before
and after the point were calculated using linear regression.

Multi-tissue model. Three genome-scale models of the muscle were combined to a
multi-tissue model by a transport compartment that joined the exchange fluxes
from all sub-models, allowing exchange of metabolites between the sub-models
(Supplementary Fig. 7). The transport compartment was not constrained, under
the assumption that blood flow is adjusted during exercise to support the fluxes. To
represent the lower oxidative capacity of type II fibers, their capacity constraints
were reduced to 50% of the values in type I fibers. An ATP hydrolysis reaction was
added to each model. Maintenance energy expenditure was simulated by forcing
ATP hydrolysis in m3, fitted for each subject, to account for metabolic activities
that do not take place in the active muscle. Internal muscle work against gravity
was simulating by forcing ATP hydrolysis in m1 at a rate of 2 mol ATP per h. To
represent the preference for ATP synthesis by type I fibers at low work rates, they
were given a positive weight in the objective function, but the rate at which ATP
could be produced by type I fibers alone was constrained, and above this rate ATP
synthesis was allowed from both muscle fibers in a fixed ratio. Lactate efflux was
permitted from m2 to b and lactate uptake was permitted from b to m1 (con-
struction of the multi-tissue model further specified in Supplementary Methods). A
conversion factor is required to relate the power output of the ergometer to the
ATP production by the model. The thermodynamic efficiency of muscle motor
enzymes (myosin) is consistently found between 35 and 50% in experiments and
biophysical simulations35–38, which provides a conversion factor of 21–30 mmol
ATP per s to W (or equivalently J [mmol ATP]−1) assuming a ΔG of 60 KJ per mol
ATP37. This is in good agreement with an experimentally estimated value of 27 J
per mmol ATP found for active muscle performing high-intensity aerobic

exercise39, which was used for the simulation. The gas exchange was converted
assuming a concentration of 44.66 mmol oxygen per liter.

Simulation of incremental exercise. An objective function was devised to capture
the behavior of muscle, minimizing the usage of oxygen, glycogen and the accu-
mulation of lactate. The uptake of glycogen and fat was set unconstrained, and the
objective function was minimized for each investigated work rate using FBA
(pseudo code in Supplementary Methods).

Simulation of optimal steady-state work rate. The accumulation of lactate and
uptake of each substrate was constrained to 0. The uptake of each carbon source
was then permitted in turn, and the ATP synthesis was maximized using FBA.
With lactate and fat as carbon sources, the peripheral tissue was allowed to con-
sume the substrate to support maintenance (pseudo code in Supplementary
Methods).

Simulation of optimal work rate at increasing durations. The reserves of gly-
cogen of ~80 mmol per kg wet weight64 for the m1 and m2 tissue were divided by
the duration of the exercise to calculate the maximum steady-state influx at each
duration. Glucose flux was calculated from an assumed liver glycogen store of 100
g, corresponding to 0.56 mol. Fat uptake was left unconstrained. The lactate con-
centration in blood was constrained to not exceed 15 mmol43. For each investigated
duration, the work rate was maximized using FBA (pseudo code in Supplementary
Methods).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary information files.

Code availability
The code was implemented in Matlab (Matlab_R_2018_b). Models and source code for
the computational methods are made available through an online repository (https://
github.com/SysBioChalmers/MuscleATPProductionSimulation).
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