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Osteoarthritis: toward a comprehensive understanding of
pathological mechanism

Di Chen1, Jie Shen2, Weiwei Zhao1,3, Tingyu Wang4, Lin Han5, John L Hamilton1 and Hee-Jeong Im1

Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in
adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the
detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently,
there are no interventions available to restore degraded cartilage or decelerate disease progression. The
diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and
exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is
affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding
of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms
among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral
sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.

Bone Research (2017) 5, 16044; doi:10.1038/boneres.2016.44; published online: 17 January 2017

INTRODUCTION
Osteoarthritis (OA) is the most common degenerative joint
disease, affecting more than 25% of the population over 18
years-old. Pathological changes seen in OA joints include
progressive loss and destruction of articular cartilage,
thickening of the subchondral bone, formation of osteo-
phytes, variable degrees of inflammation of the synovium,
degeneration of ligaments and menisci of the knee and
hypertrophy of the joint capsule.1 The etiology of OA is
multi-factorial and includes joint injury, obesity, aging, and
heredity.1–5 Because the molecular mechanisms involved
in OA initiation and progression remain poorly understood,
there are no current interventions to restore degraded
cartilage or decelerate disease progression. Studies using
genetic mouse models suggest that growth factors,
including transforming growth factor-β (TGF-β), Wnt3a and
Indian hedgehog, and signaling molecules, such as
Smad3, β-catenin and HIF-2α,6–10 are involved in OA
development. One feature common to several OA animal
models is the upregulation of Runx2.7–8,11–13 Runx2 is a key

transcription factor directly regulating the transcription of
genes encoding matrix degradation enzymes in articular
chondrocytes.14–17 In this review article, we will discuss the
etiology of OA, the available mouse models for OA
research and current techniques used in OA studies. In
addition, we will also summarize the recent progress on
elucidating the molecular mechanisms of OA pain. Our
goal is to provide readers a comprehensive coverage on
OA research approaches and the most up-to-date
progress on understanding the molecular mechanism of
OA development.

ETIOLOGY
OA is the most prevalent joint disease associated with pain
and disability. It has been forecast that 25% of the adult
population, or more than 50 million people in the US, will be
affected by this disease by the year 2020 and that OA will
be a major cause of morbidity and physical limitation
among individuals over the age of 40.18–19 Major clinical
symptoms include chronic pain, joint instability, stiffness and
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radiographic joint space narrowing.20 Although OA primar-
ily affects the elderly, sports-related traumatic injuries at all
ages can lead to post-traumatic OA. Currently, apart from
pain management and end stage surgical intervention,
there are no effective therapeutic treatments for OA. Thus,
there is an unmet clinical need for studies of the etiology
and alternative treatments for OA. In recent years, studies
using the surgically induced destabilization of the medial
meniscus (DMM) model and tissue or cells from human
patients demonstrated that genetic, mechanical, and
environmental factors are associated with the develop-
ment of OA. At the cellular and molecular level, OA is
characterized by the alteration of the healthy homeostatic
state toward a catabolic state.

Aging
One of the most common risk factors for OA is age. A
majority of people over the age of 65 were diagnosed with
radiographic changes in one or more joints.21–25 In addition
to cartilage, aging affects other joint tissues, including
synovium, subchondral bone and muscle, which is thought
to contribute to changes in joint loading. Studies using
articular chondrocytes and other cells suggest that aging
cells show elevated oxidative stress that promotes cell
senescence and alters mitochondrial function.26–29 In a
rare form of OA, Kashin-Back disease, disease progression
was associated with mitochondrial dysfunction and cell
death.30 Another hallmark of aging chondrocytes is
reduced repair response, partially due to alteration of the
receptor expression pattern. In chondrocytes from aged
and OA cartilage, the ratio of TGF-β receptor ALK1 to ALK5
was increased, leading to down-regulation of the TGF-β
pathway and shift from matrix synthesis activity to cata-
bolic matrix metalloproteinase (MMP) expression.31–32

Recent studies also indicate that methylation of the entire
genomic DNA displayed a different signature pattern in
aging cells.33–34 Genome-wide sequencing of OA patients
also confirmed that this epigenetic alteration occurred in
OA chondrocytes,35–37 partially due to changes in expres-
sion of Dnmts (methylation) and Tets (de-methylation)
enzymes.38–40

Obesity
In recent years, obesity has become a worldwide epi-
demic characterized by an increased body composition
of adipose tissue. The association between obesity and OA
has long been recognized.41–42 Patients with obesity
develop OA earlier and have more severe symptoms,
higher risk for infection and more technical difficulties for
total joint replacement surgery. In addition to increased
biomechanical loading on the knee joint, obesity is thought
to contribute to low-grade systemic inflammation through

secretion of adipose tissue-derived cytokines, called
adipokines.43–45 Specifically, levels of pro-inflammatory
cytokines, including interleukin (IL)-1β, IL-6, IL-8, and tumor
necrosis factor alpha (TNF-α) were elevated46–50 in high-fat
diet-induced mouse obesity models51–54 and in obese
patients.55–57 These inflammatory factors may trigger the
nuclear factor-κB (NF-κB) signaling pathway to stimulate an
articular chondrocyte catabolic process and lead to
extracellular matrix (ECM) degradation through the upre-
gulation of MMPs.58–60

Sport injury
Knee injury is the major cause of OA in young adults,
increasing the risk for OA more than four times. Recent
clinical reports showed that 41%–51% of participants with
previous knee injuries have radiographic signs of knee OA
in later years.61 Cartilage tissue tear, joint dislocation and
ligament strains and tears are the most common injuries
seen clinically that may lead to OA. Trauma-related sport
injuries can cause bone, cartilage, ligament, and meniscus
damage, all of which can negatively affect joint
stabilization.62–66 Signs of inflammation observed in both
patients with traumatic knee OA and in mouse injury
models include increased cytokine and chemokine pro-
duction, synovial tissue expansion, inflammatory cell infiltra-
tion, and NF-κB pathway activation.67

Inflammation
It has been established that the chronic low-grade
inflammation found in OA contributes to disease develop-
ment and progression. During OA progression, the entire
synovial joint, including cartilage, subchondral bone, and
synovium, are involved in the inflammation process.68 In
aging and diabetic patients, conventional inflammatory
factors, such as IL-1β and TNF-α, as well as chemokines,
were reported to contribute to the systemic inflammation
that leads to activation of NF-κB signaling in both synovial
cells and chondrocytes. Innate inflammatory signals were
also involved in OA pathogenesis, including damage
associated molecular patterns (DAMPs), alarmins (S100A8
and S100A9) and complement.69–71 DAMPs and alarmins
were reported to be abundant in OA joints, signaling
through either toll-like receptors (TLR) or the canonical
NF-κB pathway to modulate the expression of MMPs and a
disintegrin andmetalloprotease with thrombospondinmotif
(ADAMTS) in chondrocytes.72–76 Complement can be
activated in OA chondrocytes and synovial cells by
DAMPs, ECM fragments and dead-cell debris.77–78 Recent
studies further clarified that systemic inflammation can re-
program chondrocytes through inflammatory mediators
toward hypertrophic differentiation and catabolic
responses through the NF-κB pathway,9–10,79 the ZIP8/Zn+/
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MTF1 axis,80 and autophagy mechanisms.81–85 Indeed, the
recent Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses of OA and control samples
provide evidence that inflammation signals contribute to
OA pathogenesis through cytokine-induced mitogen-acti-
vated protein (MAP) kinases, NF-κB activation, and oxida-
tive phosphorylation.86

Genetic predisposition
An inherited predisposition to OA has been known for
many years from family-based studies.87–89 Although the
genetics of OA are complex, the genetic contribution to
OA is highly significant. Over the past decade, the roles of
genes and signaling pathways in OA pathogenesis have
been demonstrated by ex vivo studies using tissues derived
from OA patients and in vivo studies using surgically
induced OA animal models and genetic mouse models.
For example, alterations in TGF-β, Wnt/β-catenin, Indian
Hedgehog (Ihh), Notch and fibroblast growth factor (FGF)
pathways have been shown to contribute to OA
development and progression by primarily inducing cata-
bolic responses in chondrocytes.8,90–95 Such responses
converge on Hif2α, Runx2, and inflammatory mediators
that lead to cartilage ECM degradation through the
increased expression of MMPs and ADAMTS
activity.80,96–99 Recent studies of genome-wide association
screens (GWAS) that have been performed on large
numbers of OA and control populations throughout the
world have confirmed over 80 gene mutations or single-
nucleotide polymorphisms (SNPs) involved in OA patho-
genesis. Some of the genes are important structural and
ECM-related factors (Col2a1, Col9a1, and Col11a1), and
critical signaling molecules in the Wnt (Sfrp3), bone
morphogenetic protein (BMP) (Gdf5), and TGF-β (Smad3)
signaling pathways; most of these genes have been
previously implicated in OA or articular cartilage and joint
maintenance by studies using mouse models of induced
genetic alteration- or surgically induced OA.100–106 A
recent arcOGEN Consortium genome-wide screen
study107 identified new SNPs in several genes, including
GNL3, ASTN2, and CHST11. These findings need to be
verified by further studies.

MOUSE MODELS FOR OA RESEARCH
DMM model
DMM was developed 10 years ago and is a well
established surgical OA model in mice and rats. It is widely
used to study OA initiation and progression in combination
with transgenic mouse models and aging and obesity
models. DMM surgery was performed by transection of the
medial meniscotibial ligament (MMTL).26–27 Briefly, following
the initial incision, the joint capsule on the medial side was

incised using scissors to expose either the intercondylar
region or the MMTL, which anchors the medial meniscus
(MM) to the tibial plateau. The MMTL was visualized under a
dissection microscope and the MMTL was cut using micro-
surgical scissors, releasing the ligament from the tibia
plateau thus destabilizing the medial meniscus. Closure of
the joint capsule and skin was with a continuous 8–0
tapered Vicryl suture. As a control for DMM studies, sham
surgery was performed by only exposing the medial side of
knee joint capsule. Because of the medial displacement of
the meniscus tissue, greater stress occurred on the posterior
femur and central tibia, especially on the medial side.108

Histology demonstrated the severity of OA lesions at
4-weeks post-surgery with fibrillation of the cartilage
surface. Cartilage destruction and subchondral bone
sclerosis developed 8 weeks post-surgery and osteophyte
formation was seen 12-weeks post- surgery.98,109–111

Aging model
As a degenerative disease, OA always occurs in
elderly populations; thus, aging is a major risk factor for
the most common form in humans, spontaneous OA.
Several laboratory animals develop spontaneous
OA, which approximates the stages of human OA
progression. These animal models are valuable tools for
studying natural OA pathogenesis.112–113 The most com-
monly used inbred strain of laboratory mouse is C57/BL6;
these mice usually develop knee OA at about 17 months
of age.112 The STR/ort mouse is one strain that easily
develops spontaneous OA. It requires 12–20 weeks for
STR/ort mice to develop articular cartilage
destruction.114–116 This may be partially due to their heavier
body weight compared with other mouse strains. Given
the background genetic consistency, although aging OA
models have many advantages, it normally requires at
least one year for mice to model the disease. Therefore,
surgically induced OA models107,117 and genetic mouse
models are preferred in recent decades for their relatively
fast induction for use as aging models for the study of OA
lesions.
In addition to the mouse, the Dunkin Hartley guinea

pig provides an aging model widely used to study OA
development.118 The Dunkin Hartley guinea pig can
develop a spontaneous, age-related OA phenotype
within 3 months. The severity of OA lesions increases with
age, and moderate to severe OA is observable in
18-month-old animals. Histological analysis demonstrated
that the spontaneous OA progression in Dunkin Hartley
guinea pig resembles that of humans. Thus, the Dunkin
Hartley guinea pig is a useful animal to study the
pathogenesis and evaluation of potential treatments for
human OA.
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Obesity model
It has become evident that obesity contributes to a variety
of musculoskeletal diseases, particularly OA, because of
inflammatory and metabolic responses.119 Together with
surgically induced injury and genetic models, mouse
obesity models are widely used to explore the mechanisms
of obesity-inducedOA. The obesemousemodel is induced
by a high-fat diet, in which 60% of calories are derived from
fat as opposed to the normal 13%.120 The entire joint tissue,
but especially synovium tissue, is affected by the high-fat
diet. A synovial inflammation phenotype has been inde-
pendently reported by different laboratories.54 An ele-
vated systemic inflammation was observed in obese mice
following DMM surgery. Serum levels of pro-inflammatory
factors, including interleukin-12p70,54 interleukin-6, TNFα
and several other chemokines, were increased, suggesting
a role for obesity in the development of post-traumatic OA
(PTOA).

Genetic mouse models
Genetic mouse models have recently become widely
used to investigate the cellular and molecular mechanisms
of OA development. Based on the GWAS studies of human
patients, mutant mouse strains were generated carrying
either mutant genes or SNPS. For example, Del1+/- mice
carried a mutation in the collagen II gene. Both Del1+/-

mice and Col9a1−/− mice developed spontaneous OA.121

Because cartilage functions as a skeletal architect, con-
ventional gene deletion approaches have the drawback
of causing embryonic lethality or severe skeletal deforma-
tion. To overcome embryonic lethality and bypass the limits
of constitutive gene knockout (KO), inducible conditional
KO technology has been widely used. This usually com-
bines Cre-loxP gene targeting with tamoxifen-induced
nuclear translocation of CreER fusion protein driven by
tissue-specific promoters. The Col2a1-CreERT2, Agc1-CreERT2

and Prg4-CreERT2 transgenic mice122–124 have become
powerful tools for targeting joint tissue to study the
mechanism of OA development. Based on the gene
expression pattern, both Col2a1 and Agc1 can efficiently
target chondrocytes in the growth plate cartilage, articular
cartilage and temporomandibular joint. Because Agc1 is
expressed more robustly than Col2a1 in adult cartilage
tissue, Agc1 is expected to better target chondrocytes in
adult mice.123 In addition to chondrocytes, Agc1were also
reported to target nucleus pulposus tissue in the interver-
tebral disc.123 Prg4 only targets the superficial layer of
articular chondrocytes.124 It needs to be emphasized that
all of these genetic tools are used to address the
importance of cartilage tissue in OA development. Addi-
tional CreER transgenic mice need to be developed to

efficiently target subchondral bone, synovial tissue and
meniscus.
Using these transgenic mice, specific genes have

been studied in chondrocyte-specific experiments to
dissect their role in OA. In vivo studies employing mutant
mice suggest that pathways involving (i) receptor ligands,
such as TGF-β1, Wnt3a, and Indian hedgehog, (ii) signaling
molecules, such as Smads, β-catenin, Runx2 and
HIF-2α and, (iii) peptidases, such as MMP13 and
ADAMTS4/5, have some degree of involvement in OA
development. Table 1 summarizes the mutant lines
available for OA study.
TGF-β and its downstream molecules have important

roles in OA pathogenesis. Mutations of Smad3, a central
molecule in TGF-β signaling, have been found in
patients with early-onset OA.131–133 It has been known for
years that TGF-β promotes mesenchymal progenitor cell
differentiation and matrix protein synthesis and
inhibits chondrocyte hypertrophy. TGF-β signaling may
play differential roles in joint tissues during OA develop-
ment. For example, global deletion of Smad3 causes
chondrocyte hypertrophy and OA-like articular cartilage
damage.6 The deletion of Tgfbr2, encoding for type II TGF-β
receptor,91 or Smad312 in articular chondrocytes also
led to an OA-like phenotype. In contrast, the activation
of TGF-β signaling in mesenchymal progenitor cells of
subchondral bone also caused OA-like lesions.134 These
findings suggest that TGF-β signaling may have differential
roles in various joint tissues135 and that therapeutic
interventions targeting TGF-β signaling may require a
tissue-specific approach.

Table 1. Available transgenic mouse models for osteoarthritis
research

Gene Targeting tissue Pathway

Del1125 Global ECM
Col9a1126 Global ECM
Tgfbr290 4xMRE TGF-β
Smad36 Global TGF-β
Smurf2127 Col2-Cre TGF-β
Tgfbr291 Col2-CreER TGF-β
Frzb128 EIIaCre Wnt
β-catenin7 Col2-CreER Wnt
Rbpjk93 Prx1Cre Notch
Fgfr1129 Col2-CreER FGF
Smo8 Col2-Cre Ihh
Runx211 Global
Hif2a9 Global
Mmp1397 Global
Mmp13130 Col2-CreER
Adamts598 Global

Abbreviations: ECM, extracellular matrix; FGF, fibroblast growth factor; Ihh, Indian
Hedgehog; TGF-β, transforming growth factor-β.
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TECHNIQUES FOR OA STUDIES
In vitro studies
In vitro articular chondrocyte isolation and culture. To
investigate signaling mechanisms in articular cartilage,
primary human articular chondrocytes will be obtained
from surgically discarded cartilage tissues. Briefly, full-
thickness sections of cartilage are excised from the
subchondral bone. The cartilage pieces will be digested
for about 15 h using a digestion buffer. The isolated cells
will be then collected and filtered to remove undigested
tissue and debris, and washed with Hanks' buffered salt
solution. The cells will be then re-suspended in chondro-
cyte basal medium and plated in high density monolayer
cultures as shown in Table 2.136–137 Human articular
chondrocytes can also be cultured in three dimensions.
Briefly, 4×106 freshly isolated human articular chondro-
cytes will be re-suspended in alginate solution and the cell
suspension is added drop-wise into 102mmol·L− 1 CaCl2 to
form beads. After washing the beads with 0.15 mol·L− 1

NaCl and basal medium, the chondrocytes encapsu-
lated in alginate beads will be cultured in three dimen-
sions with basal medium.138–139

In vitro human articular cartilage explant culture. Osteo-
chondral tissues from radiographically and anatomically
normal joints will be obtained from patients with different
surgeries, such as oncologic surgical procedures, menis-
cal tear repair or total knee joint replacement. The
collected osteochondral tissues will be first washed with
sterile phosphate-buffered saline (PBS). Fresh cartilage
samples will be harvested from the femoral condyle using
a 6mm diameter biopunch. The cartilage explants will be
cultured in chondrocyte basal medium.140

Histology/histomorphometry
Knee cartilage samples to be used for histological and
histomorphometric analyses will be fixed in 10% neutral
buffered formalin (NBF), decalcified in 14% EDTA for 10 days
and embedded in paraffin. The paraffin-embedded
samples will be cut into 5 μm sections and stained with
Alcian blue/Hematoxylin-Orange G (ABH) or Safranin
O/Fast green to determine changes in architectures of
cartilage, bone, and synovial tissues throughout OA
progression. Quantitative histomorphometric analyses of

ABH-stained sections can be performed using a Visiopharm
analysis system.141 Using this system, high resolution digital
images of histology slides can be obtained. Cartilage
thickness will be measured from the middle of the femoral
and tibial condyles. Cartilage area will be traced from
both articular cartilage surfaces. The tidemark will be used
to delineate the upper and deep zone of articular
cartilage.91,93

OARSI score system
Several scoring systems have been developed to semi-
quantify the severity of OA lesions of the knee. A scoring
system recommended by the Osteoarthritis Research
Society International (OARSI) society is based on contin-
uous histological staining of the knee joint. A 0–6 subjective
scoring system, as shown in Table 3, is applied to all four
quadrants through multiple step sections of the joint.
Sagittal sections obtained every 80 μm across the medial
femoral-tibial joint will be used to determine the maximal
and cumulative scores.142

Nanoindentation
It is necessary to understand changes in mechanical
properties of OA cartilage across multiple length scales
because they directly reflect cartilage functional changes
during degradation.143 Atomic force microscopy (AFM)-
based nanoindentation is well-suited for evaluating
changes at a nm-to-μm scale that is comparable to the
sizes of matrix molecules and cells.144 For AFM-
nanoindentation measurement, a microspherical or a
pyramidal tip is programmed to indent the sample tissues,
cells or tissue sections to a pre-set force or depth. An
effective indentation modulus can be calculated by fitting
the loading portion of each indentation force versus depth
curve to the elastic Hertz model.145 The use of nanoinden-
tation over the past decade has uncovered many new
aspects of cartilage structure-mechanics relationships and
OA pathomechanics. Highlights among these include
micromechanical anisotropy and heterogeneity of healthy
andOA cartilage146 or meniscus,147 cartilage weakening in
spontaneous148–149 and post-traumatic150–152 OA,
mechanics of individual chondrocytes,151,153 and quality
evaluation of engineered neo-tissues.154–156

Notably, AFM-nanoindentation has made it possible to
study the mechanical properties of murine cartilage.
Previously, the ~100 μm thickness of murine cartilage
prevented such attempts. Because in vivo OA studies are
largely dependent on murine models,157 nanoindentation
provides a critical bridge across two crucial fields of OA
research: biology and biomechanics. The benefit of
nanoindentation for murine model studies has been
demonstrated by a number of recent studies. For example,

Table 2. Monolayer culture conditions for human primary
articular chondrocytes

Plate type Volume per well No. of cells per well

6-well 2.5 mL 1× 106

12-well 1 mL 4× 105

24-well 0.5 mL 2× 105
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cartilage in mice lacking collagen IX (Col9a1−/−)148

showed abnormally higher moduli, while those lacking
lubricin (Prg4−/−)158 or chondroadherin (Chad−/−)159

showed lower moduli. Col9a1−/− and Prg4−/− mice also
developed macroscopic signs of OA,148,158 underscoring
the high correlation between abnormalities in cartilage
biomechanics and OA. Li et al. also recently demonstrated
the applicability of nanoindentation to the murine
meniscus.160 Further applications of nanoindentation to
clinically relevant OA models, such as the DMM model,110

hold the potential of assessing OA as an entire joint disease
through biomechanical symptoms in multiple murine
synovial tissues.
Two other recent technological advances provide paths

to further in-depth studies. First, Wilusz et al.161 stained
cartilage cryosections with immunofluorescence antibo-
dies of the pericellular matrix signature molecules, type VI
collagen and perlecan.162 Using immunofluorescence
guidance, nanoindentation was used to delineate the
mechanical behavior of cartilage pericellular matrix and
ECM,161–163 and to reveal the role of type VI collagen in
each matrix by employing Col6−/− mice.164 Therefore, it is
now possible to directly examine the relationships across
micro-domains between biochemical content and biome-
chanical properties of cartilage,161 meniscus165 or other
synovial tissues in situ. Second, Nia et al.166 converted the
AFM to a high-bandwidth nanorheometer. This tool
enabled separation of the fluid flow-driven poroelasticity
and macromolecular frictional intrinsic viscoelasticity that
govern cartilage energy-dissipative mechanics.166–168

Hydraulic permeability, the property that regulates poroe-
lasticity, was found to be mainly determined by aggrecan
rather than collagen169 and to change more drastically
than modulus upon depletion of aggrecan.166,170 This new
tool provides a comprehensive approach beyond the
scope of elastic modulus for assessing cartilage functional
changes in OA.

MOLECULES MEDIATING OA PAIN
The perception of OA pain is a complex and dynamic
process involving structural and biochemical alterations at

the joint as well as in the peripheral and central nervous
systems. While there have been extensive studies of
mediators of OA joint degeneration, only recently have
studies begun to characterize biochemical influences on
and in the peripheral and central nervous systems in OA. In
this regard, OA appears to show similarities and differences
with other conditions causing pain.171–172 There are a wide
variety of signaling pathways linked to joint destruction
and/or pain. In this section we will discuss three emerging
and highly relevant pathways that provide insight into the
mechanisms underlying OA pain.

Chemotactic cytokine ligand 2/chemokine (C–C motif)
receptor 2
Chemotactic cytokine ligand 2 (CCL2), also known as
monocyte chemoattractant protein 1 (MCP-1), is well-
known to mediate the migration and infiltration of mono-
cytes and macrophages by signaling through chemokine
(C–C motif) receptor 2 (CCR2).173 In arthritis, CCL2
promotes inflammation of the joint.174 Evidence also
suggests that CCL2 is an important mediator of
neuroinflammation.175–176 In neuropathic pain, CCL2
expression is increased in microglia and in sensory neurons
in the dorsal root ganglia (DRGs), where CCL2 can be
further transported and released into central spinal nerve
terminals. Increased CCL2/CCR2 signaling has been
correlated with direct excitability of nociceptive neurons
and microglial activation, leading to persistent hyperalge-
sia and allodynia.177–178

In a DMMmouse OAmodel, CCL2 and CCR2 levels were
elevated in DRGs at 8 weeks post surgery, correlating with
increased OA-associated pain behaviors. Increased CCL2
and CCR2 levels in the DRG were thought to mediate pro-
nociceptive effects both by increasing sensory neuron
excitability through CCL2/CCR2 signaling directly in DRG
sensory neurons and through CCL2/CCR2-mediated
recruitment of macrophages in the DRG. Compared with
wild-type mice, Ccr2-null mice showed reduced pain
behaviors following DMM with similar levels of joint
damage.179 Although CCR2 antagonists are currently
being assessed in clinical studies, no clinical studies have
targeted CCL2 or CCR2 in OA pain.180

Table 3. The recommended semi-quantitative scoring system143

Grade Osteoarthritic damage

0 Normal
0.5 Loss of Safranin O without structural changes
1 Small fibrillations without loss of cartilage
2 Vertical clefts down to the layer immediately below the superficial layer and some loss of surface lamina
3 Vertical clefts/erosion to the calcified cartilage extending to o25% of the articular surface
4 Vertical clefts/erosion to the calcified cartilage extending to 25%–50% of the articular surface
5 Vertical clefts/erosion to the calcified cartilage extending to 50%–75% of the articular surface
6 Vertical clefts/erosion to the calcified cartilage extending to 475% of the articular surface
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Nerve growth factor/tropomyosin receptor kinase A
In both clinical and animal studies, the targeted inhibition
of nerve growth factor (NGF) and inhibition of its cognate
receptor, tropomyosin receptor kinase A (TrkA), reduced
OA pain. Clinically, the systemic administration of NGF
caused persistent whole-body muscle hyperalgesia in
healthy human subjects,174,177 while anti-NGF antibody,
tanezumab, therapy significantly reduced OA pain.181–184

There are a number of potential mechanisms through
which NGF mediates pain. Over-expressed NGF in periph-
eral tissues can bind directly to TrkA at sensory neuron
nerve terminals and be retrogradely transported to the
DRG. There it stimulates sensory neurons to activate
mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK) signaling.185 The activation of
the NGF-MAPK/ERK axis upregulates the expression of pain-
related molecules, including transient receptor potential
cation channel subfamily V member I (TRPV1), substance P,
calcitonin gene-related peptide (CGRP), brain-derived
neurotrophic factor (BDNF), and nociceptor-specific ion
channels, such as Cav 3.2, 3.3, and Nav1.8.

186–188

In addition to direct signaling of sensory neurons, NGF
promotes algesic effects by targeting other cell types. For
example, NGF/TrkA signaling occurs in mast cells, triggering
release of pro-inflammatory and pain mediators, including
histamine and prostaglandins, in addition to NGF.186,189

NGF signaling is upregulated by pro-inflammatory
mediators, and NGF promotes leukocyte chemotaxis
and vascular permeability, further stimulating
inflammation.190–192 NGF/TrkA signaling further promotes
angiogenesis and nerve growth. The process of angiogen-
esis is not only inflammatory, but also serves as a track for
nerve growth into the joint.193

Given the high efficacy of targeting NGF in a clinical study
on reducing OA pain, it is of great interest to further define
NGF/TrkA pain signaling mechanisms and to find additional
therapeutic targets in this pathway. Recent evidence
indicates that loss of PKCδ signaling significantly increases
both NGF and TrkA in the DRG and synovium, is associated
with increased MAPK/ERK signaling at the innervating DRGs,
and is associated with OA hyperalgesia.194 However, in
recent clinical studies, a small population of patients treated
with systemic anti-NGF therapy exhibited rapid progression
of OA and were more prone to bone fractures.195

Considering the analgesic effects by anti-NGF therapy on
OA-associated pain, understanding of the precise roles of
the NGF/TrkA pathway in different joint tissues in OA and
OA-associated pain is of great interest.

ADAMTS5
The use of Adamts5 KO mice and therapeutic treatment
with anti-ADAMTS5 antibody in wild-type mice produce

inhibition of ADAMTS5 signaling/expression in the DMM
model, resulting in reduction of both joint degeneration
and pain.98,196–197 ADAMTS5 is a major aggrecanase, and
because aggrecan is a major component of the proteo-
glycans in cartilage that provides compressive resistance,
ADAMTS5 is thought to be a critical mediator of cartilage
degeneration during the development of OA.198 Although
variations in pain signaling can be independent from the
degree of joint degeneration, the use of Adamts5 KOmice
and direct inhibition of joint degeneration with anti-
ADAMTS5 antibody may provide insight into how joint
degeneration produces OA pain. For example, hyalectan
fragments generated by ADAMTS5 have been suggested
to directly stimulate nociceptive neurons as well as glial
activation, promoting increased pain perception.196,199

Furthermore, inhibition of ADAMTS5 following DMM resulted
in reduced levels of CCL2 in DRG neurons, thus suggesting
a role for CCL2 in OA-specific pain.197

Pain-related behavior tests
Pain is the most common reason patients seek medical
treatment and is a major indication for joint replacement
surgery.200–201 Therefore, evaluating pain in pre-clinical
animal models is of critical importance to better under-
stand mechanisms of and to develop treatments for OA
pain. The evaluation of OA pain in animals involves indirect
and direct measures.
Recognizing pain as a clinical sign and quantitatively

assessing pain intensity are essential in research for
effective OA pain management. Rodent animal models
are routinely used for basic and pre-clinical studies
because of the relatively low cost of animal maintenance,
the abundance of historical data for comparison, and
smaller amounts of drugs required for experimental studies.
For pain measurements, rodents have advantages over
other small animal models, such as rabbits, which present
challenges to obtain a pain response and are immobile if
startled by an unfamiliar observer. Mice are usually used for
the development of genetically engineered strains to
enable molecular understanding of OA progression and
pain in vivo.202 Larger animals, including dogs, sheep,
goats, and horses are also sometimes used for modeling
OA pain.202–203

A wide range of direct and indirect measures of pain are
used in small animal models of OA. Indirect and/or direct
measures of pain include static or dynamic weight
bearing, foot posture, gait analysis, spontaneous activity,
as well as sensitivity to mechanical allodynia, mechanical
hyperalgesia, and thermal, and cold stimuli.202–203 Among
indirect tests involving pain-evoked behaviors, mechanical
stimuli may be the most correlated with OA pain. A
commonly used measure of indirect pain is the von Frey
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test for mechanical allodynia using filaments to assess
referred pain.186,194,196,202,204 Direct mechanical hyperalge-
sia is performed using an analgesymeter for paw pressure
pain threshold. Additional direct measures of OA pain
include the hind limb withdrawal test, vocalization evoked
by knee compression on the affected knee, the struggle
reaction to knee extension, and ambulation and rearing
spontaneous movements.194,202–203 Weight-bearing and
gait analyses may have important translational relevance
for assessing OA pain because these tests are also used to
assess clinical OA pain.203 However, obtaining clear pain
responses from weight bearing or gait is challenging when
using the unilateral DMM mouse model because the
nature of OA pain is a dull pain unlike that of, for example,
sharp inflammatory pain.
In large animals, pain behavior testing is more challen-

ging and there is no consensus for the best method of
evaluating pain.202 However, dogs, the most commonly
used large animal, have been suggested to provide the
best predictive modeling for OA pain translated into the
clinical setting.205 Methods used for assessing pain in large
animals are restricted to assessing degree of lameness, gait
analysis, and subjective rating scales, which assess descrip-
tors of pain similar to those of humans.
Overall, there is a wide range of pain-behavior tests for

small and large animal models. Although no animal model
or pain behavior test perfectly translates to OA-associated
pain in patients, these tests yield a valuable understanding
of the mechanisms of OA pain and allow assessment of
treatments for relief from OA-associated pain. Rodents will
continue to be widely used for basic OA pain research, but
large animals continue to be important because of their
greater potential for modeling clinical OA pain.

FUTURE PERSPECTIVE
Although significant progress has been made in OA
research in recent years, very little is yet known about the
molecular mechanisms of OA initiation and progression.
OA is a heterogeneous disease caused by multiple factors.
One important potential factor for OA development is
Runx2, which is upregulated in several OA mouse models
and in cartilage samples derived from patients with OA
disease.7–8,11,13,91 Key questions that need to be addressed
are: (1) Is Runx2 a central molecule mediating OA
development in joint tissue?; and (2) Could manipulation
of Runx2 expression be used to treat OA disease? OA is a
disease affecting the entire joint, including articular
cartilage, subchondral bone, synovial tissues and menisci.
In which of these joint tissues OA damage first occurs during
disease initiation is currently unknown; this is important
because it is directly related to OA treatment. In addition,
the interplaying mechanisms among different OA

symptoms, such as articular cartilage degradation, osteo-
phyte formation, subchondral sclerosis and synovial hyper-
plasia, await clarification. The understanding of the
molecular mechanisms underlying these issues will accel-
erate the development of novel therapeutic strategies
for OA.
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